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A PRIORI ESTIMATES IN WEIGHTED SPACES FOR
SOLUTIONS OF THE POISSON AND HEAT EQUATIONS

Abstract. We prove a priori estimates for solutions of the Poisson and
heat equations in weighted spaces of Kondrat’ev type. The weight is a power
of the distance from a distinguished axis.

1. Introduction. In this paper we obtain a priori estimates for solutions
of the Poisson and heat equations in weighted spaces of Kondrat’ev type
in R3. Here the weight is some power of the distance from a distinguished
axis in R® and the power depends on the order of the derivative of the
function. We want to stress that the weights we are concerned with are
not Ay weights (i.e. Muckenhoupt’s weights, see [Mc72]). This is the main
difficulty in deriving a priori estimates.

Solutions which belong to weighted spaces of Kondrat’ev type can be
found in e.g. [Na94|, [Ko97|, where the authors examine boundary value
problems in dihedral domains. In our investigations we replace the dihedral
domain by R? with the z-axis removed. We deduce a priori estimates for
solutions of the Poisson (resp. heat) equation in the space H(R?) (resp.

IO{i’l(]Rg x R4 )) in three steps. First, utilizing Kondrat’ev’s method [Ko67]
we examine the Poisson equation in R? and we show that, if u is noninteger,
then for each f € Lg,(R?) there exists a unique solution u € HJ(R?) of
Au = f. Next we obtain estimates in weighted spaces for solutions of a
related two-dimensional elliptic problem with a parameter. This is the main

step of the proof. Finally, we obtain a priori estimates in the weighted spaces
H2(R®) and Hy'(R? x Ry).
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Proving a priori estimates is the crucial step in examining the uniqueness
of solutions of the Poisson and heat equations. The problem of existence of
solutions will be explored in another paper. We mention that the weighted
spaces which we consider in this paper also appear in [Za04], where the
author studies the Navier—Stokes equations. The a priori estimates given
here can be a useful tool in examining some problems relating to the N-S
equations.

Our main results are the following:

THEOREM 1. Assume that p € (—1,0) and n = —1,0,1,2,.... Then
there exists a constant ¢ = ¢(u,n) such that for each u € H;_, (R?),

(1) lull e qus) < €l Bul,, s

THEOREM 2. Assume that p € (—1,0), n = —1,0,1,2.... Then there
exists a constant ¢ = c(u,n) such that for each u € ]gi’l(R:g x Ry),

(2) Hu”Hﬁ’l(H@xﬂh) <cllu - AUHLQ,H_H(R3><R+) .

The definitions of the weighted function spaces appearing above are given
in the next section.

2. Notation. We denote by r = r(z) the distance of x € R™ from the
set {x : x1 = xg = 0}. For n = 2,3 we define R” = R" \ {x € R" : r = 0},

and D(]R") is the set of smooth functions with compact support in R".
We recall the standard notation of function spaces: if U C R™, then
Loy(U):={u:u-r* € L*(U)} with the norm lullp, @y = w2y

The space H,'(R") is defined as the closure of the set D(R™) with respect
to the norm

1/2
2
lllgpy = { 3 D%, o}

lo|<m
Finally, if Ry := {t : t > 0}, then the space {I,le(]R” x Ry) is defined as
the closure of the set D(R?’ x R4) = {u : v smooth with supp u compact in
R3 x R, } with respect to the norm

1/2
2
lullgo gy = { D0 IDEDSulE, @iy} -
|| +25<2

Let

Q=R and Q,:=R?
and let s = s(q) be defined on @ or Q2 by
{ ¢ for ¢ € Q1,

s(q) = .
q% +ige for g = (q1,¢2) € Q2.
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3. Problem in R2. In this section we consider the Poisson equation
in R? using Kondrat’ev’s method (see [Ko67]). We prove that if 4 is nonin-
teger, then for each f € Ly ,(R?) there exists a unique u € Hﬁ(Rz) which
satisfies Au = f. In order to get this result we have to examine the following
problem with a parameter:

—vVpp + A0 =g in (0,27),
(3) v(0) = v(2m),
,U‘P(O) = USO(27T)’
where v, and vy, denote the first and second derivatives of the function

v=uv(p) and A =t +ih for r,h € R.

LEMMA 1. Suppose that h & 7. Then for each g € L*(0,27) there exists
a unique solution v € H*(0,27) of problem (3). It satisfies the estimate

(4) vl &2 (0,27) + AL V] 100,20 + |>\‘2||UHL2(0,2W) < cllgllz2(0,27)5
where ¢ depends only on h.

