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SOLVING VARIATIONAL INCLUSIONS

BY A MULTIPOINT ITERATION METHOD

UNDER CENTER-HÖLDER CONTINUITY CONDITIONS

Abstract. We prove the existence of a sequence (xk) satisfying 0 ∈ f(xk)

+
∑M

i=1 ai∇f(xk+βi(xk+1−xk))(xk+1−xk)+F (xk+1), where f is a function
whose second order Fréchet derivative ∇2f satifies a center-Hölder condition
and F is a set-valued map from a Banach space X to the subsets of a Banach
space Y . We show that the convergence of this method is superquadratic.

1. Introduction. In a previous paper [5], we used a multipoint iteration
formula to solve the “abstract” generalized equation

(1) 0 ∈ f(x) + F (x)

where f is a function from X into Y which possesses a second order Fréchet
derivative, F is a set-valued map from X to the subsets of Y with closed
graph, and X, Y are two Banach spaces. We obtained cubic convergence
when the second order Fréchet derivative is Lipschitz.

Recall that equation (1) is an abstract model for various problems:

• When F = {0}, (1) is an equation.
• When F is the positive orthant in R

m, (1) is a system of inequalities.
• When F is the normal cone to a convex and closed set in X, (1) may

represent variational inequalities.

Now, we recall some results obtained for the original problem. When
the Fréchet derivative ∇f is locally Lipschitz, Dontchev [6, 7] associated
to (1) a Newton-type method based on a partial linearization which provides
local quadratic convergence. Following his work, Pietrus [19] obtained a
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Newton-type sequence which converges whenever ∇f satisfies a Hölder-type
condition, and in [20] he proved the stability.

Using a second degree Taylor polynomial expansion of f at xk, Geoffroy,
Hilout and Pietrus [10] introduced a method involving the second order
Fréchet derivative, and when ∇2f is Lipschitz, they obtained cubic conver-
gence. In [11], they proved the stability of the method. In [12], Geoffroy and
Pietrus showed that the method is superquadratic when ∇2f satisfies the
Hölder condition. More recently, Jean-Alexis [15] presented a method with-
out second order derivative, which is also cubically convergent, and Geoffroy,
Jean-Alexis and Pietrus [13] showed the stability of the method when ∇2f
is Lipschitz. When ∇2f is Hölder, Pietrus and Jean-Alexis [16] obtained su-
perquadratic convergence. Our method generalizes this idea by taking more
iterates.

To solve (1), for a fixed integer M > 1 we consider a sequence (xk) ⊂ X
satisfying

(2) 0 ∈ f(xk) +
M
∑

i=1

ai∇f(xk + βi(xk+1 − xk))(xk+1 − xk) + F (xk+1)

where (ai)1≤i≤M and (βi)1≤i≤M are two sequences of real numbers satisfying

(3)
M
∑

i=1

ai = 1 and
M
∑

i=1

aiβi =
1

2
.

This method was inspired by some multipoint iteration formula given in [23]
for approximate f .

In [4], we showed the superquadratic convergence of the sequence de-
fined by (2) when the second order Fréchet derivative of f satisfies a Hölder
condition.

Our aim in this work is to study the case where ∇2f satisfies a Hölder
condition centerd at a solution x∗ of (1). Such conditions have been intro-
duced by Argyros [1] and are weaker than Hölder conditions.

The paper is organized as follows: in Section 2, we give some notations
and definitions, and recall a few preliminary results including a fixed-point
theorem (Lemma 2.1) which is the main tool for proving the existence and
convergence of the sequence defined by (2) to a solution of equation (1);
we also make some fundamental assumptions on f . Then, in Section 3, we
prove the existence and convergence of the sequence in question. Moreover,
we prove that the convergence of this method is superquadratic.

2. Notations, definitions and preliminary results. Let us recall
some notations:
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• The distance from a point x to a set A in a metric space (Z, ̺) is
defined by

dist(x, A) = inf{̺(x, y) : y ∈ A}.

