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Zenon Kosowski (Warszawa)
GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THEFRIED�GURTIN MODEL OF PHASE TRANSITIONS
Abstra
t. We prove the existen
e of global in time weak solutions toa three-dimensional system of equations arising in a simple version of theFried�Gurtin model for the isothermal phase transition in solids. In thismodel the phase is 
hara
terized by an order parameter. The problem 
on-sidered here has the form of a 
oupled system of three-dimensional elasti
ityand paraboli
 equations. The system is studied with the help of the Faedo�Galerkin method using energy estimates.1. Introdu
tion. In this paper we are 
on
erned with the weak solv-ability of an initial-boundary value problem for a nonlinear 
oupled systemof three-dimensional elasti
ity and a relaxation law for a s
alar order pa-rameter. The system arises as a simple spe
ial 
ase of general phase-�eld(di�used-interfa
e) theory of isothermal solid-solid phase transitions devel-oped by Fried and Gurtin [2℄ and Fried and Gra
h [1℄.This theory is based on the balan
e laws of linear momentum and ami
rofor
e with underlying free energy depending on a deformation gradi-ent, a multi
omponent order parameter and its gradient. The 
onstitutivedependen
e on the order parameter and its gradient is in 
ontrast to otherwell-known phase-�eld theories of solid-solid transitions due to Falk and Fré-mond (for referen
es see e.g. the review [8℄). In these theories the order pa-rameter is identi�ed with the strain tensor, and the free energy is postulatedto be a fun
tion of strain, strain gradient, and in nonisothermal situation,also temperature.In Fried�Gurtin's theory the order parameter represents a new quantitywhi
h 
an have di�erent physi
al status. In the 
ase of di�usive transitions2000 Mathemati
s Subje
t Classi�
ation: 35D05, 35K60, 35Q72, 74B20.Key words and phrases: Fried�Gurtin model, solid-solid transition, phase-�eld theory,existen
e and uniqueness of weak solution, Faedo�Galerkin method.[413℄ 
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414 Z. Kosowskiit des
ribes atomi
 arrangements within unit 
ells of a 
rystal latti
e. Forpure martensiti
 transitions, in whi
h the 
rystal latti
e undergoes a me-
hani
al strain but there are no rearrangements of atoms within 
ells, theorder parameter might be viewed as an arti�
e that yields a regularizationof me
hani
al equations.From the mathemati
al point of view it is important that in this theorythe stress tensor is a linear fun
tion of strain, the nonlinear e�e
ts are only
onne
ted with the order parameter.A spe
ial 1-D 
ase of the model and its equilibrium solutions have beenanalyzed in [9℄. Existen
e of a large number of spatially periodi
 inhomo-geneous solutions has been demonstrated. The stability of these solutionshas been investigated. Another variant of the 1-D 
ase and properties of itsstationary solution have been studied in [3℄. The well-posedness of the 3-D
ase of the Fried�Gurtin model on a �nite time interval has been examinedin [5℄. The system has been studied with the help of the Leray-S
hauder�xed point theorem. The existen
e and uniqueness of solutions has been es-tablished. Using similar methods, the existen
e and uniqueness of solutionsin a simpler 1-D 
ase has been proved in [4℄.In this work we study the existen
e of a global in time weak solutionto the system resulting from the Fried�Gurtin model. In the se
ond se
tionwe present the model and the system of equations. In the third se
tion westate the assumptions and main results of the paper. In the fourth se
tion we
onstru
t a Faedo�Galerkin approximation of the problem and state the ex-isten
e of solutions to this approximation. Next, we dedu
e a priori estimatesusing an energy identity. In the last se
tion we prove the main theorems. The�rst theorem shows the existen
e of a weak solution on time interval [0, T ].In the se
ond theorem we prove that any su
h solution 
an be prolongedto [0,∞).2. Model. We now formulate the Fried�Gurtin model in a spe
ial 
aseof small strain approximation with the strain represented by the linearizedstrain tensor ε = ε(u) and an un
onstrained s
alar order parameter ϕ dis-tinguishing between two phases, a and b, 
hara
terized by ϕ = 0 and ϕ = 1.Let Ω ⊂ R
3 be a bounded domain with smooth boundary S, o

upiedby a body in a �xed referen
e 
on�guration. The me
hani
al evolution ofthe body is des
ribed by a displa
ement �eld u : ΩT → R

3 and a s
alarorder-parameter �eld ϕ : ΩT → R.The free energy density f underlying the evolution of the body is assumedto be given as a fun
tion of the strain tensor ε(u), the order parameter ϕ,and its spatial gradient ∇ϕ:
f = f(ε(u), ϕ,∇ϕ)
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ε(u) =

1

2
(∇u + (∇u)T ).The relevant Landau�Ginzburg separable form of f , whi
h is quadrati
 in

ε(u) and ∇ϕ, and a nonlinear double-well fun
tion in ϕ, is spe
i�ed below.The model has the form of a nonlinear 
oupled system of partial dif-ferential equations representing the linear momentum balan
e for the dis-pla
ement (at 
onstant mass density) and the relaxation law for the orderparameter, with some pres
ribed initial and boundary 
onditions:
(1) utt −∇ · f,ε(ε(u), ϕ,∇ϕ) = b in ΩT ,

