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OPTIMAL STREAMS OF PREMIUMS IN MULTIPERIODCREDIBILITY MODELS
Abstra
t. Optimal arrangement of a stream of insuran
e premiums for amultiperiod insuran
e poli
y is 
onsidered. In order to satisfy solven
y re-quirements we assume that a weak Axiom of Solven
y is satis�ed. Then twooptimization problems are solved: �nding a stream of net premiums thatapproximates optimally 1) future 
laims, or 2) �anti
ipating premiums�. Itis shown that the resulting optimal streams of premiums enable di�erenti-ating between poli
yholders mu
h more qui
kly than one-period 
redibilitypremiums.1. Introdu
tion. Various aspe
ts of premiums 
al
ulation were pre-sented by N. L. Bowers et al. [1℄, H. U. Gerber [8℄, H. Bühlmann [2℄, H. Bühl-mann and A. Gisler [3℄, H. H. Panjer et al. [12℄, to name but a few authorsof monographs only. On the other hand, some authors 
onsidered noninsur-an
e approa
h to optimal funding of a stream of deterministi
 liabilities (seee.g. [5℄). Perhaps the most important di�eren
e between insuran
e and non-insuran
e approa
h to �nan
ing possible 
laims is that insuran
e premiumsare 
al
ulated for a group of risks in order to 
over the total sum of all 
laims
orresponding to those risks. For some insureds the premium 
al
ulated inthis way will be lower than their future 
laims and for some it will be higher,but no one is expe
ted to return the resulting pro�t or to pay an additionalpost fa
tum premium. If all risks are independent and identi
ally distributedrandom variables, the system is fair in the sense that it does not privilegeany of the insureds. If, however, the risks are not identi
ally distributed, the2000 Mathemati
s Subje
t Classi�
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224 L. Gajek et al.premium is expe
ted to start di�erentiating as soon as we get informationabout the 
lient's 
laim distribution. Nevertheless even then we still do notexpe
t the 
lient to pay a post fa
tum premium to 
over past indemnities;instead we use the information about the past 
laims to identify better the
lient's 
laim distribution. More pre
isely, a

ording to 
redibility theory wepredi
t future 
laims of the 
lient on the basis of his past 
laims.In this paper we propose a new method of 
al
ulation of insuran
e pre-miums when we do not treat ea
h of the insuran
e periods separately. Su
ha general approa
h allows us to propose a more e�e
tive way of distributingpremiums through all insuran
e periods. Speaking more te
hni
ally, everypremium is designed so that it takes into a

ount the value of the 
laimswhi
h have happened so far and the values of all 
laims predi
ted hereafter.Thus the approa
h des
ribed in the paper may be seen as a generalizationof the one-period 
redibility theory. Premiums 
al
ulated in su
h a way willalso ensure a more fair treatment of 
ustomers (for details see Se
tion 4).1.1. The model. Let us 
onsider m insuran
e periods before the begin-ning of a new insuran
e and T periods of the new insuran
e. The presentvalue of the 
laim resulting from period t is modeled by a random variable
Xt, where t = −m, . . . ,−1, 1, . . . , T . Every 
lient belongs to some 
lass ofrisk 
hara
terized by a risk pro�le θ (see [3℄). The 
onditional distribution ofea
h Xt, given θ, is assumed to be dominated by a σ-�nite measure ν, witha Radon�Nikodym density w(· | θ). The problem is that we usually do notknow θ, but basing on histori
al data we only know that some θ are more andsome are less likely. In the present paper the risk pro�le θ is 
onstant in timefor ea
h 
lient. It is worth mentioning that θ may also be time-dependent(see [14℄ and [3℄). Assume that Θ is a random variable with distributionfun
tion π(θ) (also 
alled the stru
tural fun
tion of the 
olle
tive�see [3℄).Then the 
laim Xt has the un
onditional density fun
tion

p(x) =
\
w(x|θ) dπ(θ).Let us de�ne

Rm =
−1
∑

i=−m

Xi, St =
t

∑

i=1

Xi,for t = 1, . . . , T . Assume that
Cov(Xi, Xj |Θ = θ) =

{

σ2(θ) for i = j,
0 for i 6= j,and set

E(Xi |Θ = θ) = µ(θ),

E(µ(Θ)) = µ, Var(µ(Θ)) = a2, E(σ2(Θ)) = s2,



Optimal streams of premiums 225for i, j = −m, . . . ,−1, 1, . . . , T . Additionally, we denote by βt(x−m, . . . , x
−1,

x1, . . . , xt−1) a predi
tion of the present value of the 
lient's 
laim in period
t taking into a

ount the values of all his 
laims in the past. Throughoutthe paper we shall use the following formula for the best linear predi
tor,derived in 
redibility theory (see [3, formula (3.1)℄):
(1) βt = βt(X−m, . . . , X

