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OPTIMAL STREAMS OF PREMIUMS IN MULTIPERIOD
CREDIBILITY MODELS

Abstract. Optimal arrangement of a stream of insurance premiums for a
multiperiod insurance policy is considered. In order to satisfy solvency re-
quirements we assume that a weak Axiom of Solvency is satisfied. Then two
optimization problems are solved: finding a stream of net premiums that
approximates optimally 1) future claims, or 2) “anticipating premiums”. It
is shown that the resulting optimal streams of premiums enable differenti-
ating between policyholders much more quickly than one-period credibility
premiums.

1. Introduction. Various aspects of premiums calculation were pre-
sented by N. L. Bowers et al. [1], H. U. Gerber [8], H. Biithlmann [2], H. Biihl-
mann and A. Gisler [3|, H. H. Panjer et al. [12], to name but a few authors
of monographs only. On the other hand, some authors considered noninsur-
ance approach to optimal funding of a stream of deterministic liabilities (see
e.g. [5]). Perhaps the most important difference between insurance and non-
insurance approach to financing possible claims is that insurance premiums
are calculated for a group of risks in order to cover the total sum of all claims
corresponding to those risks. For some insureds the premium calculated in
this way will be lower than their future claims and for some it will be higher,
but no one is expected to return the resulting profit or to pay an additional
post factum premium. If all risks are independent and identically distributed
random variables, the system is fair in the sense that it does not privilege
any of the insureds. If, however, the risks are not identically distributed, the
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premium is expected to start differentiating as soon as we get information
about the client’s claim distribution. Nevertheless even then we still do not
expect the client to pay a post factum premium to cover past indemnities;
instead we use the information about the past claims to identify better the
client’s claim distribution. More precisely, according to credibility theory we
predict future claims of the client on the basis of his past claims.

In this paper we propose a new method of calculation of insurance pre-
miums when we do not treat each of the insurance periods separately. Such
a general approach allows us to propose a more effective way of distributing
premiums through all insurance periods. Speaking more technically, every
premium is designed so that it takes into account the value of the claims
which have happened so far and the values of all claims predicted hereafter.
Thus the approach described in the paper may be seen as a generalization
of the one-period credibility theory. Premiums calculated in such a way will
also ensure a more fair treatment of customers (for details see Section 4).

1.1. The model. Let us consider m insurance periods before the begin-
ning of a new insurance and T periods of the new insurance. The present
value of the claim resulting from period t is modeled by a random variable
Xy, where t = —m, ..., —1,1,...,T. Every client belongs to some class of
risk characterized by a risk profile 6 (see [3]). The conditional distribution of
each X, given 0, is assumed to be dominated by a o-finite measure v, with
a Radon—Nikodym density w(-|6). The problem is that we usually do not
know @, but basing on historical data we only know that some 6 are more and
some are less likely. In the present paper the risk profile 6 is constant in time
for each client. It is worth mentioning that 6§ may also be time-dependent
(see [14] and [3]). Assume that © is a random variable with distribution
function 7(0) (also called the structural function of the collective—see [3]).
Then the claim X; has the unconditional density function

p(x) = {w(x|0) dr(0).
Let us define

-1 t
Rum= ) Xi Si=) X
i=1

fort=1,...,T. Assume that
2 f .: .
COV(Xi,Xj|@:9):{U(0) or i = .
0 for i # j,

and set
E(X;|© =0) = pu(0),
E(u(©)) = p, Var(u(0)) =a®  E(0%O)) = s
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fori,j=—-m,...,—1,1,...,T. Additionally, we denote by By (z_p,...,z_1,
Z1,...,2¢—1) a prediction of the present value of the client’s claim in period
t taking into account the values of all his claims in the past. Throughout
the paper we shall use the following formula for the best linear predictor,
derived in credibility theory (see [3, formula (3.1)]):

St—1+Rm
1 = X oo X1, X1,.... X4 ) =2 ———— 1-—
( ) /Bt ﬂt( ms ) 1, A1, 5 A 1) Zt t—1—|—m +( Zt)uv
t=1,...,T,
where )
t—1
= Ot =1tm) t=1,...,T

Cs24+a2(t—1+m)’
If m = 0, we can define §; as p for t = 1, and by the right side of (1)
with Rg = 0 for ¢ > 1. The above predictor §; is optimal in the sense of
minimizing the mean squared error (see e.g. Theorem 3.2 of [3]). However,
also other measures are used to find optimal predictors (see e.g. [13]).