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST ,

(2) βϕt + f,ϕ(ε(u), ϕ,∇ϕ) −∇ · f,∇ϕ(ε(u), ϕ,∇ϕ) = 0 in ΩT ,

ϕ|t=0 = ϕ0 in Ω,

n · f,∇ϕ(ε(u), ϕ,∇ϕ) = 0 on ST ,Here b : ΩT → R
3 is an external body for
e, β is a positive 
onstant 
alleddumping modulus (in general, β 
an depend on ε, ϕ,∇ϕ, ϕt), and n denotesthe unit outward normal to S. The fun
tions u0,u1, ϕ0 represent initial 
on-ditions for the displa
ement, velo
ity and order parameter.We 
onsider the homogeneous Diri
hlet boundary 
ondition for the dis-pla
ement, assuming that the body is �xed at the boundary S, and thehomogeneous Neumann boundary 
ondition for the order parameter, whi
his a typi
al 
ondition in phase �eld models.The free energy. The typi
al Landau�Ginzburg form of the free energydensity is given by(3) f(ε(u), ϕ,∇ϕ) = W (ε(u), ϕ) + Ψ(ϕ) +

γ

2
|∇ϕ|2,with the three terms representing respe
tively the elasti
 energy, ex
hangeenergy and gradient energy with a 
onstant 
oe�
ient γ > 0.The ex
hange energy Ψ(ϕ) is a double-well potential with equal minimaat ϕ = 0 and ϕ = 1, assumed in the standard form(4) Ψ(ϕ) =

1

2
ϕ2(1 − ϕ)2.The sum of the last two terms in (3) represents the energy of di�used phaseinterfa
es.The relevant expressions for the elasti
 energy W (ε, ϕ) are given by thefollowing two examples (see [2℄, [1℄):



416 Z. KosowskiExample 1.(5) W (ε, ϕ) = (1 − z(ϕ))Wa(ε) + z(ϕ)Wb(ε),where
Wi(ε) =

1

2
(ε − εi) · Ai(ε − εi), i = a, b,is the strain energy of phase i, and εi is the natural strain of phase i, 
alledthe eigenstrain; it is assumed to be 
onstant.Furthermore, z : R → [0, 1] is a smooth s
alar interpolation fun
tionsatisfying:

(6) z(ϕ) = 0 for ϕ ≤ 0,

0 ≤ z(ϕ) ≤ 1 for ϕ ∈ (0, 1),

z(ϕ) = 1 for ϕ ≥ 1.The inequality 
onstraint in (6) is imposed to ensure the physi
al sense of (5).The tensors Ai = ((Ai)pqrs)p,q,r,s=1,2,3 are the fourth order elasti
itytensors of isotropi
 elasti
ity given by
Aiε(u) = λi tr ε(u)I + 2µiε(u), i = a, b,where I = (δpq)p,q=1,2,3 and λi, µi are Lamé 
onstants within the elasti
ityrange, i.e., satisfying µi > 0, 3λi + 2µi > 0.The se
ond example is 
hara
teristi
 for di�usive phase transitions inelasti
 solids (see [2℄).Example 2.(7) W (ε, ϕ) =

1

2
(ε − ε(ϕ)) · A(ϕ)(ε − ε(ϕ)),where

ε(ϕ) = (1 − z(ϕ))εa + z(ϕ)εbis the natural stress-free strain depending on the order parameter, εa, εbare 
onstant eigenstrains, z(·) is as in Example 1, and A(ϕ) is the elasti
itytensor, in general depending on the order parameter ϕ.For the sake of mathemati
al analysis in the present paper we shall 
on-�ne ourselves to the 
ase of homogeneous elasti
ity, that is, in Example 1:
Aa = Ab = A, and in Example 2: A(ϕ) = A with A given by(8) Aε(u) = λ tr ε(u)I + 2µε(u)where µ > 0, 3λ + 2µ > 0.For further use we re
ord that in the 
ase of homogeneous elasti
ity, theexpressions for the elasti
 energy and its derivatives with respe
t to ε and ϕare:
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• in Example 1:

(9)

W (ε, ϕ) =
1

2
ε ·Aε − ε · [(1 − z(ϕ))Aεa + z(ϕ)Aεb]

+
1

2
[(1 − z(ϕ))εa · Aεa + z(ϕ)εb · Aεb],

W,ε(ε, ϕ) = Aε − [(1 − z(ϕ))Aεa + z(ϕ)Aεb],

W,ϕ(ε, ϕ) = z′(ϕ)

[
−ε · A(εb − εa) +

1

2
εb · Aεb −

1

2
εa · Aεa

]
;

• in Example 2:
(10)

W (ε, ϕ) =
1

2
ε · Aε − ε · Aε +

1

2
ε · Aε,

W,ε(ε, ϕ) = Aε − Aε = Aε − Aεa − z(ϕ)A(εb − εa),

W,ϕ(ε, ϕ) = −ε · Aε,ϕ + ε · Aε,ϕ

= z′(ϕ)(−ε · A(εb − εa) + ε · A(εb − εa)).We 
an rewrite (9)2,3 and (10)2,3 in the 
ommon form(11) W,ε(ε, ϕ) = Aε + z(ϕ)B−Aεa,

W,ϕ(ε, ϕ) = z′(ϕ)[B · ε + z(ϕ)D + E]where:
• in Example 1:

(12) B = −A(εb − εa) a 
onstant tensor,
D = 0,

E =
1

2
εb · Aεb −

1

2
εa · Aεa = 
onst,

• in Example 2:
B = −Aε a 
onstant tensor,
D = −B · (εb − εa) = const,

E = −B · εa.We point out that in the 
ase of homogeneous elasti
ity, the fun
tions
W,ε(ε, ϕ) and W,ϕ(ε, ϕ) are linear in ε, whi
h essentially simpli�es the anal-ysis.The operator Q. Let Q be the linear elasti
ity operator de�ned by(13) u 7→ Qu = ∇ · Aε(u) = µ∆u + (λ + µ)∇(∇ · u)where A is de�ned by (8). For further purposes we also re
all two additionalproperties of the operator Q:
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• Q is strongly ellipti
, i.e.

c‖u‖H2(Ω) ≤ ‖Qu‖L2(Ω) for u ∈ H2(Ω) ∩H1
0(Ω)with 
onstant c depending on Ω,

• Q is selfadjoint on H2(Ω) ∩H1
0(Ω), i.e.

(Qu,v)L2(Ω) = −µ(∇u,∇v)L2(Ω) − (λ + µ)(∇ · u,∇ · v)L2(Ω)

= (u,Qv)L2(Ω) for u,v ∈ H2(Ω) ∩ H1
0(Ω).

• −Q is positive on H2(Ω) ∩ H1
0(Ω), i.e.

(−Qu,u)L2(Ω) = µ‖∇u‖2
L2(Ω) + (λ + µ)‖∇ · u‖2

L2(Ω) ≥ 0for u,v ∈ H2(Ω) ∩ H1
0(Ω).In this notation problem (1), (2) 
orresponding to the free energy (3), with

Ψ(ϕ) given by (4), and W (ε, ϕ) as in Examples 1, 2 (homogeneous elasti
ity)takes the form
(14) utt − Qu = z′(ϕ)B∇ϕ + b in ΩT ,

u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST ,

(15) βϕt − γ∆ϕ + Ψ ′(ϕ) + z′(ϕ)(B · ε(u) + z(ϕ)D + E) = 0 in ΩT ,

ϕ|t=0 = ϕ0 in Ω,

n · ∇ϕ = 0 on ST ,Notation. Throughout the paper we use the following notations:
f,i =

∂f

∂xi
, i = 1, 2, 3, ft =

df

dt
,

ε(u) = (εij)i,j=1,2,3, z′(ϕ) =
dz

dϕ
,

W,ε(ε, ϕ) =

(
∂W (ε, ϕ)

∂εij

)

i,j=1,2,3

, W,ϕ(ε, ϕ) =
∂W (ε, ϕ)

∂ϕ
,where spa
e and time derivatives are material. For simpli
ity, whenever thereis no danger of 
onfusion, we omit the arguments (ε, ϕ). Also the spe
i�
ationof tensor indi
es is omitted.Ve
tor and tensor valued mappings are denoted by bold letters. Thesummation 
onvention over repeated indi
es is used.We also use the following notation: for ve
tors a = (ai), ã = (ãi), andtensors B = (Bij), B̃ = (B̃ij), A = (Aijkl), we write

a · ã = aiãi, B · B̃ = BijB̃ij , AB = (AijklBkl).
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∇ and ∇· denote the gradient and divergen
e operators with respe
t to thematerial point x ∈ R

3. For the divergen
e of the tensor �eld ε(x) = (εij(x))we use the 
onvention of 
ontra
ting over the last index, i.e.,
∇ · ε(x) = (εij,j(x)).We use the standard Sobolev spa
es notation, in parti
ular, for simpli
itywe write

Hm(Ω) = Wm
2 (Ω) for m ∈ N,

L2(Ω) = (L2(Ω))3,

H2(Ω) = (H2(Ω))3.The symbol (·, ·) denotes the s
alar produ
t in L2(Ω). For simpli
ity, we usethe same notation to denote the s
alar produ
t in L2(Ω).Throughout the paper, c denotes various generi
 
onstants, dependingon the data of the problem and the domain Ω.3. Assumptions and main resultsAssumptions. We study the problem (1), (2) under the following assump-tions:(A1) Ω ⊂ R
3 is a bounded domain with boundary S of 
lass C2. Thisregularity is needed in the appli
ation of the ellipti
 regularity the-ory in a 
onstru
tion of bases in the Faedo�Galerkin method.(A2) The elasti
ity tensor A is given by (8) with µ > 0, 3λ + 2µ > 0.This ensures the following:

• the 
oer
ivity and boundedness of A,
(16) c|ε|2 ≤ ε ·Aε ≤ c|ε|2 for all ε ∈ S2,where S2 denotes the set of symmetri
 se
ond order tensors in R

3 ontoitself and
c = min{3λ + 2µ, 2µ}, c = max{3λ + 2µ, 2µ},

• the strong ellipti
ity of the operator Q de�ned by (13).The last assumption 
on
erns the free energy density:(A3) The free energy density f(ε, ϕ,∇ϕ) : S2 × R × R
3 → R has theform (3), with Ψ : R → R+ given by (4), and W (ε, ϕ) : S2×R → Rgiven in Examples 1 or 2.We assume that the fun
tion z : R → [0, 1] in these examples is at leastof 
lass C1 satisfying (6) and su
h that

|z′(ϕ)| ≤ c for all ϕ ∈ R.