−1, X1, . . . , Xt−1) = zt
St−1 + Rm

t − 1 + m
+ (1 − zt)µ,

t = 1, . . . , T,where
zt =

a2(t − 1 + m)

s2 + a2(t − 1 + m)
, t = 1, . . . , T.If m = 0, we 
an de�ne βt as µ for t = 1, and by the right side of (1)with R0 = 0 for t > 1. The above predi
tor βt is optimal in the sense ofminimizing the mean squared error (see e.g. Theorem 3.2 of [3℄). However,also other measures are used to �nd optimal predi
tors (see e.g. [13℄).Payments of indemnities will be �nan
ed by su

essively 
olle
ted insur-an
e premiums. The insuran
e premium in ea
h period will 
onsist of a netpremium with present value Pt plus premium for the risk, plus the 
osts andplus return on 
apital. We de�ne the insuran
e net premium Pt as follows:

(2) Pt = αt[St−1 + (T − t + 1)βt(X−m, . . . , X
−1, X1, . . . , Xt−1)],

t = 1, . . . , T,where α1, . . . , αT ≥ 0. The parameter αt de�nes the fra
tion of the totalof the 
laims that have happened so far and the ones that are predi
tedhereafter whi
h the 
ustomer �nan
es at period t.1.2. Solven
y requirements. The parameter αt is 
hosen in a way thatthe following weak Axiom of Solven
y be satis�ed (see [7℄ and [4℄):
E

t
∑

i=1

Pi ≥ E
t

∑

i=1

Xi, t = 1, . . . , T − 1,(3)
E

T
∑

i=1

Pi = E
T

∑

i=1

Xi.By simple algebra, one 
an show that (3) is equivalent to(4) t
∑

i=1

αi ≥
t

T
, t = 1, . . . , T − 1,and(5) T

∑

i=1

αi = 1.



226 L. Gajek et al.1.3. The results. Let us observe that
T

∑

t=1

E(Pt − Xt)
2
an be treated as the overall measure of the predi
tion risk so our aim isto minimize it over all streams (α1, . . . , αT ) that satisfy (4) and (5). Thisproblem will be solved expli
itly in Se
tion 2 (see Theorem 1).Se
tion 3 will be devoted to �nding a stream of insuran
e premiums wellapproximating so-
alled anti
ipating premiums. This optimization problemis motivated by the fa
t that if we knew all the 
laims whi
h were to o

urin the future we would be able to 
al
ulate the anti
ipating premiums:(6) Yt = αt

T
∑

i=1

Xi, t = 1, . . . , T,where the 
oe�
ients αt satisfy (4) and (5). Obviously we do not know the
laims in advan
e, therefore we try to �nd premiums Pt whi
h in some senseare 
lose to the anti
ipating premiums Yt. Theorem 2 says that the weights
αt = 1/T , t = 1, . . . , T,provide su
h an approximation. Moreover, the above 
onstant weights arethe limits, as s/µ → 0, of the weights solving the �rst optimization problem.The main idea of this paper is based on the results of [5℄, [11℄ and [15℄.It is also possible to look at the 
redibility theory from other points ofview. For instan
e, Landsman [9℄ 
onsiders the se
ond order optimal estima-tion while Bühlmann and Gisler [3℄ investigate time-dependent risk pro�lesof the insureds. For other approa
hes and extensions we refer the reader tothe monograph of Bühlmann and Gisler [3℄.2. Insuran
e premiums approximating 
laims. Let us suppose thatthe net insuran
e premiums should 
orrespond as well as possible to thefuture payment in every period. This leads to the following optimizationproblem:(7) minimize

α1,...,αT

T
∑

t=1

E(Pt − Xt)
2subje
t to

(8)
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
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


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
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

t
∑

i=1

αi ≥ t/T , t = 1, . . . , T − 1,

αt ≥ 0, t = 1, . . . , T ,
T

∑

t=1

αt = 1,where 
onstraints (8) 
orrespond to solven
y restri
tions (3).