Proof. In this proof, |- || will stand for |- ||12(g 2. It can be verified that
for noninteger h the unique solution of (3) is

(5) o) = 2)\Si111h e
P 2
. (Sg(T) cosh (o — 7 —m)dr + S g(T)tcosh A(o — 7 +7) dT).
0 ®

From (3); we have
(6) lvgell < AP0l + llgll-
If we multiply (3); by |A|*v and integrate over (0,27), and next utilize the
boundary conditions (3)2 3, we get
2
(7) APl l® + NP> = [A]* § godr.
0
Hence using the Schwarz inequality we obtain
AP logl1? < 2001 ol + llgll*.
As clearly |h| < |)|, using (3); and (6) we get
(8) IEloll < P72 {1gll + loge 1} < ThIF2{20lgl + AP]lv]l,
where k£ = 0,1. The boundary condition (3)y implies Sgﬁ v, de = 0, hence
applying the Poincaré inequality and (6) we get
logll < cllogell < eflgll + IAP[lo]l}.



434 A. Kubica and W. M. Zajaczkowski

Thus we have proved (4), provided
(9) IAP[Jo]l < ellg]

for some ¢ = ¢(h). We shall deduce (9) in two steps. First we assume that
A =t + ih satisfies the condition

(10) It| > 2|hl.
Then comparing the real parts in (7) we get
27
AP llopl® + (¢ = b [o]* = A Re | godr.
0

The condition (10) gives us 3|A[* < ¢* — h*, hence
2T 1

(11) A lol* < 20A2 § |go] dr < 5 Mol + 2llgll*.
0

Thus under condition (10) we deduce (9). Applying the Schwarz inequality
to formula (5) we obtain the estimate

A2
(12) Aol < | = (%sintht—i—%Sin27rh>HgH2,
where we have used the equality
2w @ 27 21
S S lcosh A(p — 7 — m) |2 dr dp = S S |cosh \(¢ — 7 + 7)|? dr dy
00 0 ¢

— % sinh 27t + % sin 27h.

Therefore from (12) we get

(13) AFlol® < - (t+ 1)llgll?,

where ¢ = ¢(h). Thus the estimate (11) for |¢| > 2|h| and the estimate (13)
for [t| < 2|h| lead to inequality (9) with ¢ depending only on h. =

THEOREM 3. Assume that y € R\ Z. Then for each f € L, (R?) there
exists a unique u € Hﬁ(RQ) such that Au = f.

Proof. Uniqueness. Suppose that p is noninteger and u € Hﬁ(RQ) satis-
fies Au = 0. We set

(14) h=1-p,
(15) w(t, ) = u(e " cosp, e sing),

e}

(16) U()\,cp):\/%_w [ w(t, e d.
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We shall show that for a.e. A € Ry, := {# +ih : 8 € R} the function v(}, )
belongs to H?(0,27). Indeed,

oo+ih

§ o Mrago.0m) @A < Nl gy < oo,
—oo-+ih

because applying for j = 0,1, 2 the Parseval identity we get

oco+ih 27
S S !Di)v()\,go)f dod\ = S !r*jDiu(w)‘Qrm%Hj dr < Hquqz(Rz).
—oco+ih 0 R? ’

If we write the equation Au(z) = 0 for # € R? in polar coordinates, substi-

tute ¢ := —Inr and apply the Fourier transform with respect to the ¢ vari-
able, we get
(17) —2*0(X, ) + D2v(A, ) =0 for ae. (X, @) € Ry x (0,2m).

Furthermore, from (15) we have

w(t,0) =w(t,2r) and Dyw(t,0) = Dyw(t,2n) for ae. t € R,
thus (16) gives
(18)  w(A,0)=v(\27) and D,v(A0) = Dyv(A 2m) for a.e. AERy,.

From (17) and (18) we see that for a.e. A\ € Ry, the function v(},-) €
H?(0,27) satisfies the homogeneous problem (3), thus utilizing (4) we deduce
that v(\,-) =0 for a.e. A € Ry,. Therefore (16) yields

S w(t,)-eMdt =0 for ae. (X @) € Ry x (0,27),

—o0
so w(t,p) = 0 for a.e. (t,) € Rx(0,27), and hence u(x) = 0 for a.e. z € R2,

Ezistence. Assume that f € Lo ,(R?) and y is noninteger. Then we set

[e.9]

filt,p) = e*Qtf(eft cos p, e tsin ), g\ p) = S fi(t, SO)efi/\t dt.

