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ROBUST ESTIMATION BASED ON SPACINGS
IN WEIGHTED EXPONENTIAL MODELS

Abstract. Using Zielinski’s (1977, 1983) formalization of robustness Blazej
(2007) obtained uniformly most bias-robust estimates (UMBRESs) of the
scale parameter for some statistical models (including the exponential
model), in a class of linear functions of order statistics, when violations of
the models are generated by weight functions. In this paper the UMBRE of
the scale parameter, based on spacings, in two weighted exponential models
is derived. Extensions of results of Bartoszewicz (1986, 1987) are given.

1. Preliminaries. Let X and Y be two random variables, ' and G their
respective probability distribution functions, and f and g their respective
density functions, if they exist. Denote by F' = 1 — F the tail (or survival
function) of F, by F~'(u) = inf{x : F(x) > u}, u € (0,1), the quantile (or
reversed) function, and by F~!(0) and F~!(1) the lower and upper bounds
of the support of F' respectively, and analogously for G. We identify the
distribution functions F and G with the respective probability distributions
and denote their supports by Sr and Sg. We use increasing in place of
nondecreasing and decreasing in place of nonincreasing.

1.1. Classes of life distributions and stochastic orders. A distribution F
is said to be IFR (DFR) [increasing (decreasing) failure rate] if log F is
concave (convex) on Sr which is an interval.
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An absolutely continuous distribution F' is said to be ILR (DLR) [increas-
ing (decreasing) likelihood ratio| if log f is concave (convex) on Sg which is
an interval.

It is well known that
ILR c IFR and DLR c DFR.

We deal with some stochastic orders. We recall their definitions and some
properties for completeness. We use dual equivalent notations: for random
variables and for distributions, as is usual in the literature.

We say that X is smaller than Y in the likelihood ratio order (X <, Y
or F' <, G) if g(z)/f(x) is increasing.

We say that X is smaller than Y in the hazard rate order (X <y, Y or
F <y G) if G(x)/F(x) is increasing.

We say that X is stochastically smaller than' Y (X <4 Y or F < G) if
F(x) > G(z) for every x, or equivalently, if F(x) < G(x) for every z. It is
also well known that

XSIrYZ>X§thZ>X§stY
We say that X is less dispersive than'Y (X <qisp Y or F' <gisp G) if
F7YB) - F a) <G ' (B) -~ G '(a) whenever 0<a<f<l,

or equivalently, if G™'F(z) — z is increasing on Sg.
It is well known that if —oco < F~1(0) = G71(0), then

XSdispY = X <y Y.

Assume that a random variable X has a continuous distribution func-
tion F. Denote by Xi.,, Xo., ..., Xn.n the order statistics of a sample of
size n from distribution F. Put Xo., = F~1(0) if it is finite. Then we define
the random variables V;.,, = X;.,, — X;_1., 2 = 1,...,n, called spacings from
the distribution F. If F~1(0) is not finite, we define V;.,, only fori = 2,...,n.
Similarly we define the spacings W;.,, of a sample of size n from the distri-
bution G.

We will use the following lemmas concerning relations between classes of
distributions and stochastic orders.

LEMMA 1 (Bartoszewicz, 1985). If X <y, Y and F or G is DFR, then
X Sdisp Y.

LEMMA 2 (Oja, 1981). Let Sp = [0,ar| and Sg = [0, a|, where ap < oo
and ag < 00. If X <qisp Y, then Vi <gt Wi, 1 =1,...,n.

LEMMA 3 (Barlow, Proschan, 1966). Let F'(0) = 0. If F' is IFR (DFR),
then (n — i+ 1)E(Vi.y,) is decreasing (increasing) ini=1,...,n.
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For other properties of classes of life distributions and stochastic or-
ders we refer to Barlow and Proschan (1975) and Shaked and Shanthikumar
(2006).

1.2. Weighted distributions. Let F' be a distribution function, and let
w : R — R be such that 0 < E[w(X)] < oo. Then
x
Vw(z) dF(2)
0
is the weighted distribution associated with F' with weight function w. The
weighted distribution F, has density

w(z)f(x)

P = B )

The idea of weighted distributions is due to Fisher (1934). Rao (1985)
defined weighted distributions with a general weight function w. Patil and
Rao (1977, 1978) provided some statistical models leading to weighted dis-
tributions and applied their results to the analysis of data relating to human
population and ecology. Patil and Ord (1976) defined classes of distributions
which are invariant under weighting with weight functions of type =%, a > 0.

Many authors, e.g. Jain et al. (1989), Bartoszewicz and Skolimowska
(2006), studied preservation of classes of life distributions and stochastic
orders under weighting. The following lemmas will be used. The first two of
them are obvious.

- Elw(X)]

LEMMA 4. If the weight function w s increasing, then F <j. F,.

LEMMA 5. If F is ILR (DLR) and w is logconcave (logconvez), then F,
is also ILR (DLR).

LEMMA 6 (Jain et al., 1989). If F' is IFR, w is increasing and concave,
then F, is IFR.

1.3. Robustness. Zielinski (1977, 1983) proposed the following formaliza-
tion of robustness (see Box and Andersen, 1955). Let the original statistical
model be My = (X, A, Py), where (X, .A) is a given measurable space and Py
is a given subset of the class P of all probability measures. Let 7 : Py — 27
be a function called a violation of My which has the property that P € 7(P),
where P € Po. Define Py = Upcp, 7(P). Thus My = (X, A, P1) is an ex-
tension of the model My. Let T be a suitable statistic with distribution
PT(.) = P(T7'(-)) and ¢ be a real-valued function on P;. We have the
following definitions.

