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ZENON KosowskI (Warszawa)

GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE
FRIED-GURTIN MODEL OF PHASE TRANSITIONS

Abstract. We prove the existence of global in time weak solutions to
a three-dimensional system of equations arising in a simple version of the
Fried—Gurtin model for the isothermal phase transition in solids. In this
model the phase is characterized by an order parameter. The problem con-
sidered here has the form of a coupled system of three-dimensional elasticity
and parabolic equations. The system is studied with the help of the Faedo—
Galerkin method using energy estimates.

1. Introduction. In this paper we are concerned with the weak solv-
ability of an initial-boundary value problem for a nonlinear coupled system
of three-dimensional elasticity and a relaxation law for a scalar order pa-
rameter. The system arises as a simple special case of general phase-field
(diffused-interface) theory of isothermal solid-solid phase transitions devel-
oped by Fried and Gurtin 2] and Fried and Grach [1].

This theory is based on the balance laws of linear momentum and a
microforce with underlying free energy depending on a deformation gradi-
ent, a multicomponent order parameter and its gradient. The constitutive
dependence on the order parameter and its gradient is in contrast to other
well-known phase-field theories of solid-solid transitions due to Falk and Fré-
mond (for references see e.g. the review [8]). In these theories the order pa-
rameter is identified with the strain tensor, and the free energy is postulated
to be a function of strain, strain gradient, and in nonisothermal situation,
also temperature.

In Fried—Gurtin’s theory the order parameter represents a new quantity
which can have different physical status. In the case of diffusive transitions
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it describes atomic arrangements within unit cells of a crystal lattice. For
pure martensitic transitions, in which the crystal lattice undergoes a me-
chanical strain but there are no rearrangements of atoms within cells, the
order parameter might be viewed as an artifice that yields a regularization
of mechanical equations.

From the mathematical point of view it is important that in this theory
the stress tensor is a linear function of strain, the nonlinear effects are only
connected with the order parameter.

A special 1-D case of the model and its equilibrium solutions have been
analyzed in |9]. Existence of a large number of spatially periodic inhomo-
geneous solutions has been demonstrated. The stability of these solutions
has been investigated. Another variant of the 1-D case and properties of its
stationary solution have been studied in [3]. The well-posedness of the 3-D
case of the Fried—Gurtin model on a finite time interval has been examined
in [5]. The system has been studied with the help of the Leray-Schauder
fixed point theorem. The existence and uniqueness of solutions has been es-
tablished. Using similar methods, the existence and uniqueness of solutions
in a simpler 1-D case has been proved in [4].

In this work we study the existence of a global in time weak solution
to the system resulting from the Fried—Gurtin model. In the second section
we present the model and the system of equations. In the third section we
state the assumptions and main results of the paper. In the fourth section we
construct a Faedo—Galerkin approximation of the problem and state the ex-
istence of solutions to this approximation. Next, we deduce a priori estimates
using an energy identity. In the last section we prove the main theorems. The
first theorem shows the existence of a weak solution on time interval [0, 7.
In the second theorem we prove that any such solution can be prolonged
to [0, 00).

2. Model. We now formulate the Fried—Gurtin model in a special case
of small strain approximation with the strain represented by the linearized
strain tensor € = €(u) and an unconstrained scalar order parameter ¢ dis-
tinguishing between two phases, a and b, characterized by ¢ = 0 and ¢ = 1.

Let 2 C R3 be a bounded domain with smooth boundary S, occupied
by a body in a fixed reference configuration. The mechanical evolution of
the body is described by a displacement field u : 27 — R? and a scalar
order-parameter field ¢ : 27 — R.

The free energy density f underlying the evolution of the body is assumed
to be given as a function of the strain tensor e(u), the order parameter ¢,
and its spatial gradient V:

f= f(s(u), ') VQO)
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where

e(u) = 5 (Vu+ (Vu)").

The relevant Landau—Ginzburg separable form of f, which is quadratic in
g(u) and V¢, and a nonlinear double-well function in ¢, is specified below.