420 Z. KosowskiWe note that in view of (4) and (11) it follows from (A3) that there existsa positive 
onstant c su
h that
|Ψ ′(ϕ)| ≤ c(|ϕ|3 + 1),

|W,ϕ(ε, ϕ)| ≤ c(|ε| + 1),(17)
|W,ε(ε, ϕ)| ≤ c(|ε| + 1)for all ε ∈ S2 and ϕ ∈ R.Further, on a

ount of (16) the following lower bounds for the elasti
energy hold true:

• in Example 1,
W (ε, ϕ) ≥ min

i∈{a,b}

{
1

2
c|ε − εi|

2

}
,

• in Example 2,
W (ε, ϕ) ≥

1

2
c|ε − εa − z(ϕ)(εb − εa)|

2.Moreover
Ψ(ϕ) ≥

1

8
ϕ4 −

1

2
.Thus we 
an see that the homogeneous part W (ε, ϕ) + Ψ(ϕ) of f(ε, ϕ,∇ϕ)satis�es the lower bound

W (ε, ϕ) + Ψ(ϕ) ≥ c(|ε|2+|ϕ|4) − c for all (ε, ϕ) ∈ S2 × R.Consequently,
(18) f(ε, ϕ,∇ϕ) ≥ cf (|ε|2+|ϕ|4 + |∇ϕ|2) − c′ffor all (ε, ϕ,∇ϕ) ∈ S2 × R × R

3with 
onstants cf > 0 and c′f ≥ 0.This is the main stru
ture assumption that we use in deriving of energyestimates.Main results. We now state the main results of the paper.Theorem 1 (Existen
e on (0, T )). Let the assumptions (A1)�(A3) hold.Moreover , let the data satisfy
b ∈ L2(Ω

T ),(19)
u0 ∈ H1

0(Ω), u1 ∈ L2(Ω), ϕ0 ∈ H1(Ω).Then there exist fun
tions (u, ϕ) su
h that
u ∈ L∞(0, T ;H1

0(Ω)), ut ∈ L∞(0, T ;L2(Ω)),

utt ∈ L2(0, T ; (H1
0(Ω))′),(20)

ϕ ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), ϕt ∈ L2(Ω
T ),

u(0, ·) = u0, ut(0, ·) = u1, ϕ(0, ·) = ϕ0,
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h satisfy problem (1)�(2) in the following weak sense:
T\
0

〈utt, η〉(H1
0
(Ω))′,H1

0
(Ω) dt +

T\
0

(Aε(u), ε(η))L2(Ω) dt

=

T\
0

(z′(ϕ)B∇ϕ + b, η)L2(Ω) dt for any η ∈ L2(0, T ;H1
0(Ω)),

(21)
T\
0

(βϕt − γ∆ϕ + Ψ ′(ϕ)+W,ϕ(ε(u), ϕ), ξ)L2(Ω) dt = 0for any ξ ∈ L2(0, T ; L2(Ω)).Moreover , (u, ϕ) satis�es the a priori estimates
(22)

‖u‖L∞(0,T ;L2(Ω)) + ‖ε(u)‖L∞(0,T ;L2(Ω)) + ‖ϕ‖L2(0,T ;L4(Ω))

+ ‖∇ϕ‖L∞(0,T ;L2(Ω)) + ‖ϕt‖L2(ΩT ) ≤ c0,

‖ϕ‖L∞(0,T ;H1(Ω)) ≤ c1,

‖ϕ‖L2(0,T ;H2(Ω)) ≤ c2(T ),

‖utt‖L2(0,T ;(H1
0
(Ω))′) ≤ c3(T )where

(23) c0 = c(‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖ϕ0‖H1(Ω), ‖b‖L1(0,T ;L2(Ω)), cf , c′f ),

c1 = c(c0, Ω),

c2(T ) = c(c1)T
1/2,

c3(T ) = c(c0, ‖b‖L2(ΩT ))T
1/2.Theorem 2 (Global existen
e). Assume the hypotheses of Theorem 1hold , and

b ∈ L1(R+,L2(Ω)),

sup
k∈N∪{0}

‖b‖L2(kT,(k+1)T ;L2(Ω)) < ∞,

u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), ϕ0 ∈ H1(Ω).Then there exists a global solution (u, ϕ) to problem (1)�(2) su
h that

u ∈ L∞(R+;H1
0(Ω)), ut ∈ L∞(R+;L2(Ω)),

ϕ ∈ L∞(R+; H1(Ω)), ϕt ∈ L∞(R+; L2(Ω)),

u(0) = u0, ut(0) = u1, ϕ(0) = ϕ0,satisfying the following estimates :
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• estimates uniform in time:

‖u‖L∞(R+;H1
0
(Ω)) + ‖ε(u)‖L∞(R+;L2(Ω)) + ‖ϕ‖L∞(R+;L4(Ω))

+ ‖∇ϕ‖L∞(R+;L2(Ω)) + ‖ϕt‖L2(R+;L2(Ω)) ≤ c0,

‖ϕ‖L∞(R+;H1(Ω)) ≤ c1.

