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ROBUST ESTIMATION BASED ON SPACINGSIN WEIGHTED EXPONENTIAL MODELS

Abstra
t. Using Zieli«ski's (1977, 1983) formalization of robustness Bªa»ej(2007) obtained uniformly most bias-robust estimates (UMBREs) of thes
ale parameter for some statisti
al models (in
luding the exponentialmodel), in a 
lass of linear fun
tions of order statisti
s, when violations ofthe models are generated by weight fun
tions. In this paper the UMBRE ofthe s
ale parameter, based on spa
ings, in two weighted exponential modelsis derived. Extensions of results of Bartoszewi
z (1986, 1987) are given.
1. Preliminaries. Let X and Y be two random variables, F and G theirrespe
tive probability distribution fun
tions, and f and g their respe
tivedensity fun
tions, if they exist. Denote by F = 1 − F the tail (or survivalfun
tion) of F , by F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), the quantile (orreversed) fun
tion, and by F−1(0) and F−1(1) the lower and upper boundsof the support of F respe
tively, and analogously for G. We identify thedistribution fun
tions F and G with the respe
tive probability distributionsand denote their supports by SF and SG. We use in
reasing in pla
e ofnonde
reasing and de
reasing in pla
e of nonin
reasing.1.1. Classes of life distributions and sto
hasti
 orders. A distribution Fis said to be IFR (DFR) [in
reasing (de
reasing) failure rate℄ if log F is
on
ave (
onvex) on SF whi
h is an interval.2000 Mathemati
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zAn absolutely 
ontinuous distribution F is said to be ILR (DLR) [in
reas-ing (de
reasing) likelihood ratio℄ if log f is 
on
ave (
onvex) on SF whi
h isan interval.It is well known thatILR ⊂ IFR and DLR ⊂ DFR.We deal with some sto
hasti
 orders. We re
all their de�nitions and someproperties for 
ompleteness. We use dual equivalent notations: for randomvariables and for distributions, as is usual in the literature.We say that X is smaller than Y in the likelihood ratio order (X ≤lr Yor F ≤lr G) if g(x)/f(x) is in
reasing.We say that X is smaller than Y in the hazard rate order (X ≤hr Y or
F ≤hr G) if G(x)/F (x) is in
reasing.We say that X is sto
hasti
ally smaller than Y (X ≤st Y or F ≤st G) if
F (x) ≥ G(x) for every x, or equivalently, if F (x) ≤ G(x) for every x. It isalso well known that

X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y.We say that X is less dispersive than Y (X ≤disp Y or F ≤disp G) if
F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) whenever 0 < α ≤ β < 1,or equivalently, if G−1F (x) − x is in
reasing on SF .It is well known that if −∞ < F−1(0) = G−1(0), then

X ≤disp Y ⇒ X ≤st Y.Assume that a random variable X has a 
ontinuous distribution fun
-tion F . Denote by X1:n, X2:n, . . . , Xn:n the order statisti
s of a sample ofsize n from distribution F . Put X0:n = F−1(0) if it is �nite. Then we de�nethe random variables Vi:n = Xi:n −Xi−1:n, i = 1, . . . , n, 
alled spa
ings fromthe distribution F . If F−1(0) is not �nite, we de�ne Vi:n only for i = 2, . . . , n.Similarly we de�ne the spa
ings Wi:n of a sample of size n from the distri-bution G.We will use the following lemmas 
on
erning relations between 
lasses ofdistributions and sto
hasti
 orders.Lemma 1 (Bartoszewi
z, 1985). If X ≤hr Y and F or G is DFR, then
X ≤disp Y .Lemma 2 (Oja, 1981). Let SF = [0, aF ] and SG = [0, aG], where aF ≤ ∞and aG ≤ ∞. If X ≤disp Y , then Vi:n ≤st Wi:n, i = 1, . . . , n.Lemma 3 (Barlow, Pros
han, 1966). Let F (0) = 0. If F is IFR (DFR),then (n − i + 1)E(Vi:n) is de
reasing (in
reasing) in i = 1, . . . , n.
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ings 407For other properties of 
lasses of life distributions and sto
hasti
 or-ders we refer to Barlow and Pros
han (1975) and Shaked and Shanthikumar(2006).1.2. Weighted distributions. Let F be a distribution fun
tion, and let
w : R → R