—o0
We shall show that g(},-) € L?(0,2m) for a.e. A € Ry,. Indeed, applying the
Parseval identity we get
oo+ih
o llg 2 (02m) A = IF117, 2y < o0
—oo+th

For A € Ry, let v()\, ) € H%(0,27) be a solution of problem (3) with r.h.s.
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—g(\, ) € L?(0,27). Then integrating (4) with respect to A € R, we get

oco+ih

(19) > PFIDLY(N )13 0.0m) A
k+1<2 —oo+ih

oco+ih
<c S Hg”?ﬂ(o,%) dX = C”f”%g,u(wy
—oo+ih
where ¢ depends only on h. We set
wit, p) = —— Oofih V(A @)™ dA
) = \/%70044‘},/ p)e )

and define a function « on R? by the formula
u(e tcosp, e tsing) = w(t, @) for (t,¢) € R x (0,27).

First we shall show that u € Hi (R?). Indeed, applying the Parseval identity
and using the boundary conditions (3)2 3 for v(A,-) we get

oco+ih

llBpen < 3 1 PHIDEU @) 320 o) .
k+1<2 —oo+ih

Therefore utilizing (19) we obtain
lull 2 w2y < cllfllL, ,r2),
where the constant ¢ comes from (19). Finally, if we multiply
)‘QU()H 90) - Dgzav()‘v 90) = _g()‘v 90)

by e and next integrate over Rj, we deduce that Au = f, finishing the
proof. m

4. Estimate for the problem with parameter. In this section we
prove estimates for solutions of an elliptic problem in R? with parameter.
This result is a crucial step in the proof of Theorems 1 and 2.

REMARK 1. In the following lemma and its proof all differential operators
act on the x variable only. Recall that @1, Q2 and s = s(q) were defined in
Section 2.

LEMMA 2. Assume that p € (—1,0), n = —1,0,1,2,..., ¢ = 1,2 and v
is a smooth function on R? x Q; with bounded support. Assume that v(-,q) €
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D(I'Rz) for each g € Q;. Then there exists a constant ¢ = c(u,n) such that

(20) | (D%, q) + |5l [Vo(z, q)|? + [s]2[v(z, q)|?) 2| ~>" d dg

Q; R2
<c | | lg(z @)l " dudg,
Q; R2
where
(21) 9(x,q) = —Av(z,q) + sv(z, q).

Proof. In the case of n = —1 the proof of (20) can be found in [Ku07]
(see Lemma 4 and Remark 4). Therefore we only have to show (20) for n
a nonnegative integer. So suppose that v satisfies the assumptions. If we
multiply (21) by ¢ € H'(R?), integrate with respect to € R? and integrate
by parts, then for all p € H'(R?) we obtain

(22) [ [Vu(,q)- Vo(z) + sv(z,q)p(@) dz = | g(x,q)p(w) dx.

R2 R2
Since v(-, ¢) € D(R?) for each ¢ € Q;, we see that ¢ := (1+isgn b)v|z|2 2" €
H'(R?), where b := Im s. Putting ¢ in (22) yields

| {IVule# (1 — isgnd) + Vo - V(|x***")p(1 — isgnbd)} dz
R2
+ (1 —isgnb)s S v |22~ 2" dx = (1 — isgnb) S g0l 2h2n d.
R2 R2

Comparing the real parts we get

§ (W0l + [s] ol ~>" da
]R2
< dlp—n| | (Vo] o] |22 dw +2 | |g] o] [2|**" da.
R2 R2
Multiplying both sides by |s| and next applying twice the Young inequality
we get
5| § (V02 + Js] [o]?) 2] da
R2
< |8| S |VU’2’x‘2M—2ndx+23(n+1)2|8| S |U’2’x’2u—2n—2dx
R2 R2

N =

1
+2 § lg*|a 2" da + 5 sl | 0|22 da,
R2 R2
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hence
(23) Is| § (V0 + [l o) |2 2" da
R2
<2'(n+1)%s| | [Pl 22 da + 4 | |g?a " da.
R2 R2
We set

{(z,q) € R* x Qs; |s| [z < ar},
{(z,q) € R? x Qi; a1 < |s||z|* < az},
{(z,9) € R? x Qi3 az < |s][x|*},
where the numbers 0 < a1 < ag will be chosen later. For ¢ € Q; we write
di(q) = {z € B [s| of? < an},
da(q) == {z € R%; ay < |s||z]? < az},
ds(q) = {x € B%; a5 < |s]|af?).
For A > 0 and ¢q € ); we define
2 ={(z,q) e RZ x Qi; N|s||z|> < 1},  w(q) := {z € R%; \s||z|* < 1}.
Clearly,

Ay
Ag :
Az

(24) Ay C 2 for A€ (0,a5").