• estimates on �nite intervals (t, t+T ) where t ∈ R+ and T > 0 is �xed :
‖ϕ‖L2(t,t+T ;H2(Ω)) ≤ c2(T ),

‖utt‖L2(t,t+T ;(H1
0
(Ω))′) ≤ c̃3(T ),with 
onstants c0, c1, c2(T ) spe
i�ed by (23), and

c̃3(T ) = c(c0, sup
k∈N∪{0}

‖b‖L2(kT,(k+1)T ;L2(Ω)))T
1/2.

4. The Faedo�Galerkin approximation of the problemAn approximation. To prove Theorems 1 and 2 using the Faedo�Galerkinmethod we 
onstru
t bases for the spa
es H1
0(Ω) and

H2
N (Ω) = {w ∈ H2(Ω) : n · ∇w = 0 on S}.For j ∈ N, 
onsider the eigenvalue problems(24) −Qvj = λ

(1)
j vj in Ω,

vj = 0 on S,and(25) −∆wj = λ
(2)
j wj in Ω,

n · ∇wj = 0 on S.We re
all that, by the ellipti
 regularity theory for a domain with boundaryof 
lass C2, the solutions of (24) and (25) satisfy
vj ∈ H2(Ω), wj ∈ H2(Ω).We take the family {vj}j=1,2,... as a basis ofH1

0(Ω) and the family {wj}j=1,2,...as a basis of H2
N (Ω). By the properties of Q we have

λ
(1)
i (vi,vj) = (λ

(1)
i vi,vj) = (−Qvi,vj) = (vi,−Qvj) = (vi, λ

(1)
j vj)

= λ
(1)
j (vi,vj).These identities show, by the Poin
aré�Friedri
hs inequality, that the family

{vj} is orthogonal in H1(Ω) and L2(Ω) s
alar produ
ts.Similarly, the family {wj}j=1,2,... satis�es
λ

(2)
i (wi, wj) = (λ

(2)
i wi, wj) = (−∆wi, wj) = (∇wi,∇wj)

= (wi,−∆wj) = (wi, λ
(2)
j wj) = λ

(2)
j (wi, wj).
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e, by the Poin
aré inequality, the family {wj}j=1,2,... is orthogonal in
H2(Ω), H1(Ω) and L2(Ω) s
alar produ
ts.We 
an normalize both families in L2(Ω) and L2(Ω) s
alar produ
tsrespe
tively.For m ∈ N set

Vm = span{v1, . . . ,vm}, Wm = span{w1, . . . , wm};these are �nite-dimensional subspa
es of H1
0(Ω) and H2

N (Ω) respe
tively.For any m ∈ N we will �nd a pair of fun
tions (um, ϕm) in the form
um(x, t) =

m∑

i=1

em
i (t)vi(x), ϕm(x, t) =

m∑

i=1

cm
i (t)wi(x)(26)

satisfying for a.e. t ∈ [0, T ],
(um

tt ,vj) + (Aε(um), ε(vj)) = (z′(ϕm)B∇ϕm + b,vj),

β(ϕm
t , wj) − γ(∆ϕm, wj) + (Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), wj) = 0,

(27) for j = 1, . . . , m,

um(0) = um
0 , um

t (0) = um
1 , ϕm(0) = ϕm

0where W,ϕ(ε(u), ϕ), B, D, E are given by (12).Furthermore, um
0 ,um

1 ∈ Vm, ϕm
0 ∈ Wm are proje
tions of u0,u1, ϕ0respe
tively, satisfying, as m → ∞,

(28) um
0 → u0 strongly in H1

0(Ω),

um
1 → u1 strongly in L2(Ω),

ϕm
0 → ϕ0 strongly in H1(Ω).Existen
e of solutions to the Faedo�Galerkin approximation. Substitut-ing (26) into (27), taking into a

ount that

(um
tt ,vj) =

( m∑

i=1

em
i,tt(t)vi,vj

)
=

m∑

i=1

em
i,tt(t)(vi,vj) = em

j,tt(t),

(ϕm
t , wj) =

( m∑

i=1

cm
i,t(t)wi, wj

)
=

m∑

i=1

cm
i,t(t)(wi, wj) = cm

j,t(t),

−(Aε(um),vj) =

( m∑

i=1

−em
i (t)Aε(vi),vj

)
=

m∑

i=1

em
i (t)(−Aε(vi),vj)

=
m∑

i=1

em
i (t)(λ

(1)
i vi,vj) = λ

(1)
j em

j (t)(vj,vj) = λ
(1)
j em

j (t),
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(−∆ϕm, wj) =

( m∑

i=1

−cm
i (t)∆wi, wj

)
=

m∑

i=1

cm
i (t)(−∆wi, wj)

=
m∑

i=1

cm
i (t)(λ

(2)
i wi(x), wj) = cm

j (t)(λ
(2)
j wj(x), wj)