+ be su
h that 0 < E[w(X)] < ∞. Then
Fw(x) =

1

E[w(X)]

x\
0

w(z) dF (z)is the weighted distribution asso
iated with F with weight fun
tion w. Theweighted distribution Fw has density
fw(x) =

w(x)f(x)

E[w(X)]
.The idea of weighted distributions is due to Fisher (1934). Rao (1985)de�ned weighted distributions with a general weight fun
tion w. Patil andRao (1977, 1978) provided some statisti
al models leading to weighted dis-tributions and applied their results to the analysis of data relating to humanpopulation and e
ology. Patil and Ord (1976) de�ned 
lasses of distributionswhi
h are invariant under weighting with weight fun
tions of type xα, α > 0.Many authors, e.g. Jain et al. (1989), Bartoszewi
z and Skolimowska(2006), studied preservation of 
lasses of life distributions and sto
hasti
orders under weighting. The following lemmas will be used. The �rst two ofthem are obvious.Lemma 4. If the weight fun
tion w is in
reasing , then F ≤lr Fw.Lemma 5. If F is ILR (DLR) and w is log
on
ave (log
onvex ), then Fwis also ILR (DLR).Lemma 6 (Jain et al., 1989). If F is IFR, w is in
reasing and 
on
ave,then Fw is IFR.1.3. Robustness. Zieli«ski (1977, 1983) proposed the following formaliza-tion of robustness (see Box and Andersen, 1955). Let the original statisti
almodel be M0 = (X ,A,P0), where (X ,A) is a given measurable spa
e and P0is a given subset of the 
lass P of all probability measures. Let π : P0 → 2Pbe a fun
tion 
alled a violation of M0 whi
h has the property that P ∈ π(P ),where P ∈ P0. De�ne P1 =

⋃

P∈P0
π(P ). Thus M1 = (X ,A,P1) is an ex-tension of the model M0. Let T be a suitable statisti
 with distribution

P T (·) = P (T−1(·)) and ̺ be a real-valued fun
tion on P1. We have thefollowing de�nitions.Definition 1 (Zieli«ski, 1977). A fun
tion rT : P0 → R
+ de�ned as

rT (P ) = sup{̺(QT ) : Q ∈ π(P )} − inf{̺(QT ) : Q ∈ π(P )}is 
alled the ̺-robustness of the statisti
 T in M1.
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zDefinition 2 (Zieli«ski, 1977). A statisti
 T 0 is uniformly most ̺-robustin a given 
lass T of statisti
s if
rT 0(P ) ≤ rT (P ) for every P ∈ P0 and T ∈ T .In the re
ent paper Bªa»ej (2007) derived the uniformly most bias-robustestimates (UMBREs) of the s
ale parameter for some statisti
al models (in-
luding the exponential model), in a 
lass of nonnegative linear 
ombinationsof order statisti
s, when violations of the models are generated by weightfun
tions. In this paper we 
onsider the exponential model and two viola-tions indu
ed by monotone weight fun
tions. Using properties of sto
hasti
orders and weighted distributions we obtain the UMBREs of the s
ale param-eter in the 
lass of nonnegative linear 
ombinations of spa
ings, larger thanthe previous one. The results are related to and extend those obtained byBartoszewi
z (1986, 1987) for a gamma violation of the exponential model.2. Results. Let the original model be M0 = (R+,B+, {F (·; θ) : θ > 0})where F (·; θ) is an exponential distribution with s
ale parameter θ. Let Wbe the 
lass of fun
tions w whi
h are in
reasing and log
on
ave, i.e. log w is
on
ave. De�ne(1) πW(θ) = {Fw(·; θ) : w ∈ W}.Noti
e that for every θ > 0, πW(θ) ful�ls the following 
onditions:(a) F (·; θ) ∈ πW(θ);(b) πW(θ′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)};(
) πW(θ′) ∩ πW(θ) = ∅ for any θ′ 6= θ.Condition (a) is obvious, 
onditions (b) and (
) follow from the fa
t thatweight fun
tions of the form w(x) exp(cx), c 6= 0, w ∈ W , are not in W .Therefore

M1 = (R+,B+, {πW(θ) : θ > 0})is an extension of M0 under weighting. Our aim is to �nd a statisti
 T 0 ∈ T +whi
h is the uniformly most bias-robust estimator (UMBRE) of the s
aleparameter θ with respe
t to the violation πW(θ), θ > 0, of M0, where
T + =