The model has the form of a nonlinear coupled system of partial dif-
ferential equations representing the linear momentum balance for the dis-
placement (at constant mass density) and the relaxation law for the order
parameter, with some prescribed initial and boundary conditions:

Uyt — v : f7€(€(u), @, VSO) = b in QT:

(1) Uli=0 = g, Uft=0 = in §2,
u=0 on ST,
Bor+ fo(e(u), 0, Vo) = V- fyp(e(u), o, Vo) =0 in 27T,
() el = @0 in 2,
n- f,VgO(E(u)7 2 VQD) =0 on ST,

Here b : 27 — R3 is an external body force, 3 is a positive constant called
dumping modulus (in general, 8 can depend on €, ¢, Vi, ;), and n denotes
the unit outward normal to .S. The functions ug, uy, ¢ represent initial con-
ditions for the displacement, velocity and order parameter.

We consider the homogeneous Dirichlet boundary condition for the dis-
placement, assuming that the body is fixed at the boundary S, and the
homogeneous Neumann boundary condition for the order parameter, which
is a typical condition in phase field models.

The free energy. The typical Landau—Ginzburg form of the free energy
density is given by

3) Fe(w), 0. Vo) = W(e(w), ) +¥(¢) + 5 [Vol,

with the three terms representing respectively the elastic energy, exchange
energy and gradient energy with a constant coefficient v > 0.

The exchange energy ¥(y) is a double-well potential with equal minima
at ¢ =0 and ¢ = 1, assumed in the standard form

1

(4) U(p) = 5 ¢"(1—¢)"

The sum of the last two terms in (3) represents the energy of diffused phase
interfaces.

The relevant expressions for the elastic energy W (e, ¢) are given by the
following two examples (see [2], [1]):
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EXAMPLE 1.
(5) Wi(e,¢) = (1 —2(9))Wale) + z(¢)Wi(e),

where )
Wz((i) = §(€_§i)’Ai(€_§i)a i1 =a,b,

is the strain energy of phase ¢, and g; is the natural strain of phase %, called
the eigenstrain; it is assumed to be constant.

Furthermore, z : R — [0,1] is a smooth scalar interpolation function
satisfying:

z(p) =0 for ¢ <0,
(6) 0<z(p)<1 forype(0,1),
z(p) =1 for o > 1.

The inequality constraint in (6) is imposed to ensure the physical sense of (5).
The tensors A; = ((Aj)pgrs)p,g.rs=1,2,3 are the fourth order elasticity
tensors of isotropic elasticity given by
Aie(u) = Nitre(w)I+ 2ue(u), i=a,b,
where I = (0pq)p,g=1,2,3 and A; p; are Lamé constants within the elasticity

range, i.e., satisfying p; > 0, 3A\; + 2p; > 0.

The second example is characteristic for diffusive phase transitions in
elastic solids (see [2]).

EXAMPLE 2.

(7) Wie, ¢) =
where

e(p) = (1= z(¥))ga + 2(p)Es
is the natural stress-free strain depending on the order parameter, ,, &,

are constant eigenstrains, z(-) is as in Example 1, and A(y) is the elasticity
tensor, in general depending on the order parameter .

For the sake of mathematical analysis in the present paper we shall con-

fine ourselves to the case of homogeneous elasticity, that is, in Example 1:
A, =A;, = A, and in Example 2: A(¢) = A with A given by
(8) Ac(u) = Atre(u)I + 2pe(u)
where p > 0, 3A + 2u > 0.
For further use we record that in the case of homogeneous elasticity, the

expressions for the elastic energy and its derivatives with respect to € and ¢
are:
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e in Example 1:

W(e @) = 5o Ac— e [(1 - 2(0) AT, + 2(p)AT)
o + 311~ 2(0))Eu - A, + 2(0)5 - AT
Wele,p) = Ae — [(1 — 2(p))AE, + 2(p) AZy),

1 1
Wl p) = 2(¢) |~ A8~ Ea) + 5 & AT, — 5 Ea AZa|;

e in Example 2:

1 1
Wi(e,¢) = §s'As—s'A§+ §E‘A§,
We(e,p) = Ae — AT = Ae — A, — 2(p)A(Ey — €4),
Wyle, o) = —e-AE,+E-Ag,

=2 (p)(—e-A(Ep —€4) + T A(Ep — E4)).

