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KERNEL ESTIMATORS AND

THE DVORETZKY–KIEFER–WOLFOWITZ INEQUALITY

Abstract. It turns out that for standard kernel estimators no inequality
like that of Dvoretzky–Kiefer–Wolfowitz can be constructed, and as a result
it is impossible to answer the question of how many observations are needed
to guarantee a prescribed level of accuracy of the estimator. A remedy is to
adapt the bandwidth to the sample at hand.

1. Dvoretzky–Kiefer–Wolfowitz inequality. Let X1, . . . , Xn be a
sample from an (unknown) distribution F ∈ F where F is the class of all
continuous distribution functions. Let

Fn(x) =
1

n

n∑

j=1

1(−∞,x](Xj)

be the empirical distribution function. The Dvoretzky–Kiefer–Wolfowitz in-
equality in its strongest version (Massart 1990) states that

(1) P{sup
x∈R

|Fn(x)− F (x)| ≥ ε} ≤ 2e
−2nε2 .

Making use of this inequality, for every ε > 0 and every η > 0 one can easily
calculate N(ε, η) such that if n ≥ N(ε, η) then

P{sup
x∈R

|Fn(x)− F (x)| ≥ ε} ≤ η.

2. Kernel estimators. The standard kernel density estimator is of the
form (e.g. Encyclopedia of Statistical Sciences (2006))

f̂n(x) =
1

n

n∑

j=1

1

hn
k

(
x−Xj
hn

)
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with appropriate hn, n = 1, 2, . . . . We shall consider kernel distribution
estimators of the classical form

F̂n(x) =
1

n

n∑

j=1

K

(
x−Xj
hn

)

where K(x) =
Tx
−∞
k(t) dt, and we shall show that no inequality like (1)

with F̂n(x) instead of Fn(x) can be constructed.

Proposition. Let k(·) be any kernel such that 0 < K(0) < 1 and
K−1(t) < 0 for some t ∈ (0,K(0)). Let (hn, n = 1, 2, . . .) be any sequence of
positive reals. Then there exist ε > 0 and η > 0 such that for every n there
exists F ∈ F for which

P{sup
x∈R

|F̂n(x)− F (x)| ≥ ε} ≥ η.

Proof. Obviously it is enough to demonstrate that under the assump-
tions of the Proposition there exist ε > 0 and η > 0 such that for every n
there exists F ∈ F satisfying P{F̂n(0) > F (0) + ε} ≥ η.
Take ε ∈ (0, t) and η ∈ (t − ε, 1). Fix n. Given ε, η, and n, choose F

such that F (0) = t− ε and F (−hnK
−1(t)) = P{Xj < −hnK

−1(t)} > η1/n.
Then

P

{
K

(
−
Xj
hn

)
> F (0) + ε

}
> η1/n

and due to the fact that
n⋂

j=1

{
K

(
−
Xj
hn

)
> F (0) + ε

}
⊂

{
1

n

n∑

j=1

K

(
−
Xj
hn

)
> F (0) + ε

}

we have

P

{
1

n

n∑

j=1

K

(
−
Xj
hn

)
> F (0) + ε

}
≥
n∏

j=1

P

{
K

(
−
Xj
hn

)
> F (0) + ε

}
> η,

which ends the proof.

Remark. By the Proposition, supx∈R
|F̂n(x)−F (x)| does not converge

to zero in probability, uniformly in F ∈ F .

3. Random bandwidth. Let X1:n ≤ · · · ≤ Xn:n be order statistics
from the sample X1, . . . , Xn. Define

Hn = min{Xj:n −Xj−1:n : j = 2, . . . , n}.

Define the kernel estimator

F̃n(x) =
1

n

n∑

j=1

K

(
x−Xj
Hn

)
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where for K we assume:

K(t) =

{
0 for t ≤ −1/2,

1 for t ≥ 1/2,

K(0) = 1/2, K(t) is continuous and nondecreasing in (−1/2, 1/2).

Now, for k = 1, . . . , n we have |F̃n(Xk:n)−Fn(Xk:n)| = 1/2n. The kernel

estimator F̃n(x) is continuous and nondecreasing, the empirical distribution

function Fn(x) is a step function, and consequently |F̃n(x)−Fn(x)| ≤ 1/2n
for all x ∈ (−∞,∞). By the triangle inequality

|F̃n(x)− F (x)| ≤ |Fn(x)− F (x)|+
1

2n

we obtain

P{sup
x∈R

|F̃n(x)− F (x)| ≥ ε} ≤ P

{
sup
x∈R

|Fn(x)− F (x)|+
1

2n
≥ ε

}
,

and hence by (1) we have

(2) P{sup
x∈R

|F̃n(x)− F (x)| ≥ ε} ≤ 2e
−2n(ε−1/2n)2 , n >

1

2ε
,

which enables us to calculate N = N(ε, η) that guarantees the prescribed

accuracy of the kernel estimator F̃n(x).

Comment 1. Observe that the smallest N = N(ε, η) that guarantees

the prescribed accuracy is somewhat greater for the kernel estimator F̃n
than that for the crude empirical step function Fn. For example, N(0.1, 0.1)

is 150 for Fn and 160 for F̃n; N(0.01, 0.01) is 26 492 for Fn and 26 592 for F̃n.

Comment 2. Another disadvantage of kernel smoothing has been dis-
covered by Hjort and Walker (2001): “kernel density estimator with optimal
bandwidth lies outside any confidence interval, around the empirical distri-
bution function, with probability tending to 1 as the sample size increases”.
Perhaps a reason is that smoothing adds to observations something which
is rather arbitrarily chosen and which may spoil the inference.

A generalization. Inequality (2) holds for every distribution function

F̃n(x) that satisfies |F̃n(Xk:n)− Fn(Xk:n)| = 1/2n, k = 1, . . . , n.
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