= λ
(2)
j cm

j (t)we get
em
j,tt(t) = λ

(1)
j em

j (t) + (z′(ϕm)B∇ϕm + b,vj),

βcm
j,t(t) = −γλ

(2)
j cm

j (t) − (Ψ ′(ϕm) − W,ϕ(ε(um), ϕm), wj),for j = 1, . . . , m.Consequently, the system (11) 
an be examined as a system of �rst order or-dinary di�erential equations for the 
oe�
ients (em
1 , . . . , em

m), (em
1,t, . . . , e

m
m,t),

(cm
1 , . . . , cm

m).The above system for any m has a solution lo
al in time on an interval
[0, Tm], Tm > 0. The uniform (in m) a priori estimates proved below inLemmas 1 and 2 show that this system has a solution on an interval [0, T ],
T > 0.A priori estimates for the Faedo�Galerkin approximationLemma 1 (Energy estimate). Assume that (A1)�(A3) hold and the datasatisfy

u0 ∈ H1
0(Ω), u1 ∈ L2(Ω), ϕ0 ∈ H1(Ω), b ∈ L1(0, T ;L2(Ω)).Then a solution (um, ϕm) to the problem (1)�(2) satis�es the estimate

(29) ‖um
t ‖L∞(0,T ;L2(Ω)) + ‖ε(um)‖L∞(0,T ;L2(Ω))

+ ‖ϕm‖L∞(0,T ;L4(Ω)) + ‖∇ϕm‖L∞(0,T ;L2(Ω)) + ‖ϕm
t ‖L2(ΩT ) ≤ c0with a 
onstant

c0 = c(‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖ϕ0‖H1(Ω), ‖b‖L1(0,T ;L2(Ω)), cf , c′f ).Proof. We derive the energy identity for system (1)�(2). First, note that,a

ording to (11)1 we have
∇ · W,ε(ε(u), ϕ) = ∇ · Aε(u) + z′(ϕ)B∇ϕ.Thus integration by parts shows that (27)1 may be rewritten as(30) (um
tt ,vj) + (W,ε(ε(um), ϕm), ε(vj)) = (b,vj).Testing (30) with um

t (t) (i.e. multiplying by em
j (t) and summing over j from

j = 1 to j = m) gives(31) 1

2

d

dt
‖um

t ‖2
L2(Ω) + (W,ε(ε(um), ϕm), ε(um

t )) = (b,um
t ).
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t (t) and integrating by parts gives

(32) β‖ϕm
t ‖2

L2(Ω) + (Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), ϕm
t )

+
γ

2

d

dt
‖∇ϕm‖2

L2(Ω) = 0.Summing up (31) and (32) we arrive at the energy identity
(33)

1

2

d

dt

\
Ω

|um
t |2 dx +

d

dt

\
Ω

(
W (ε(um, ϕm) + Ψ(ϕm) +

1

2
γ|∇ϕm|2

)
dx

+ β
\
Ω

(ϕm
t )2 dx =

\
Ω

b · um
t dx.

Integration of (33) over (0, t) for t ∈ (0, T ) gives
(34)

1

2
‖um

t (t)‖2
L2(Ω) +

\
Ω

f(ε(um(t)), ϕm(t),∇ϕm(t)) dx + β
\
Ω

(ϕm
t )2 dx dt

=
1

2
‖um

1 ‖2
L2(Ω) +

\
Ω

f(ε(um
0 ), ϕm

0 ,∇ϕm
0 ) dx +

\
Ωt

b · um
t dx dt′

with f(ε(u), ϕ,∇ϕ) de�ned by (3).Using the stru
ture 
ondition (18) and estimating the last integral in (34)with the help of the Young inequality by
∣∣∣
\

Ωt

b · um
t dx dt′

∣∣∣ ≤ ‖ut′‖L∞(0,t;L2(Ω))‖b‖L1(0,t;L2(Ω))

≤
1

4
‖ut′‖

2
L∞(0,t;L2(Ω)) + ‖b‖2

L1(0,t;L2(Ω)),we dedu
e the a priori estimate
(35)

1

4
‖um

t (t)‖2
L2(Ω)+cf (‖ε(um(t))‖2

L2(Ω)+‖ϕm(t)‖4
L4(Ω)+‖∇ϕm(t)‖2

L2(Ω))

+ β‖ϕm
t ‖2

L2(Ωt) ≤ c0 for t ∈ (0, T )with a 
onstant c0 depending only on ‖u0‖H1(Ω), ‖u1‖L2(Ω), ‖ϕ0‖H1(Ω),
‖b‖L1(0,t;L2(Ω)) and c′f . This proves the assertion.Further estimates. Clearly, (29) implies that(36) ‖ϕm‖L∞(0,T ;H1Ω)) ≤ c1with a 
onstant c1 = C(c0, Ω). Hen
e, by the Sobolev imbedding,(37) ‖ϕm‖L∞(0,T ;L6(Ω)) ≤ c1.Further, sin
e um = 0 on ST , it follows from (29) by Korn's inequality that(38) ‖um‖L∞(0,T ;H1Ω)) ≤ c1.