Payments of indemnities will be financed by successively collected insur-
ance premiums. The insurance premium in each period will consist of a net
premium with present value P; plus premium for the risk, plus the costs and
plus return on capital. We define the insurance net premium P, as follows:
(2) Bﬁ = at[Stfl + (T —t+ 1)ﬁt(Xfm7 s 7X717X17 cee thl)]v

t=1,...,T,

where «aq,...,ar > 0. The parameter oy defines the fraction of the total
of the claims that have happened so far and the ones that are predicted
hereafter which the customer finances at period t.

1.2. Solvency requirements. The parameter a; is chosen in a way that
the following weak Axiom of Solvency be satisfied (see [7] and [4]):

t t
(3) EY P>EY X, t=1,...,T-1,
=1 i=1

T T
EZPi - EZX
=1 =1

By simple algebra, one can show that (3) is equivalent to

t
t
(4) z;ap? t=1,...,T—1,
1=

T
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1.3. The results. Let us observe that
T
> EB(P - Xy)?
t=1

can be treated as the overall measure of the prediction risk so our aim is
to minimize it over all streams (a1, ...,ar) that satisfy (4) and (5). This
problem will be solved explicitly in Section 2 (see Theorem 1).

Section 3 will be devoted to finding a stream of insurance premiums well
approximating so-called anticipating premiums. This optimization problem
is motivated by the fact that if we knew all the claims which were to occur
in the future we would be able to calculate the anticipating premiums:

T
(6) Vi=a Y Xi, t=1,....T
=1

where the coefficients «; satisfy (4) and (5). Obviously we do not know the

claims in advance, therefore we try to find premiums P; which in some sense

are close to the anticipating premiums Y;. Theorem 2 says that the weights
at:]./T, t:].,...,T,

provide such an approximation. Moreover, the above constant weights are

the limits, as s/u — 0, of the weights solving the first optimization problem.

The main idea of this paper is based on the results of [5], [11] and [15].

It is also possible to look at the credibility theory from other points of
view. For instance, Landsman [9] considers the second order optimal estima-
tion while Biithlmann and Gisler [3] investigate time-dependent risk profiles
of the insureds. For other approaches and extensions we refer the reader to
the monograph of Biithlmann and Gisler [3].

2. Insurance premiums approximating claims. Let us suppose that
the net insurance premiums should correspond as well as possible to the
future payment in every period. This leads to the following optimization
problem:

T
(7) minimizeZE(Pt - Xy)?
a1m0r
subject to
(t
ai>t/T, t=1,....T—1,
i=1
(8) a; >0, t=1,...,T,

T
et
t=1

where constraints (8) correspond to solvency restrictions (3).
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Optimal coefficients oy that solve (7) subject to (8) are provided in The-
orem 1 below.

THEOREM 1. If
1-S"F 1/ 1
(9) mz(%ﬂt)— t=1,...,T,
> izt Lk

where k; and l; are given by (11) and (12) below, then (ai,...,ar) is a
solution to (7) subject to (8).

Proof. Let us notice that

T
(10) > E(P - X))
t=1
T 042
t 4 2.2
= t—1 2T t—1
t:132+a2(t—1+m)[( )s”+ (2T +m)(t — 1)a”s
+ T2 (t — 14+ m) + T?u2((t — 1 + m)a® + 5?)]
I (6
—2 ! t—1)s%a® +T(t—1 4
;gz—ka?(t—l—km)[( Jsa” +T(t =1+ ma

+ Tu?(s* + a*(t — 1 +m))] + T(a* + s* + p?).

It is easy to show that the foregoing function is convex. Let us define
1
s2+a?(t—1+m)

+ T2t — 14+ m) + T?%((t — 1+ m)a® + s2)],
I, = (t—1)s2a® + T(t — 1 +m)a* + Tp?(s®> + a®(t — 1 +m))
s2+a?(t—1+m)

(11) k= [(t —1)s* + (2T + m)(t — 1)a?s?

(12)

)

A=T(a®+ s* + p?).

Then the Lagrangian for our problem can be written as follows:

T T-1 t
t

L(a, A, p) = ;(afkt — 204ly) + A+ ; At <T — Z ai)

T

+p<1 - a>

i=1
By the Kuhn—Tucker theorem (see [12, Corollary 8.11.2]), the optimization
problem (7)—(8) takes the form
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T-1
2ok — 2l — > Ni—p=0, t=1,...,T,
i=t
; t
)\t<T—Zai>—0, t=1,...,T -1,
=1
T
(13) 1—> ai=0,
=1
. t
f—ZaigO, t=1,...,T—1,
i=1
ay >0, t=1,...,T,
pER,
A >0, t=1,...,T—1.
Assume that Ay = --- = Ap_1 = 0 and aq,...,ap, p > 0. Then from the
first equation of (13) we obtain
2lt—|—p
Qi th 9 ) s 4y

and additionally, for ¢t = 1,
P = 20[1]{21 - 2l1.