(10)

We can rewrite (9)23 and (10)2,3 in the common form
(1) We(e, p) = Ae + 2(p)B — AE,,
Wele,p) = 2/(9)[B - e+ z(p)D + E]
where:

e in Example 1:

B = —A(g, — &,) a constant tensor,
(12) D =0,
E = %Eb -Ag, — %Ea - A€, = const,
e in Example 2:
B = —AF a constant tensor,
D = —-B- (g, — &,) = const,
E=-B- g,

We point out that in the case of homogeneous elasticity, the functions
We(e, ) and W (e, ) are linear in €, which essentially simplifies the anal-
ysis.

The operator Q. Let Q be the linear elasticity operator defined by
(13) u— Qu=V-Ae(u) =pAu+ A+ p)V(V-u)

where A is defined by (8). For further purposes we also recall two additional
properties of the operator Q:
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e Q is strongly elliptic, i.e.
cllullgze) < 1QullL,2) for ue H?(2) N Hy(2)
with constant ¢ depending on {2,
e Q is selfadjoint on H?(2) N H}(£2), i.e.
(Qu, V)L, = V1, VV)p,0) — A+ w)(V-u, V- v)r, 0
= (0,QV)Lyn) foruve H2(Q) N H(l)(Q)
e —Q is positive on H2(£2) N H}(£2), i.e.
(—Qu, ), () = KlIVullf, ) + A+ )V -ullf, g =0
for u,v € H?(2) N H}(12).

In this notation problem (1), (2) corresponding to the free energy (3), with
Y () given by (4), and W (e, ) as in Examples 1, 2 (homogeneous elasticity)
takes the form

uy — Qu=2(p)BVp+b in 27,
(14) ul,_o =19, Wl=o=u in 2,
u=20 on ST,

Bt — 1A + W' (¢) + 2 (9)(B-e(w) + 2(¢)D+ B) =0 in 07,

(15) (P’tz() = %0 in Q’
n-Ve=0 on ST,
Notation. Throughout the paper we use the following notations:
of . df
p = =1,2 =2
fvl a$Z y y 4y 37 ft dt’
dz
e(u) = (eij)ij=123, 2 (p) = o
W (e, ») W (&, )
W (E,(p) - (7 ’ W (6790) = T a_
) eij i,j=1,2,3 v 0y

where space and time derivatives are material. For simplicity, whenever there
is no danger of confusion, we omit the arguments (g, ¢). Also the specification
of tensor indices is omitted.

Vector and tensor valued mappings are denoted by bold letters. The
summation convention over repeated indices is used.

We also use the following notation: for vectors a = (a;), a = (a;), and

tensors B = (Bj;), B= (Bij), A = (Ajjir), we write

a-a= alfii, B- ]§ B Bijéija AB = (Aijlekl)-
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V and V- denote the gradient and divergence operators with respect to the
material point x € R3. For the divergence of the tensor field e(x) = (;;(x))
we use the convention of contracting over the last index, i.e.,

V- e(x) = (e45,i(x)).
We use the standard Sobolev spaces notation, in particular, for simplicity
we write

H™(2)=W3"(2) formeN,
Ly(02) = (L2(R2))°,
H*(2) = (H*(2))°.
The symbol (-, -) denotes the scalar product in Ly (£2). For simplicity, we use
the same notation to denote the scalar product in Ly ({2).

Throughout the paper, ¢ denotes various generic constants, depending
on the data of the problem and the domain 2.

3. Assumptions and main results

Assumptions. We study the problem (1), (2) under the following assump-
tions:

(A1) 2 C R3 is a bounded domain with boundary S of class C2. This
regularity is needed in the application of the elliptic regularity the-
ory in a construction of bases in the Faedo—Galerkin method.

(A2) The elasticity tensor A is given by (8) with pu > 0, 3A + 2 > 0.