Optimal streams of premiums 227Optimal 
oe�
ients αt that solve (7) subje
t to (8) are provided in The-orem 1 below.Theorem 1. If(9) αt =

(

1 −
∑T

i=1
li/ki

∑T
i=1

1/ki

+ lt

)

1

kt

, t = 1, . . . , T,where ki and li are given by (11) and (12) below , then (α1, . . . , αT ) is asolution to (7) subje
t to (8).Proof. Let us noti
e that
(10)

T
∑

t=1

E(Pt − Xt)
2

=
T

∑

t=1

α2
t

s2 + a2(t − 1 + m)
[(t − 1)s4 + (2T + m)(t − 1)a2s2

+ T 2a4(t − 1 + m) + T 2µ2((t − 1 + m)a2 + s2)]

− 2

T
∑

t=1

αt

s2 + a2(t − 1 + m)
[(t − 1)s2a2 + T (t − 1 + m)a4

+ Tµ2(s2 + a2(t − 1 + m))] + T (a2 + s2 + µ2).It is easy to show that the foregoing fun
tion is 
onvex. Let us de�ne
kt =

1

s2 + a2(t − 1 + m)
[(t − 1)s4 + (2T + m)(t − 1)a2s2(11)

+ T 2a4(t − 1 + m) + T 2µ2((t − 1 + m)a2 + s2)],

lt =
(t − 1)s2a2 + T (t − 1 + m)a4 + Tµ2(s2 + a2(t − 1 + m))

s2 + a2(t − 1 + m)
,(12)and

A = T (a2 + s2 + µ2).Then the Lagrangian for our problem 
an be written as follows:
L(α, λ, p) =

T
∑

t=1

(α2
t kt − 2αtlt) + A +

T−1
∑

t=1

λt

(

t

T
−

t
∑

i=1

αi

)

+ p

(

1 −
T

∑

i=1

αi

)

.By the Kuhn�Tu
ker theorem (see [12, Corollary 8.11.2℄), the optimizationproblem (7)�(8) takes the form



228 L. Gajek et al.

(13)




















































































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

2αtkt − 2lt −
T−1
∑

i=t

λi − p = 0, t = 1, . . . , T ,
λt

(

t

T
−

t
∑

i=1

αi

)

= 0, t = 1, . . . , T − 1,
1 −

T
∑

i=1

αi = 0,

t

T
−

t
∑

i=1

αi ≤ 0, t = 1, . . . , T − 1,

αt ≥ 0, t = 1, . . . , T ,
p ∈ R,

λt ≥ 0, t = 1, . . . , T − 1.Assume that λ1 = · · · = λT−1 = 0 and α1, . . . , αT , p > 0. Then from the�rst equation of (13) we obtain
αt =

2lt + p

2kt

, t = 1, . . . , T,and additionally, for t = 1,
p = 2α1k1 − 2l1.Thus(14) αt =

lt + α1k1 − l1
kt

, t = 1, . . . , T.Then, using the third equation of (13), we get
T

∑

i=1

li − l1 + α1k1

ki

= 1,hen
e
α1 =

1 −
∑T

i=1
(li − l1)/ki

∑T
i=1

k1/ki

.From (14) the optimal 
hoi
e of αt is
αt =

(

1 −
∑T

i=1
li/ki

∑T
i=1

1/ki

+ lt

)

1

kt

> 0, t = 1, . . . , T,and
p = 2

1 −
∑T

i=1
li/ki

∑T
i=1

1/ki

> 0.It is easy to 
he
k that
lt/kt > lt+1/kt+1, kt < kt+1 t = 1, . . . , T − 1.



Optimal streams of premiums 229Therefore(15) αt > αt+1, t = 1, . . . , T − 1.From (15) and the third equation of (13) we have
t

∑

i=1

αi ≥ t/T t = 1, . . . , T − 1.Thus we have obtained the 
oe�
ients αt solving (7) subje
t to (8).Theorem 1 enables us to 
onstru
t the stream of insuran
e premiumswhi
h well approximates the stream of 
laims. Formula (9) simpli�es 
onsid-erably for some spe
ial limit 
ase. Noti
e that if s ≪ µ (so that s2/µ2 ≈ 0),from (11) and (12) we get
lt
kt

µ−2

µ−2
≈

T (t − 1 + m)a4/µ2 + T (s2 + a2(t − 1 + m))

T 2(t − 1 + m)a4/µ2 + T 2(s2 + a2(t − 1 + m))
=

1

T
.Therefore, by (9),

αt =















1 −
T

∑

i=1

li
ki

µ−2

µ−2

T
∑

i=1

1

ki

+ lt















1

kt

≈















1 −
T

∑

i=1

1

T

T
∑

i=1

1

ki

+ lt















1

kt

=
1

T
.