Thus

l k1 —1
(14) P e L e S R o

ki

Then, using the third equation of (13), we get

ili_ll"r‘alkl _q

i=1 ki

hence

oy = Lo X (=)
zz‘T:1 k1/ki

From (14) the optimal choice of oy is

1-SF Lk, 1
at:(ﬂﬂt)_m b=1....T

iy 1/ki ke ©
and .
1> /K
=2 —%ZZI / >0
>im Lk

It is easy to check that
lt/kt>lt+1/k‘t+1, kt<kt+1 t=1,...,T—1.
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Therefore
(15) Qi > Oy, t=1,...,T —1.
From (15) and the third equation of (13) we have

t

ai>t/T t=1,..T-1

Thus we have obtained the coefficients a4 solving (7) subject to (8). =

Theorem 1 enables us to construct the stream of insurance premiums
which well approximates the stream of claims. Formula (9) simplifies consid-
erably for some special limit case. Notice that if s < u (so that s2/u? ~ 0),
from (11) and (12) we get

Ly w2  T(t—1+ m)at/p? +T(s> +a*(t—14+m)) 1
ke p=2 " T2(t—14+m)a*/p2 +T2(s2 +a2(t—1+m)) T
Therefore, by (9),

L2 d

Zk_— R ; Sl
aq Tl + i k_tN T—1+t k_t_f

2, 2%

We will show in Section 3 that the above limit case premiums have further
optimality properties.

3. Anticipating insurance premiums. If we could know the future,
an insured should pay the total net premium ZiT:1 X;. This total premium
could be distributed over all insurance periods in such a way that the weak
Axiom of Solvency (3) be satisfied. So let us define

T
Vi=a Y Xi, t=1,...,T,

where the coefficients a4 satisfy (4) and (5). Throughout the paper the ran-
dom variables Y; are called the anticipating premiums. They could be cal-
culated if we were able to use in the premium formula both the claims that
happened in the past and those which will occur hereafter. Suppose that we
want to minimize the overall difference between the insurance premiums P;,
given by (2), and the anticipating premiums Y;. To be more precise, we are
looking for a solution to the following problem:
T
(16) mlmmlzeZE (P — Y;)?,

al,...,QT

subject to
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t
> ai>t/T, t=1,....T—1,

(17) o >0, t=1,...,T,

T
Zat = 1.
t=1

THEOREM 2. The weights
o =1/T, t=1,...,T,
solve the minimization problem (16) subject to (17).
Proof. Let us notice that

5 82+ (T +m)a? 9
ZEPt Y;)? Z L ETerTrmy Lot

It is easﬂy seen that the above function is convex. Let us define
s+ (T +m)a?
s2+a?(t—1+m)
The Lagrangian for our problem is given by

Lia, A\ p) = Zatkt—FZ)\t(; ia)
oY)

1=1
By the use of the Kuhn-Tucker theorem (see [12, Corollary 8.11.2]), the
minimization problem (16)—(17) takes the form

ki = (T —t+1)s?

T-1
2ok — 3 Ai—p=0, t=1,...T,
i=t
" t
)\t<f—2ai> 0, t=1,...,T—1,
=1
T
(18) 1= ai=0,
=1
" t
T—Zazgo, t=1,...,T—1,
=1
atZOa 71':17 )Ta
pER,
\)\t>07 t:l’ ,T_l
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Assume that a,...,ar,p > 0. From the first equation of (18) we get

iy it
===t __ - t=1,...,T.
% 2kt ) ) )
Note that for t =T,
p = 2kiap.

Also assume that Ay >0 fort =1,...,7 —1. Then from the second equation
of (18) we obtain
o =1/T>0, t=1,...,T,

and
p=2kp/T > 0.
Thus _—
1 A+ DAt
—:at: 5 tzl’...,T,
T 2k,
hence

T-1
2k‘t Z)‘ <2_k?t_ _Z)‘>_>‘t+1

i=t+1 = t+2
2k 2kt 41 (kt — kiy1)
RN A
( i=t+2 i=t+2 T

forallt=1,...,T. It is a simple matter to show that
l{?t>l{?t+1, t=1,...,T —1.