This ensures the following:
e the coercivity and boundedness of A,
(16) cle? <e-Ae <¢le|* forallec S?

where S? denotes the set of symmetric second order tensors in R3 onto
itself and

c=min{3\ 4+ 2u,2u}, €= max{3\+ 2u,2u},
e the strong ellipticity of the operator Q defined by (13).
The last assumption concerns the free energy density:

e Ifree energy density f(g, o, : X R x — as the

A3) The f densi 0, V) : S2 x R x R? — R has th
form (3), with ¥ : R — R given by (4), and W (e, ¢) : S2 xR — R
given in Examples 1 or 2.

We assume that the function z : R — [0, 1] in these examples is at least
of class C' satisfying (6) and such that

|2'(p)| < e forall p €R.
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We note that in view of (4) and (11) it follows from (A3) that there exists
a positive constant ¢ such that

7' ()] < el + 1),
(17) We(e @) <clle] +1),
(Wele, o) <c(le] +1)

for all € € S? and ¢ € R.
Further, on account of (16) the following lower bounds for the elastic
energy hold true:

e in Example 1,

1
Wi(e,p) > mi —cle — &},
( w)_ig{lég}{Qg! I}

e in Example 2,

1 _ _
W(e,0) 2 5 cle =8 — 2(¢) (& — ) P
Moreover
TOEEEE
p) = 890 9

Thus we can see that the homogeneous part W(e, p) + ¥(p) of f(g,¢, Vi)
satisfies the lower bound

W(e, ) + U(¢) = cllef+gl) — ¢ for all (¢, ) € $2 x R.
Consequently,
(18)  fe, 0. Vo) = crllel+lol* + [Vel?) — &
for all (e, p, V) € S% x R x R3

with constants cy > 0 and c’f > 0.
This is the main structure assumption that we use in deriving of energy
estimates.

Main results. We now state the main results of the paper.

THEOREM 1 (Existence on (0,7)). Let the assumptions (A1)—(A3) hold.
Moreover, let the data satisfy

b € Ly(07),
u € Hi(2), w € Lao(2), ¢o€ H ().
Then there exist functions (u, ) such that
u € Loo(0, T Hp(92)),  uy € Loo(0, T; Lo (£2)),
uy € Ly(0,T; (Hp(2))),
¢ € Loo(0, T H'(2)) N La(0, T HA(92)), 1 € La(27),
u(0,-) =uo,  w(0,-) =u, (0,-) = o,

(19)

(20)
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which satisfy problem (1)—(2) in the following weak sense:

T T
V (Wi, 1) 13 )y s ) At + | (Ae(w), €(n)) Ly () di
0 0

T

= | (Z(9)BVp + b, ), dt  for any n € Ly(0, T; Hy(£2)),
(21)
S (Bpr — 7A@ + W' (0)+W o (e(u),¢), &) o0y dt =0
i for any € € Ly(0,T; La(£2)).

Moreover, (u, ) satisfies the a priori estimates

all o 0,7512(2)) + le) Lo (0,7:12(2)) + 12Nl 220,730 (2))

+ IVellrworLa2) + ¢t Ly0ry < cos
(22) el oo 0,711 (2)) < €1,
ol Loo,m;m2(02)) < ca(T),
et |l £, 0,75811 (02))) < e3(T)
where
co = c(|[wollm () IuillL, @), leoll 1 (2): 1Bl Ly 07:L2(02)): €1 €F)s
c1 = c(co, £2),
23
(23) co(T) = c(e)TY2,
c3(T) = c(co, ”bHLQ(QT )T 12,

THEOREM 2 (Global existence). Assume the hypotheses of Theorem 1
hold, and

b e LI(R+,L2(Q)),

sup HbHLz(kT,(k+1)T;L2(Q)) < o0,
keNU{0}

w € HY(2), w € La(2), ¢ € H(0).
Then there exists a global solution (u,p) to problem (1)—(2) such that

uc LOO(R+;H(1)(Q)), u; € Loo(Ry; La(£2)),
‘pELoo(RJr;Hl('Q))’ Pt GLOO(R+§L2(“Q))7
u(0) =up, w(0)=u1, ¢(0)= o,

satisfying the following estimates:
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e cstimates uniform in time:

Hu||Loo(R+;H(1)(Q)) + e[ Lo Ry sLa(2) + 1€l Lo (R 514 (2))
+ ||V<PHLOO(R+;L2(Q)) + ”9015||L2(R+;L2(_Q)) < ¢,
01 L oo (s H1 (02)) < €11
e estimates on finite intervals (t,t+T) where t € Ry and T > 0 is fized:
el Lot e m2(2)) < c2(T),
el 2 1,4 myen 20y < €3(T),
with constants cg, c1, ca(T) specified by (23), and
T2,

c3(T) = c(co, sup |Ibll Ly, (k+1)T:L2(2)))
keNU{0}

4. The Faedo—Galerkin approximation of the problem

An approzimation. To prove Theorems 1 and 2 using the Faedo—Galerkin
method we construct bases for the spaces Hj(2) and

H%(2)={we H*(2):n-Vw=0on S}.
For j € N, consider the eigenvalue problems

—Qv; = )\gl)vj in {2,

24
(24) v; =10 on S,
and
(25) —Aw; = )\E-Q)wj in £2,

n-Vw; =0 on S.

We recall that, by the elliptic regularity theory for a domain with boundary
of class C?, the solutions of (24) and (25) satisfy

\ZRS HQ(.Q), wj; € H2(Q)
We take the family {v;} =12, . as a basis of H(l)(Q) and the family {w;}j—12 .
as a basis of H%({2). By the properties of Q we have
1 1 1
AV (vivi) = Vi vy) = (=Qviv) = (vi —Qv)) = (vi, Av;)
1
= )\S )(Vz‘,Vj).

These identities show, by the Poincaré—Friedrichs inequality, that the family
{v,} is orthogonal in H!(2) and L?(§2) scalar products.

Similarly, the family {w;};—12,.. satisfies

A (wi,wy) = (AW wi,wj) = (—Awi,wy) = (Vwi, Viwy)

= (wj, —Aw;) = (wia)\?)wj) = >\§»2)('LUZ‘,'IUJ').
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Hence, by the Poincaré inequality, the family {w;};—12, . is orthogonal in
H?($2), H'(2) and L?(2) scalar products.

We can normalize both families in L2(£2) and L?({2) scalar products
respectively.

For m € N set

V., =span{vy,..., v}, Wy, =span{wi,...,wy};

these are finite-dimensional subspaces of H}(£2) and HZ({2) respectively.
For any m € N we will find a pair of functions (u™, ¢"™) in the form

m

(26) u(z,t) =Y €' (tvilz), @@, t) =) (Hwi(w)

i=1 i=1
satisfying for a.e. t € [0, 7],
(W, vy) + (Ae(u™), e(v,)) = (/(¢")BV™ + b, v,),
(27) Bl wi) = 1(Ap™, wi) + (P (™) + We(e(u™),¢™),w;) =0,
forj=1,...,m,
u™(0) =g, wi"(0) =uy’, ©"(0) = ¢’
where W ,(e(u),¢), B, D, E are given by (12).
Furthermore, uf’,u* € V,,, ¢f' € W, are projections of ug,ui, o
respectively, satisfying, as m — oo,
g
(28) u” — u;  strongly in Ly(£2),

oM — o strongly in H(2).

— ug  strongly in H}(£2),

Ezxistence of solutions to the Faedo—Galerkin approrimation. Substitut-
ing (26) into (27), taking into account that

(wp,v;) = (i SHUTRAE 3 e () (vinvy) = D).