{

T =

n
∑

j=1

ajVj:n : aj ≥ 0, j = 1, . . . , n; Eθ(T ) = θ, θ > 0
}

,i.e. T + is the 
lass of those nonnegative linear 
ombinations of spa
ings thatare unbiased estimators of θ in M0.The following theorem holds.Theorem 1. Under the violation πW(θ), θ > 0, given by (1) of themodel M0, the UMBRE of the s
ale parameter θ in the 
lass T + is thestatisti

T 0+ = Vn:n.
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ings 409Proof. Sin
e w ∈ W is in
reasing, for every θ > 0 we have F (·; θ) ≤lr

Fw(·; θ), whi
h implies F (·; θ) ≤hr Fw(·; θ). The exponential distributionis obviously DFR and so by Lemma 1, F (·; θ) ≤disp Fw(·; θ). Hen
e fromLemma 2 and well known properties of the usual sto
hasti
 order it followsthat for every T ∈ T +,
inf

w∈W
Ew;θ(T ) = Eθ(T ), θ > 0.Sin
e Eθ(T ) = θE1(T ) for every T ∈ T + and every θ > 0, we obtain, forevery w ∈ W ,

Ew,θ(T )−Eθ(T ) =
n

∑

j=1

aj [Ew,θ(Vj:n) − Eθ(Vj:n)]

≥ min
1≤j≤n

Ew,θ(Vj:n)−Eθ(Vj:n)

1/(n − j + 1)
= min

1≤j≤n

Ew,θ(Vj:n)

1/(n− j +1)
− θ.Sin
e F (·; θ) is ILR, Lemma 5 shows that for every w ∈ W the distribu-tion Fw(·; θ) is ILR and hen
e IFR. Then from Lemma 3 we obtain

Ew,θ(T ) − Eθ(T ) ≥
Ew,θ(Vn:n)

E1(Vn:n)
− θ = Ew,θ(Vn:n) − θ,and for every T ∈ T + and every θ > 0 we have

sup
w∈W

[Ew,θ(T ) − Eθ(T )] ≥ sup
w∈W

[Ew,θ(Vn:n) − θ],whi
h 
ompletes the proof.Now let us 
onsider the following 
lass of weight fun
tions. Let w1 be a�xed positive de
reasing and log
onvex fun
tion (i.e. log w1 is 
onvex), forexample, w1(x) = xα, x > 0, −1 < α < 0. Let
W1 = {w : w de
reasing and w/w1 in
reasing}.De�ne the violation(2) πW1

(θ) = {Fw(·; θ) : w ∈ W1}.Noti
e that for every θ > 0, πW1
(θ) satis�es the following 
onditions:(a) F (·; θ) ∈ πW1

(θ);(b) πW1
(θ′) ∩ {F (·; θ) : θ > 0} = {F (·; θ′)};(
) πW1
(θ′) ∩ πW1

(θ) = ∅ for any θ′ 6= θ.The following lemma holds.Lemma 7. For every w ∈ W1 and every θ > 0,(3) Fw1
(·; θ) ≤disp Fw(·; θ) ≤disp F (·; θ).
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zProof. Sin
e w/w1 is in
reasing, we have Fw1
(·; θ) ≤lr Fw(·; θ) and so

Fw1
(·; θ) ≤hr Fw(·; θ). By Lemma 5 the distribution Fw1

(·; θ) is DLR andhen
e DFR, and the �rst inequality in (3) follows from Lemma 1.The other inequality may be proved similarly by noti
ing that Fw(·; θ) ≤lr

F (·; θ) and the exponential distribution is obviously DFR.Now we 
an state the following result.Theorem 2. Under the violation πW1
(θ), θ > 0, given by (2) of themodel M0, the UMBRE of the s
ale parameter θ in the 
lass T + is thestatisti


T 0+ = Vn:n.Proof. The proof is similar to that of Theorem 1. From Lemmas 7 and 2and properties of the usual sto
hasti
 order it follows that
sup

w∈W1

Ew,θ(T ) = Eθ(T ) = θ, θ > 0.Sin
e Fw1
(·; θ) is DFR, dire
tly from Lemma 3 we obtain, for every θ > 0,

sup
w∈W1

[θ − Ew1,θ(T )] ≥ sup
w∈W1

[Eθ(Vn:n) − Ew1,θ(Vn:n)] ,whi
h 
ompletes the proof.
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