DEFINITION 1 (Zielinski, 1977). A function r : Py — R™T defined as

rr(P) = sup{o(Q") : Q € n(P)} — inf{o(Q") : Q € n(P)}
is called the g-robustness of the statistic T in M;.
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DEFINITION 2 (Zielinski, 1977). A statistic T is uniformly most o-robust
in a given class 7 of statistics if

rpo(P) <rp(P) forevery PePyand T € 7.

In the recent paper Blazej (2007) derived the uniformly most bias-robust
estimates (UMBRES) of the scale parameter for some statistical models (in-
cluding the exponential model), in a class of nonnegative linear combinations
of order statistics, when violations of the models are generated by weight
functions. In this paper we consider the exponential model and two viola-
tions induced by monotone weight functions. Using properties of stochastic
orders and weighted distributions we obtain the UMBREsS of the scale param-
eter in the class of nonnegative linear combinations of spacings, larger than
the previous one. The results are related to and extend those obtained by
Bartoszewicz (1986, 1987) for a gamma violation of the exponential model.

2. Results. Let the original model be My = (R*, BT, {F(:;0): 6 > 0})
where F'(-;0) is an exponential distribution with scale parameter . Let W
be the class of functions w which are increasing and logconcave, i.e. logw is
concave. Define

(1) mw(0) = {Fu(;0) : w e W}.
Notice that for every 6 > 0, my(0) fulfils the following conditions:

(a) F(0) € mw(0);
(b) mw(6") N{F(:;0) : 0 > 0} = {F(6)};
(c) mw(0") N mw(0) = 0 for any 6 # 0.

Condition (a) is obvious, conditions (b) and (c) follow from the fact that
weight functions of the form w(x)exp(cx), ¢ # 0, w € W, are not in W.
Therefore

M, = (R+,B+, {ﬂ'w(@) 10 > O})
is an extension of My under weighting. Our aim is to find a statistic 70 € 7+
which is the uniformly most bias-robust estimator (UMBRE) of the scale
parameter 6 with respect to the violation my (), 6 > 0, of My, where

n
T+ = {T:Zajvjm:aj >0,5=1,...,n; Eg(T) =, 0>0},
j=1
i.e. 7T is the class of those nonnegative linear combinations of spacings that
are unbiased estimators of 6 in M.
The following theorem holds.

THEOREM 1. Under the wviolation my(6), 6 > 0, given by (1) of the
model My, the UMBRE of the scale parameter 0 in the class T is the

statistic
T0+ - Vnn
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Proof. Since w € W is increasing, for every § > 0 we have F(-;0) <
Fy(+;0), which implies F(-;0) <y, Fy(+;0). The exponential distribution
is obviously DFR and so by Lemma 1, F'(-;0) <qisp Fw(;6). Hence from
Lemma 2 and well known properties of the usual stochastic order it follows
that for every T'€ 7T,

inf E,o(T) = Eg(T), 0> 0.
Jnf 0(T) = Eo(T) >

Since Ey(T) = 0E1(T) for every T € T" and every 6 > 0, we obtain, for
every w € W,

n

Euo(T)—Eo(T) = > a;[Ewo(Viin) — Eg(Vjn)]
j=1

Ew,@(‘/j:n) - EQ(‘/yn) . . Ew,O(V}:n)
min , = min ——————— —
~ 1<<n 1/(n—j+1) 1<j<n 1/(n—j+1)

Since F(-;0) is ILR, Lemma 5 shows that for every w € W the distribu-
tion Fy,(+;6) is ILR and hence IFR. Then from Lemma 3 we obtain
> Ew,@(Vn:n)
o El(Vnn)
and for every T'€ 77 and every § > 0 we have

sup [Ew,G(T) - EG(T)] > sup [Ew,G(Vn:n) - 9]7
wew wew

Ewﬁ(T) - EG(T) —0= Ew,O(Vn:n) -0,

which completes the proof.

Now let us consider the following class of weight functions. Let w; be a
fixed positive decreasing and logconvex function (i.e. logw; is convex), for
example, wy(z) =z = >0, =1 < a < 0. Let

Wi = {w : w decreasing and w/w; increasing}.
Define the violation
(2) ™, (0) = {Fyw(-0) : w e W}
Notice that for every 6 > 0, my, () satisfies the following conditions:

(a) F(-;0) € mw, (6);
(b) 7w, (0) N{F(+50) : 0 > 0} = {F(:;0)};
(c) T, (@) N, (0) = 0 for any ' # 6.

The following lemma holds.
LEMMA 7. For every w € Wy and every 6 > 0,
(3) Fw (70) Sdisp Fw(70) Sdisp F(,Q)
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Proof. Since w/w; is increasing, we have Fy, (+;0) < F,(-;0) and so
Fu,(50) <pr Fu(-;0). By Lemma 5 the distribution Fy,, (+;6) is DLR and
hence DFR, and the first inequality in (3) follows from Lemma 1.

The other inequality may be proved similarly by noticing that F,(+; 0) <,
F(-;0) and the exponential distribution is obviously DFR.

Now we can state the following result.

THEOREM 2. Under the wviolation my, (), 8 > 0, given by (2) of the
model My, the UMBRE of the scale parameter 0 in the class T is the
statistic

T = V..

Proof. The proof is similar to that of Theorem 1. From Lemmas 7 and 2
and properties of the usual stochastic order it follows that

sup Eyo(T)=FE¢(T)=06, 6>0.
wEW,

Since F, (+;0) is DFR, directly from Lemma 3 we obtain, for every 6 > 0,

sSup [0 - Ewlﬁ(T)] > sup [EO(Vnn) - Ewlﬂ(vn:n)] y
weWL weW,

which completes the proof.
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