=1 =1
(o) = (Z c?ft(t)w@-,wj> = 3 () s wg) = 4 (0),
=1 =1
(Ac(u™)v)) = (Z —e;“(t)Aa(vz),vj) = () As(v,). V)
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(2" ) = (30 e Auss ) = 3 )~ A )
i=1 i=1
N 2 2
= YOO wile)wy) = & (AP w (). wy)
=1
— @) m
= A6 (1)
we get
m 1 m m m
eiu(t) = A§ )ej (t) + (Z'(¢™)BV™ +b,v;),
m 2 m m m m
BT (8) = —IAT() = (T (™) = Wp(e(w™), ™), wy),
forj=1,...,m.
Consequently, the system (11) can be examined as a system of first order or-
dinary differential equations for the coefficients (e, ..., en), (e, ..., en ),
(e, ... em).

The above system for any m has a solution local in time on an interval
[0,T], Ty > 0. The uniform (in m) a priori estimates proved below in
Lemmas 1 and 2 show that this system has a solution on an interval [0, 7],
T > 0.

A priori estimates for the Faedo—Galerkin approrimation

LEMMA 1 (Energy estimate). Assume that (A1)—(A3) hold and the data
satisfy

g € H)(2), wy € La(2), o € H'(2), b € L1(0,T;La(2)).
Then a solution (u™, ™) to the problem (1)—(2) satisfies the estimate
(29) "l oia(2) T lE(@™) L 0510(2)
1™ | Lo 0,1:L4(2) + IV | Lo (0.1L2(2)) + 167 | Ly (2m) < o
with a constant
co = c(lluollmr (o), a1 llLy2)s lvollar @), P, 0,r2(2)) €f5 )

Proof. We derive the energy identity for system (1)—(2). First, note that,
according to (11); we have

V- We(e(u), @) = V- Ae(u) + 2/(¢)BVep.
Thus integration by parts shows that (27); may be rewritten as
(30) (uif, vj) + (Wele(™), ™), e(v;)) = (b, v;).
Testing (30) with uj"(¢) (i.e. multiplying by e}"(¢) and summing over j from
j=1toj=m) gives

L2 )+ (W ee ™), ™), e(u)) = (b, uf).

(31) 3 EHUt
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Further testing (27)2 with ¢}"(¢) and integrating by parts gives
(32) BT, 0 + (' (™) + W ple(@™), o), so;“)

LR m
Summing up (31) and (32) we arrive at the energy identity

dt dt

Do |

I e | L R R S

+ﬂ§(g0?)2dx: Sb-uﬁ”dw.
2 Q

Integration of (33) over (0,t) for t € (0,T") gives

(34) %Hu?l(t)Hi(m + | fle@™ (1), 9™ (1), V™ (1)) da + B { (") dur dt
2 2

||u1 ||L2 )+Sf <P0,V<po)dm+xb-u§”dmdt’
0 ot
with f(e(u), ¢, Vo) defined by (3).

Using the structure condition (18) and estimating the last integral in (34)
with the help of the Young inequality by

‘ | boudedt| < Jluy . 04a2) Bl 06502
Qt

1
< Z ||ut’”2Loo(0,t;L2(Q)) + ”bHQLI(O,t;LQ(Q)),
we deduce the a priori estimate
1 . -
(35) 7 I (012, o)+ s (e O)E o)+ 1™ Ol ) HI 0™ (1) )
+ ﬁ”@;nH%Q(Qt) <c¢y forte(0,7)

with a constant co depending only on |[[uollmi (o), [[uillLy@): lvollar (o)
IBI| L, (0,6;Lo(2)) and ¢ This proves the assertion.

Further estimates. Clearly, (29) implies that
(36) 1™ | Lo 0,11 2)) < €1
with a constant ¢; = C(co, §2). Hence, by the Sobolev imbedding,
(37) 1™ | oo (0,7:L6(02)) < C1-
Further, since u™ = 0 on ST, it follows from (29) by Korn’s inequality that

(38) 0|1 0,m:m1 02)) < C1.
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LEMMA 2. Let the assumptions of Lemma 1 hold. Then, for t € (0,T],
(39) 1™ | Lo (0,1 2(02)) < c2(t)
with a constant co(t) = c(cy)t'/2.