We will show in Se
tion 3 that the above limit 
ase premiums have furtheroptimality properties.3. Anti
ipating insuran
e premiums. If we 
ould know the future,an insured should pay the total net premium ∑T
i=1

Xi. This total premium
ould be distributed over all insuran
e periods in su
h a way that the weakAxiom of Solven
y (3) be satis�ed. So let us de�ne
Yt = αt

T
∑

i=1

Xi, t = 1, . . . , T,where the 
oe�
ients αt satisfy (4) and (5). Throughout the paper the ran-dom variables Yt are 
alled the anti
ipating premiums. They 
ould be 
al-
ulated if we were able to use in the premium formula both the 
laims thathappened in the past and those whi
h will o

ur hereafter. Suppose that wewant to minimize the overall di�eren
e between the insuran
e premiums Pt,given by (2), and the anti
ipating premiums Yt. To be more pre
ise, we arelooking for a solution to the following problem:(16) minimize
α1,...,αT

T
∑

t=1

E(Pt − Yt)
2,subje
t to
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(17)
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t
∑

i=1

αi ≥ t/T , t = 1, . . . , T − 1,

αt ≥ 0, t = 1, . . . , T ,
T

∑

t=1

αt = 1.Theorem 2. The weights
αt = 1/T , t = 1, . . . , T,solve the minimization problem (16) subje
t to (17).Proof. Let us noti
e that

T
∑

t=1

E (Pt − Yt)
2 =

T
∑

t=1

α2
t

s2 + (T + m)a2

s2 + a2(t − 1 + m)
(T − t + 1)s2.It is easily seen that the above fun
tion is 
onvex. Let us de�ne

kt =
s2 + (T + m)a2

s2 + a2(t − 1 + m)
(T − t + 1)s2.The Lagrangian for our problem is given by

L(α, λ, p) =
T

∑

t=1

α2
t kt +

T−1
∑

t=1

λt

(

t

T
−

t
∑

i=1

αi

)

+ p
(

1 −
T

∑

i=1

αi

)

.By the use of the Kuhn�Tu
ker theorem (see [12, Corollary 8.11.2℄), theminimization problem (16)�(17) takes the form
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


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
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

2αtkt −
T−1
∑

i=t

λi − p = 0, t = 1, . . . , T ,
λt

(

t

T
−

t
∑

i=1

αi

)

= 0, t = 1, . . . , T − 1,

1 −

T
∑

i=1

αi = 0,

t

T
−

t
∑

i=1

αi ≤ 0, t = 1, . . . , T − 1,
αt ≥ 0, t = 1, . . . , T ,
p ∈ R,

λt ≥ 0, t = 1, . . . , T − 1.



Optimal streams of premiums 231Assume that α1, . . . , αT , p > 0. From the �rst equation of (18) we get
αt =

∑T−1

i=t λi + p

2kt

, t = 1, . . . , T.Note that for t = T ,
p = 2ktαT .Also assume that λt > 0 for t = 1, . . . , T −1. Then from the se
ond equationof (18) we obtain

αt = 1/T > 0, t = 1, . . . , T,and
p = 2kT /T > 0.Thus

1

T
= αt =

λt +
∑T−1

i=t+1
λi + p

2kt

, t = 1, . . . , T,hen
e
λt =

2kt

T
−

T−1
∑

i=t+1

λi − p =

(

2kt

T
− p −

T−1
∑

i=t+2

λi

)

− λt+1

=

(

2kt

T
− p −

T−1
∑

i=t+2

λi

)

−

(

2kt+1

T
−

T−1
∑

i=t+2

λi − p

)

=
2(kt − kt+1)

Tfor all t = 1, . . . , T . It is a simple matter to show that
kt > kt+1, t = 1, . . . , T − 1.Therefore

λt =
2(kt − kt+1)

T
> 0, t = 1, . . . , T − 1.Hen
e(19) αt = 1/T , t = 1, . . . , T,minimize (16). It 
an be easily 
he
ked that the αt given by (19) satisfyrestri
tions (17) so they provide the solution to our problem. Thus we have
onstru
ted the insuran
e premiums

Pt =
1

T

[

St−1 + (T − t + 1)

(

zt
St−1 + Rm

t − 1 + m
+ (1 − zt)µ

)]

, t = 1, . . . , T,where zt = a2(t− 1+m)/[s2 +a2(t− 1+m)], whi
h are 
losest, in the senseof (16) and (17), to the anti
ipating premiums.4. Comparisons with one-period 
redibility premiums. Let us
ompare our methodology with the one 
orresponding to the one-period
redibility theory. First observe that for ea
h t = 1, . . . , T , the predi
tor
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βt equals the 
redibility premium. Let us suppose that αt = 1/T for all
t = 1, . . . , T . The fun
tion

Ut(θ) = E[Pt − βt |Θ = θ], t = 1, . . . , T,measures expe
ted di�eren
es between the premium's values when applyingour approa
h and those given by the one-period 
redibility theory, for anarbitrary �xed risk pro�le θ. It is easy to 
he
k that
Ut(θ) =

s2

T [s2 + a2(t − 1 + m)]

[

t−1
∑

i=1

E(Xi |Θ = θ) − (t − 1)µ
]

.