Therefore
2k — k
)\t:M>O, t=1,...,T—1.
T
Hence
(19) o =1/T, t=1,...,T,

minimize (16). It can be easily checked that the «a; given by (19) satisfy
restrictions (17) so they provide the solution to our problem. Thus we have
constructed the insurance premiums

St—l + Rm

1
P = =S T—-t+1
t = |5t 1+ ( +)<Ztt_1+m

—l—(l—zt)/;)}, t=1,...,T,
where z; = a?(t — 1+m)/[s> +a®(t — 1 +m)], which are closest, in the sense
of (16) and (17), to the anticipating premiums. m

4. Comparisons with one-period credibility premiums. Let us
compare our methodology with the one corresponding to the one-period
credibility theory. First observe that for each ¢ = 1,...,7T, the predictor
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B¢ equals the credibility premium. Let us suppose that a; = 1/T for all
t=1,...,T. The function

Ut(g):E[Pt_ﬂt’@:0]7 t:17"‘7T7

measures expected differences between the premium’s values when applying
our approach and those given by the one-period credibility theory, for an
arbitrary fixed risk profile 6. It is easy to check that

t
32

-1
Ui0) = Tl B(X:[© =) = (1= 1)u].

1=

Notice that Uy () = 0. This means that the insurance premiums are equal
to each other for both approaches in the first period. Now, let us consider
the case t > 1.

COROLLARY 3.
U(0) >0 if E(X |6 =80)> u (bad risk case),
U(0) =0 if E(X |6 =80)=pu (average risk case),
U(0) <0 if E(X|© =0) < p (good risk case)
for every t > 1.

This means that bad risks pay higher premiums in our model, average
risks have the same premiums in both models, and good risks pay lower
premiums. Additionally we have

COROLLARY 4.
IfE(X|© =0) > u (bad risk case), then U1 > Uy > 0,
and
if E(X |0 =0) < p (good risk case), then U1 < Up < 0
for allt > 1.

Let us notice that bad risks will pay higher and higher premiums, com-
pared with the one-period credibility theory, and good risks will pay lower
and lower ones. More detailed comparisons are provided in the following
example.

EXAMPLE 5. Assume that the claims have Gamma distribution with
parameters p, 0:

P
w(z]0) = % aP~le=0n,

and O is a random variable with a density function



Optimal streams of premiums 233

dC
9) = 9071 7d9'

7T( ) F(C) €
We take T' = 10 and m = 4. Additionally let p = 1, ¢ = 21 and d = 4000.
From the above it follows that

E(1(6)) = 1 = $200,

Var(u(0)) = a* = 2105.26,
E(0%(0)) = s* = 42105.26.

Let us consider three policyholders: insured A with E(X|® = ) = $108
(good risk case), insured B with E(X |© = 0) = $200 (average risk case),
and insured C with E(X |© = 0) = $292 (bad risk case).

Table 1. Expected differences between multi-
and one-period credibility net premiums

Period Good risk Average risk Bad risk

t Ui (6) Ui (6) U (6)
(%) (%) (%)
1 ~0.00 0.00 0.00
2 ~7.36 0.00 7.36
3 —14.15 0.00 14.15
4 —20.44 0.00 20.44
5 ~26.29 0.00 26.29
6 ~31.72 0.00 31.72
7 —36.80 0.00 36.80
8 —41.55 0.00 41.55
9 —46.00 0.00 46.00
10 —50.18 0.00 50.18
Total  —274.50 0.00 274.50

Thus, due to our methodology after 10 periods insured A (good risk)
saves on average $274.50 while insured C (bad risk) pays on average $274.50
more.

In Figure 1 it is shown how the average premiums change in time for good
and bad risks as compared with the one-period credibility theory premiums.
In our model in the last period a bad risk pays over $50 more and a good
risk pays over $50 less than in the one-period credibility theory. In our model
the average total sum of premiums of insured A (good risk) is $1457.79.
Insured A can buy for this sum only 8 premiums according to the one-period
credibility theory.

In Figure 2 it is shown in successive periods how U;(#) changes in relation
to E[:|© = 6]. In period 10 a bad risk pays the premium 21% higher
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180 - good risk $290 bael risk

180 21540 = 6] 260 |

$170 $270 E[P:|e = 8]

$180 $260
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$130 4 $230 |
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[ .
1 2 3 4 5 B 7 8 3 10¢ 1 2 3 4 5 B 7T 8 9 10¢

Fig. 1. Expected net premiums of good and bad risks in a multiperiod credibility model
(compared with one-period credibility premiums).

25% -
bad risk
15%

5% - average risk
-5% 4

- o/ | .
19% good risk

-25% -

-35% -

Fig. 2. Expected difference U;(#) as a percentage of net premiums in a one-period credi-
bility model.

and a good risk pays the premium 31% lower than given by the one-period
credibility theory.

The above example shows the advantage of the multiperiod credibility
approach: it is profitable for good risks and unprofitable for bad ones. Thus
good risks would be more likely to choose our company whereas bad risks
would rather go to other ones. Therefore we could lower the premiums suc-
cessively while the competing companies will have to increase their premiums
in order to cover an increasing number of bad risks.
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