426 Z. KosowskiLemma 2. Let the assumptions of Lemma 1 hold. Then, for t ∈ (0, T ],(39) ‖ϕm‖L2(0,T ;H2(Ω)) ≤ c2(t)with a 
onstant c2(t) = c(c1)t
1/2.Proof. By the de�nition (25) of the basis {w1, . . . , wm} identity (27)2implies that

(40) β(ϕm
t , ∆wj)−γ(∆ϕm, ∆wj)+ (Ψ ′(ϕm)+W,ϕ(ε(um), ϕm), ∆wj) = 0for j = 1, . . . , m. Multiplying this equality by cm

j (t) and summing from j = 1to j = m gives
γ(∆ϕm, ∆ϕm) = β(ϕm

t , ∆ϕm) + (Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), ∆ϕm).Hen
e, integrating with respe
t to t, we have
(41) γ

t\
0

\
Ω

|∆ϕm|2 dx dt

=

t\
0

\
Ω

(βϕm
t + Ψ ′(ϕm) + W,ϕ(ε(um), ϕm))∆ϕm dx dt.Now, using the Cau
hy�S
hwarz inequality and the growth 
onditions (17),

|Ψ ′(ϕ)| ≤ c(|ϕ|3 + 1), |W,ϕ(ε(u), ϕ)| ≤ c(|ε(u)| + 1),it follows that
γ‖∆ϕm‖L2(Ωt)

≤ β‖ϕm
t ‖L2(Ωt) + ‖Ψ ′(ϕm)‖L2(Ωt) + ‖W,ϕ(ε(um), ϕm)‖L2(Ωt)

≤ β‖ϕm
t ‖L2(Ωt) + ct1/2(‖ϕm‖3

L∞(0,t;L6(Ω)) + ‖ε(um)‖L∞(0,t;L2(Ω)) + 1).Hen
e, by (29), (37) and (38), we 
on
lude that(42) ‖∆ϕm‖L2(Ωt) ≤ ct1/2.Now, on a

ount of the inequality(43) ‖ϕ‖H2(Ω) ≤ c(‖∆ϕ‖L2(Ω) + ‖ϕ‖L2(Ω)),whi
h holds true for fun
tions satisfying the 
ondition n · ∇ϕ = 0 on S,inequalities (42) and (43) imply the assertion of the lemma.Using standard duality arguments we shall also estimate the time deriva-tive um
tt .Lemma 3. Let the assumptions of Lemma 1 hold , and b ∈ L2(Ω

T ).Then, for t ∈ (0, T ],(44) ‖um
t′t′‖L2(0,t;(H0(Ω))′) ≤ c3(t)where c3(t) = c(c0, ‖b‖L2(Ωt))t

1/2.
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0(Ω)) we test (27)1 with η

m = Pm
η where Pmdenotes the proje
tion de�ned by

Pm
η =

m∑

i=1

(η,vi)L2(Ω)v
i.Then using the Cau
hy�S
hwarz inequality, and re
alling the energy estimate(29), we obtain

∣∣∣
t\
0

(um
t′t′ , η) dt′

∣∣∣ =
∣∣∣

t\
0

(um
t′t′ , P

m
η) dt′

∣∣∣

=
∣∣∣

t\
0

[−(Aε(um), ε(Pm
η)) + (z′(ϕm)B∇ϕm + b, Pm

η)] dt′
∣∣∣

≤ c(‖ε(um)‖L2(Ωt)‖∇Pm
η‖L2(Ωt))

+ c(‖∇ϕm‖L2(Ωt) + ‖b‖L2(Ωt))‖P
m

η‖L2(Ωt)

≤ c(c0t
1/2 + ‖b‖L2(Ωt))‖P

m
η‖L2(0,t;H1(Ω))

≤ c(c0, ‖b‖L2(Ωt))t
1/2‖η‖L2(0,t;H1(Ω))for any η ∈ L2(0, t;H1

0(Ω)). This shows the assertion.5. Proof of Theorems 1, 2Proof of Theorem 1. From (29), (36)�(39), (44) it follows that there existsa pair (u, ϕ) with
u ∈ L∞(0, T ;H1

0(Ω)), ut ∈ L∞(0, T ;L2(Ω)),

utt ∈ L2(0, T ; (H1
0(Ω))′),(45)

ϕ ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)), ϕt ∈ L2(Ω
T ),and a subsequen
e (um, ϕm) of solutions to (27) (whi
h we still denote bythe same indi
es) su
h that

(46)

um → u weak∗ in L∞(0, T ;H1
0(Ω)),

um
t → ut weak∗ in L∞(0, T ;L2(Ω)),

um
tt → utt weakly in L2(0, T ; (H1

0(Ω))′),

ϕm → ϕ weak∗ in L∞(0, T ; H1(Ω)) and weakly in L2(0, T ; H2(Ω)),

ϕm
t → ϕt weakly in L2(Ω

T ).Then by the standard 
ompa
tness results ([10, Corollary 4℄) it follows inparti
ular that for subsequen
es (still denoted by the same indi
es)
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(47)

um → u strongly in L2(0, T ;Lq(Ω)) ∩ C([0, T ];Lq(Ω))for q < 6, and a.e. in ΩT ,

um
t → ut strongly in C([0, T ]; (H1

0(Ω))′),

ϕm → ϕ strongly in L2(0, T ; H1(Ω)) ∩ C([0, T ]; L2(Ω))and a.e. in ΩT .Hen
e,
(48)

um(0) = um
0 → u(0) strongly in Lq(Ω), q < 6,

um
t (0) = um

1 → ut(0) strongly in (H1
0(Ω))′,

ϕm(0) = ϕm
0 → ϕ(0) strongly in L2(Ω),whi
h together with 
onvergen
es (28) implies that(49) u(0) = u0, ut(0) = u1, ϕ(0) = ϕ0.The relations (45) and (49) imply the assertion (20) of the theorem.We introdu
e the weak formulation 
orresponding to the Faedo�Galerkinapproximation (27):