Noti
e that U1(θ) = 0. This means that the insuran
e premiums are equalto ea
h other for both approa
hes in the �rst period. Now, let us 
onsiderthe 
ase t > 1.Corollary 3.
Ut(θ) > 0 if E(X |Θ = θ) > µ (bad risk 
ase),
Ut(θ) = 0 if E(X |Θ = θ) = µ (average risk 
ase),
Ut(θ) < 0 if E(X |Θ = θ) < µ (good risk 
ase)for every t > 1.This means that bad risks pay higher premiums in our model, averagerisks have the same premiums in both models, and good risks pay lowerpremiums. Additionally we haveCorollary 4.If E(X |Θ = θ) > µ (bad risk 
ase), then Ut+1 > Ut > 0,and if E(X |Θ = θ) < µ (good risk 
ase), then Ut+1 < Ut < 0for all t > 1.Let us noti
e that bad risks will pay higher and higher premiums, 
om-pared with the one-period 
redibility theory, and good risks will pay lowerand lower ones. More detailed 
omparisons are provided in the followingexample.Example 5. Assume that the 
laims have Gamma distribution withparameters p, θ:

w(x | θ) =
θp

Γ (p)
xp−1e−θx,and Θ is a random variable with a density fun
tion
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π(θ) =

dc

Γ (c)
θc−1e−dθ.We take T = 10 and m = 4. Additionally let p = 1, c = 21 and d = 4000.From the above it follows that

E(µ(Θ)) = µ = $200,

Var(µ(Θ)) = a2 = 2105.26,
E(σ2(Θ)) = s2 = 42105.26.Let us 
onsider three poli
yholders: insured A with E(X|Θ = θ) = $108(good risk 
ase), insured B with E(X |Θ = θ) = $200 (average risk 
ase),and insured C with E(X |Θ = θ) = $292 (bad risk 
ase).Table 1. Expe
ted di�eren
es between multi-and one-period 
redibility net premiumsPeriod Good risk Average risk Bad risk

t Ut(θ) Ut(θ) Ut(θ)($) ($) ($)
1 −0.00 0.00 0.00

2 −7.36 0.00 7.36

3 −14.15 0.00 14.15

4 −20.44 0.00 20.44

5 −26.29 0.00 26.29

6 −31.72 0.00 31.72

7 −36.80 0.00 36.80

8 −41.55 0.00 41.55

9 −46.00 0.00 46.00

10 −50.18 0.00 50.18Total −274.50 0.00 274.50Thus, due to our methodology after 10 periods insured A (good risk)saves on average $274.50 while insured C (bad risk) pays on average $274.50more.In Figure 1 it is shown how the average premiums 
hange in time for goodand bad risks as 
ompared with the one-period 
redibility theory premiums.In our model in the last period a bad risk pays over $50 more and a goodrisk pays over $50 less than in the one-period 
redibility theory. In our modelthe average total sum of premiums of insured A (good risk) is $1457.79.Insured A 
an buy for this sum only 8 premiums a

ording to the one-period
redibility theory.In Figure 2 it is shown in su

essive periods how Ut(θ) 
hanges in relationto E[βt |Θ = θ]. In period 10 a bad risk pays the premium 21% higher



234 L. Gajek et al.

Fig. 1. Expe
ted net premiums of good and bad risks in a multiperiod 
redibility model(
ompared with one-period 
redibility premiums).

Fig. 2. Expe
ted di�eren
e Ut(θ) as a per
entage of net premiums in a one-period 
redi-bility model.and a good risk pays the premium 31% lower than given by the one-period
redibility theory.The above example shows the advantage of the multiperiod 
redibilityapproa
h: it is pro�table for good risks and unpro�table for bad ones. Thusgood risks would be more likely to 
hoose our 
ompany whereas bad riskswould rather go to other ones. Therefore we 
ould lower the premiums su
-
essively while the 
ompeting 
ompanies will have to in
rease their premiumsin order to 
over an in
reasing number of bad risks.
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