On A; we have the estimate |s| < aj|z|~2, thus

(25) S |s| |v|?|z|?* 22 dz dg < a; S lv|?|z |2 dx dg
A1 Al

<a | \\U(',Q)H?{g%(RZ) dg.
Qi

We deduce from the assumptions that for each ¢ € Q; the function v(-,q) is
in Hg_n(RQ) and satisfies the equation —Av = g — sv. The right hand side

is in Lo ;,—n,(R?), thus from Theorem 3 we get a constant co = co(u—n) such
that

26) o @)z w2y < o llg( DL, , @2 +colsl® I DI, w2

for each ¢ € Q;. Hence, from (25) we get

@27) sl v 22 du dg
Aq

<arco | | lgPlaf* " dadg+ areo | |s]? | [of?|2*" dadg.
Qi R? Qi R2
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On Aj we have |z|7% < ay!|s|, thus
(28) V [sl a2 2 dedg < ag" | |s]*[o]?|2[** 2" dz dg.
A3 AS
On Ay we have |z|~2 < a7!|s|, thus |z[2#~2n—2 < g4~ " |s|1—1 and
(29) V Isl ol =22 da dg < af ™" | |s* 4 |of* do dg
A2 A2
If we integrate (23) with respect to ¢ € @, then according to (27)—(29) we
get
V15! § (V0 + Is] Jul) 72" dz dg
Qi R2
<2 (n+1)%(ay" + aico) S |s|? S lv|?|z 2" dx dg
Qi R?
+(4+aico) S S 92| >~ da dg + 2* (n+1)%ay ! S ||t K | da dg.
Qi R? Az
We put a; := 2755 (n 4+ 1)72 and ag := 25(n + 1)? to obtain
(30) Is| § (V0P + [s| [o]*) |2 |*~2" da dg
Qi R2
<10 | | 10P P2 dudg + c(u,n) | [s2#of? da da.
Qi R2 Az

Let x = x(t) be a smooth cut-off function such that x(t) = 1if |[¢| < 1
and x(t) = 0if [t] > 2,0 < x(t) <1, [x'(t)] < 4. We write
(31) xa(@, ) = x(As| |z ).
Then xx(7,q) = 1 if |s|]z]> < A7t and xa(z,q) = 0 if |s||z|> > 2A~L
Clearly,
(32) [Vaxa(z, q) < 8Als| |].

We put ¢ := (1 +isgnb)vxi € H'(R?) in (22) to get

(1 —isgnb) S (IVv*X3 + 20xa Vv - Vxa + slv*x3) dx
R2
= (1 —isgnb) S gox3dx  for each q € Q.
R2
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Comparing the real parts we get
V(o + Il [0 )x3 de < 2v2 | [Vo] [Vl [ulxade + V2 | [g] [u]x3 d.
R2 R2 R2

Applying twice the Young inequality, we get

1
(33) [Vl + sl de < 5 § IVold do+4 § [Vxal*[of da
R2 R2 R2
+ 27 s o PRl 26 s | g PR d
R2 R2

On the support of x) we have |s|"#|x|?" 2+ < 2""HAA™™ hence

_ _ _ e (2\""
) 2 el | gl < 5 (3) ] PG
R2 R2

We set ¢ := (A/2)""#. Then (33) and (34) give the estimate
§ (V0 + Is] [o])x3 do

R2

o\"h .
<38 S |VX)\’2|U‘2 dr +4 <X> ’8’“ 1-n S |9|2X§‘$|2“ 2n do.
R2 R2

We multiply both sides by |s|""1~# and integrate with respect to g to get

Vst L (vl + 18] [v]*)x3 da dg
Qi R2

2\"H
<8 | JsHm | [VxaPlof? do dg + 4 <x> [ ] lo3 Lo da dg.
Qi R2 Q; R2
According to the definition of y and the property (32) we have |[Vy,|* <
27)\|s|, thus
§ 1s/" e § (V0 + Is] [o]*)x3 da dg
Qi R2

<210\ S || T2H S lv|? dx dgq
Qi w!/2(q)\w?(q)