T\
0

(〈um
tt , η〉(H1

0
(Ω))′,H1

0
(Ω) + (Aε(um), ε(η))) dt

=

T\
0

(z′(ϕm)B∇ϕm + b, η) dt for any η ∈ EVm
,

(50)
T\
0

(βϕm
t − γ∆ϕm + Ψ ′(ϕm) + W,ϕ(ε(um), ϕm), ξ) dt = 0for any ξ ∈ EWm

,where
EVm

=
{
η : η =

m∑

j=1

em
j (t)vj(x), em

j ∈ L2(0, T ), vj ∈ Vm

}
,

EWm
=

{
ξ : ξ =

m∑

j=1

cm
j (t)wj(x), cm

j ∈ L2(0, T ), wj ∈ Wm

}
.To pass to the limit as m → ∞ in (50) we follow the standard pro
edure(see e.g. [7℄). Namely, we �x m = m0 ∈ N in the spa
es of test fun
tions

η, ξ, and take subsequen
es (46) with m ≥ m0.Clearly, by the weak 
onvergen
es (46) the linear terms in (50) 
onvergeto the 
orresponding limits.Thus, it remains to examine the 
onvergen
e of the nonlinear terms
z′(ϕm)B∇ϕm, Ψ ′(ϕm) and W,ϕ(ε(um), ϕm). Re
alling the growth 
ondi-tions (17), and using the energy bounds (29), (37) it follows that
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‖z′(ϕm)B∇ϕm‖L∞(0,T ;L2(Ω)) ≤ c‖∇ϕm‖L∞(0,T ;L2(Ω)) ≤ cc0,

‖Ψ ′(ϕm)‖L∞(0,T ;L2(Ω)) ≤ c(‖ϕm‖3
L∞(0,T ;L6(Ω)) + 1) ≤ c,(51)

‖W,ϕ(ε(um), ϕm)‖L∞(0,T ;L2(Ω)) ≤ c(‖ε(um)‖L∞(0,T ;L2(Ω)) + 1) ≤ c.Thanks to the uniformity in m of these estimates and the pointwise 
onver-gen
es (47) we 
an apply the standard nonlinear 
onvergen
e lemma (see [6,Chap. 1, Lemma 1.3℄) to 
on
lude that
z′(ϕm)B∇ϕm → z′(ϕ)B∇ϕ weak∗ in L∞(0, T ;L2(Ω)),

Ψ ′(ϕm) = 2(ϕm)3 − 3(ϕm)2 + ϕm → 2ϕ3 − 3ϕ2 + ϕ = Ψ ′(ϕ)weak∗ in L∞(0, T ; L2(Ω)),
(52)

W,ϕ(ε(um), ϕm) = z′(ϕm)(B · ε(um) + Dz(ϕm) + E)

→ z′(ϕ)(B · ε(u) + Dz(ϕ) + E) = W,ϕ(ε(u), ϕ)weak∗ in L∞(0, T ; L2(Ω)).Consequently, passing to the limit in (50) for a subsequen
e m0 ≤ m

→ ∞, we 
on
lude that the identities in Theorem 1 are satis�ed for alltest fun
tions η ∈ EVm0
, ξ ∈ EWm0

.Next, letting m0 → ∞, by density arguments we arrive at identities (21).Clearly, the a priori estimates (22) are 
onsequen
es of the uniform estimatesin Lemmas 1�3 and the weak 
onvergen
es (46). This proves the theorem.Proof of Theorem 2. Let F (t) denote the total energy of the system,(54) F (t) =
\
Ω

[
1

2
|ut|

2 + W (ε(u), ϕ) + Ψ(ϕ) +
1

2
γ|∇ϕ|2

]
dx.

By the same arguments as in Lemma 1 we 
an show that solutions of problem(1)�(2) satisfy the following energy identity in the distribution sense on theinterval (0, T ):(55) dF (t)

dt
+ β
\
Ω

ϕ2
t dx =

\
Ω

b · ut dx.

Further, from (55) it follows that (
f. (35))
(56)

1

4
‖ut(t)‖

2
L2(Ω)+cf (‖ε(u(t))‖2

L2(Ω)+‖ϕ(t)‖4
L4(Ω)+‖∇ϕ(t)‖2

L2(Ω))−c′f

≤ F (t) + β

t\
0

‖ϕt‖
2
L2(Ω) dt′ ≤ F (0) + ‖b‖2

L1(0,T ;L2(Ω)).From (55) we dedu
e the 
ontinuity of F (t) be
ause by estimate (22)1, using
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‖b‖L2(ΩT ) ≤ c, we get

|F (t′) − F (t′′)| ≤ c0|t
′ − t′′|1/2

t′\
t′′

‖b‖2
L2(Ω) dt ≤ c|t′ − t′′|1/2

for |t′ − t′′| small enough. Moreover, (56) implies that for any k ∈ N ∪ {0},
‖ut(kT )‖2

L2(Ω) + ‖u(kT )‖2
H1(Ω) + ‖ϕ(kT )‖2

H1(Ω)

≤ c(F (0)) + ‖b‖2
L1(R+;L2(Ω)) + c′f ).Hen
e, the lo
al solution from Theorem 1 
an be prolonged step by step onthe intervals [kT, (k + 1)T up to k = ∞.
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