Proof. By the definition (25) of the basis {wi,...,wy} identity (27)2
implies that
(40)  B(et", Awy) = y(Ap™, Aw;) + (7' (™) + W (e(u™), ™), Aw;) = 0
for j = 1,...,m. Multiplying this equality by c?(t) and summing from j = 1
to j = m gives

V(Ae™, Ap™) = Be[", Ap™) + (F'(¢™) + W (e(u™), ¢™), Ap™).
Hence, integrating with respect to ¢, we have
t
(41) A\ {1Ap™ dz at

04 ¢

= [ (Bl + W' (™) + Wo(e(u™), &™) Ap™ du .
08
Now, using the Cauchy—Schwarz inequality and the growth conditions (17),

() < cllef + 1), [Wele(u),9) < c(le(w)] + 1),

it follows that
YNAL™ ([ Lo g2)

< Bl Loty + 1T (@™ M Loty + W o(€(@™), 0™) | o2

< Bl | Loty + ctl/z(H@mHiw(o,t;%(m) +le(™)[| Lo 0,5L0(2)) + 1)-
Hence, by (29), (37) and (38), we conclude that
(42) 1AG™ | Ly () < et/
Now, on account of the inequality

(43) el z2(2) < cllAbllLy2) + el La2)

which holds true for functions satisfying the condition n - Vo = 0 on S,
inequalities (42) and (43) imply the assertion of the lemma. =

Using standard duality arguments we shall also estimate the time deriva-
tive ujy.

LEMMA 3. Let the assumptions of Lemma 1 hold, and b € Ly(£27).
Then, fort € (0,T],

(44) iy | Lo 0,8 (Ho (2))) < €3(t)
where c3(t) = c(co, Hb||L2(Qt))t1/2.
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Proof. For n € Ly(0,t; H(£2)) we test (27); with n™ = P™n where P™
denotes the projection defined by

m

P =Y (0,V)L,o)V"
=1

Then using the Cauchy—Schwarz inequality, and recalling the energy estimate
(29), we obtain

t t
1§ (s, m) ar'| = H(U%,P’”n)
0

c(lle(™) Lyt IV P nlLy2t)
+ (Ve [|Ly(t) + [IPllLo2e) 1P MLy 2t

< ¢(eot™? + IBllL, ) 1Pl £y (0,581 (2))

[ [~ (Acu™), e(P™n)) + (2/(¢™)BV@™ + b, P™)] dt’
0
(

IN

o)

(
< c(co, 1B llLae)t211m 10,080 (2)
for any n € L2(0,¢; Hj(£2)). This shows the assertion. m

5. Proof of Theorems 1, 2
Proof of Theorem 1. From (29), (36)—(39), (44) it follows that there exists

a pair (u,¢) with
u € Loo(0,T; H(2)), W € Loo(0,T; La(2)),
(45) uy € Lo(0,T; (Hy(£2))),
¢ € Loo(0,T; H'(2)) N Ly(0,T; H*(2)), ¢ € Lo(£27),
7

and a subsequence (u™, ") of solutions to (27) (which we still denote by

the same indices) such that

u™ — u  weak® in Lo (0,T; H}($2)),
u’ — u; weak® in Lo (0,77 La(£2)),
(46) u? — uy weakly in Lo(0,T; (HS(£2))),
O™ — ¢ weak* in Lo (0,T; H*(£2)) and weakly in L (0,T; H?(£2)),
O — ¢ weakly in Lo(£27).

Then by the standard compactness results ([10, Corollary 4]) it follows in
particular that for subsequences (still denoted by the same indices)
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— u  strongly in Ly(0,7;Ly(£2)) N C([0,T7; Ly(2))
for ¢ < 6, and a.e. in 27
(1) up—w strongly in C(0, T): (HY(2))),
©™ — ¢ strongly in Lo(0,T; HY(£2)) N C([0,T]; La(£2))
and a.e. in 27,

Hence,

u”(0) = uf® — u(0) strongly in Ly(£2), ¢ <6,
(48) u"(0) = uf® — w(0) strongly in (H§(£2)),

©"™(0) = @' — »(0)  strongly in Ly(£2),
which together with convergences (28) implies that
(49) u(0) =ug, w(0)=u, (0)=po.
The relations (45) and (49) imply the assertion (20) of the theorem.