2\ "M o
+4<X> Vgl a2 da dg.
Qi R2
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Hence multiplying both sides by (A/2)"#* we obtain

A\"TH _
(3) " lsts § v+ bl [0 o
Qi R2
10+4n— A\ 24n— 2
<L 200TTREN <2—2> S |s|=T R S |v|* dx dg
Qi wl/2(g)\w(q)

+4\ {193 |z da dg.
Qi R2

We assume that A < 2727" Thus we get

A e n—+2— 2
@) (5) Vs ) lPdedg
Qi w(q)

1 A\ n+2—p 2
<53 | Isl | wPdedg+ K,
Qi w2 (q)

where K := 4 SQ (g2 l9|?|z[*~2" dz dg. We denote by f()) the expression on
the Lh.s. of (35). Thus the above estimate has the form

(36) FO) < 5 FOV2) + K

and holds for each X in (0,271277), Iterating this estimate we get

(37) FO) < g FV2Y) + (2 2 MK

for each A € (0,27127") and k = 1,2,.... On the set w)‘/2k(q) we have
|s|PH < (28 /X)) #2242 hence

(38) FOV2Ey < §[sP | o2 da dg.
Qi R2
We fix \g € (0,27127™). Then from (24) we deduce that Ay C 2%, Applying

the estimate (30), the definition of f(Ag) and the estimates (37) and (38) we
obtain

{18l § (190 + [l Jo[?) |2 da dg
Qi R2

< 3K + c(u,n) S |s|" T2 1 w2 de dg < 3K + c(p,n) S |s|" 271 |v|? dx dg
Ao 0ro
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n—p q

sk eun) () 00 <R+ et (£ ) g SO0/

0

e 1 2 2 2u—2
o V1sf? § ol ="z g
Qi R2

<K+ du,m(%)

where ¢ = ¢(cg, Ao, pt, ). Now letting k — oo, we get

VIst § (170 + [s] [v]?) [z~ do dg < cK.
Qi R2

Finally, applying (26) we get the estimate (20). =

5. Proof of the main results

Proof of Theorem 1. The space D(]R?’) is dense in HZ(R?’), therefore it

is enough to show (1) for u € D(IR3) with a constant ¢ independent of u.
For u € D(R?), 2/ € R? and ¢ € R we denote by 7(z’, q) the partial Fourier
transform with respect to z, i.e.

oo

S u(z', 2)e 1 dz.

—00

(2, q) =

5~
3

Clearly, u satisfies the assumptions of Lemma 2 for (1. Thus we get a con-
stant ¢ = ¢(u, n) such that

39) | V(DR + laP Dyl + [ql*[@l?) ' [ d dg
R R2

<cl VIFP1/ P2 da dg,
R R2
where

f(x’, q) = —Ayt(z’,q) + su(2',q) and s=¢°
Applying the Hardy inequality ([Ha34, Theorem 330|) we get
(40)  §(@Pl2'|~* + [Dw@f 2’| 7222 dw < e | |D2al’la!| " da,
R2 R2

(41) S ’m?’x/|2u—2n—2 de < ¢ S |Dm/m2|x/|2u—2n dr
R2 R2
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for all ¢ € Q, where ¢ = ¢(u,n). Thus from (39)—(41) we obtain

VS UD2AR + laP Dol + (gl [l o' dr dg
RR2
+§ (@117 + 1D alla’| 72 + [aPfal || 2) |/ |2 dw dg
R R2
< cS S |ﬂ2|x’|2“_2" dx dq
RR2
for some ¢ = ¢(u,n). Applying the Parseval identity to both sides of the
above inequality we deduce the estimate (1) for all u € D(R?). =

Proof of Theorem 2. Because D(R3 x R, ) is dense in Ijﬁl(R?’ x Ry), it
is enough to show (2) for u € D(R3 x Ry). For ¢ = (q1,¢2) € R? we write

1 T 7 ,
o(a'q) = - | | (el z e 0N dz dt

where we set u = 0 for ¢ < 0. The function v(a’, q) satisfies the assumptions
of Lemma 2 for J2. Hence

[ § 102, @) + Is| [V, ) + [s]?[o(a’, ) 7] la|*~>" da'dgq
QR2
< el | g, q) 2l P+ do'dg,

QR2
where

9(2',q) == —Ayv(2,q) + sv(a’,q) and s =g +iga.

Utilizing the Hardy inequality as in (40)—(41) and next applying the Parseval
identity we deduce (2). m
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