We introduce the weak formulation corresponding to the Faedo—Galerkin
approximation (27):

T
V ((wfts m) s )y (o) + (Ae(u™), &(m))) dt
0 T
= | (Z(¢™)BV¢" + b,n)dt for any n € Ev,,,
0
G50)
| (B — 7 AQ™ + W' (™) + Wy(e(u™), ™), &) dt = 0
0

for any ¢ € Eyw,,,

where

By, ={n:n= Zle}"(t)vj(af), e € Ly(0,T), v; € Vin },
‘7:

Ew,, = {f 6= ZCT(t)wj(x), b € Ly(0,T), wy € Wm}
j=1

To pass to the limit as m — oo in (50) we follow the standard procedure
(see e.g. [7]). Namely, we fix m = mg € N in the spaces of test functions
n, &, and take subsequences (46) with m > my.

Clearly, by the weak convergences (46) the linear terms in (50) converge
to the corresponding limits.

Thus, it remains to examine the convergence of the nonlinear terms
2 (@™BV™, ¥'(o"™) and W, (e(u™),¢™). Recalling the growth condi-
tions (17), and using the energy bounds (29), (37) it follows that
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12" (@™ )BV Q™ |1 (0.1:L2(02)) < VO™ Lo 0.7:15(2)) < €Cos
(51) 19" (™) | Lo (0,710 (02)) < €(ll™ HLOO oriLe) T 1) <S¢
[Wo(e(™), 0" )L 0,1:02(2)) < cllle(@™) || 0,1:0202)) +1) < e
Thanks to the uniformity in m of these estimates and the pointwise conver-

gences (47) we can apply the standard nonlinear convergence lemma (see [6,
Chap. 1, Lemma 1.3|) to conclude that

Z(™BVe" — 2/(p)BVy  weak™ in Loo(0, T; La(£2)),
U(e™) = 2(p™)° = 3(¢™) + ™ — 20° — 39 + 0 = V'(p)
weak™ in Lo (0, T La(£2)),
Wo(e(u™), ™) = 2'(¢™)(B-e(u™) + Dz(¢™) + E)
Z(0)(B - e(u) + Dz(p) + E) = Wo(e(n), ¢)
weak™ in Lo (0,75 La(£2)).

(52)

l

Consequently, passing to the limit in (50) for a subsequence mg < m
— 00, we conclude that the identities in Theorem 1 are satisfied for all
test functions n € Ev,, , £ € Ew,, -

Next, letting mo — oo, by density arguments we arrive at identities (21).
Clearly, the a priori estimates (22) are consequences of the uniform estimates
in Lemmas 1-3 and the weak convergences (46). This proves the theorem. m

Proof of Theorem 2. Let F(t) denote the total energy of the system,

1 1
) F@)= | |5l Wlea)) + () + 59190 do
2
By the same arguments as in Lemma 1 we can show that solutions of problem

(1)—(2) satisfy the following energy identity in the distribution sense on the
interval (0,7):

(55) %p—i—ﬁypfdngb-utdx.
0] (0}

Further, from (55) it follows that (cf. (35))

/

1
(56) Z||ut(t)||%2(!2)+Cf(”£(u(t))||%2(Q)+H90(t)||4L4(Q)+||v90(t)”%2((2))_cf
t

< F(t) + BV lleel 7,0 dt' < F(0) + [bIZ, 01im2))-
0

From (55) we deduce the continuity of F'(t) because by estimate (22);, using
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[bllL,0ry < ¢, we get
t/
[F(t') = F(t")] < colt’ ="' | blf,, 0 dt < clt’ — "]/
t//
for [t/ — t”| small enough. Moreover, (56) implies that for any £ € NU {0},

e (KT) |20 + (kT30 ) + oD I o)

< c(F(0)) + |’bH%1(R+;L2(Q)) + ).
Hence, the local solution from Theorem 1 can be prolonged step by step on
the intervals [kT,(k+1)T up to k = 00. =
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