• The excess e from the set A to the set C is given by

e(A, C) = sup{dist(x, A) : x ∈ C}.

• If Λ : X ⇉ Y is a set-valued map, we define

graphΛ = {(x, y) ∈ X × Y : y ∈ Λ(x)},

Λ−1(y) = {x ∈ X : y ∈ Λ(x)}.

• Br(x) is the closed ball centerd at x with radius r.
• The norms in the Banach spaces X and Y are both denoted by ‖ · ‖.

Now, we collect some results that we will need to prove our main theorem.

Definition 2.1. A set-valued Λ is pseudo-Lipschitz around (x0, y0) ∈
graphΛ with modulus M if there exist constants a and b such that

(4) sup
z∈Λ(y′)∩Ba(y0)

dist(z, Λ(y′′))≤M‖y′−y′′‖ for all y′ and y′′ in Bb(x0).

Using the excess, we have an equivalent definition replacing the inequal-
ity (4) by

(5) e(Λ(y′) ∩ Ba(y0), Λ(y′′)) ≤ M‖y′ − y′′‖ for all y′ and y′′ in Bb(x0).

The pseudo-Lipschitz property has been introduced by J.-P. Aubin and he
was the first to define this concept as a continuity property. Sometimes
this property is called “Aubin continuity”. Characterizations of the pseudo-
Lipschitz property have also been obtained by Rockafellar [21, 22] using the
Lipschitz continuity of the distance function dist(y, Λ(x)) around (x0, y0)
and by Mordukhovich [17, 18] using the concept of coderivative of a multi-
function. The Aubin continuity of F is equivalent to the metric regularity
of F−1, so more recently, Dontchev, Quincampoix and Zlateva [9] gave a
derivative criterion of metric regularity of set-valued mappings based on
work of Aubin and co-authors. For more details and applications of this
property, the reader is referred to [3, 2, 8].

Definition 2.2. We say that a function f from a metric space (X, ̺)
into a metric space (Y, d) is strictly stationary at x0 ∈ X if, for every ε > 0,
there exists δ > 0 such that

d(f(x1), f(x2)) ≤ ε̺(x1, x2) whenever ̺(xi, x0) < δ, i = 1, 2.

Definition 2.3. We say that a function f from X into Y admits a
second order Fréchet derivative ∇2f which satisfies the α-center-Hölder
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condition at x∗ on an open set Ω ⊂ X with constant K if

∀x ∈ Ω, ‖∇2f(x) −∇2f(x∗)‖ ≤ K‖x − x∗‖α.

We then also say that ∇2f is α-center-Hölder at x∗.

This concept is weaker than Hölder continuity. For more details on these
two concepts, the reader is referred to [1].

Lemma 2.1. Let (Z, ̺) be a complete metric space, let φ be a set-valued

map from Z into the closed subsets of Z, let η0 ∈ Z and let r and λ be such

that 0 ≤ λ < 1 and

(a) dist(η0, φ(η0)) ≤ r(1 − λ),
(b) e(φ(x1) ∩ Br(η0), φ(x2)) ≤ λ̺(x1, x2) for all x1, x2 ∈ Br(η0).

Then φ has a fixed point in Br(η0), that is, there exists x ∈ Br(η0) such

that x ∈ φ(x). If φ is single-valued , then x is the unique fixed point of φ in

Br(η0).

The proof of Lemma 2.1 is given in [8] employing the standard iteration
method for contracting mappings. This fixed point lemma is a generalization
of a fixed point theorem in Ioffe–Tikhomirov [14] where in (b), the excess e
is replaced by the Hausdorff distance.

In the remainder of this work, the distance ̺ in Lemma 2.1 is replaced
by the norm.

Lemma 2.2. Let f be a function whose second order Fréchet derivative

is α-center-Hölder at x∗ with constant K in an open set Ω ⊂ X. Then for

all x ∈ Ω,
∥

∥

∥

∥

f(x) − f(x∗) −∇f(x∗)(x − x∗) −
1

2
∇2f(x∗)(x − x∗)2

∥

∥

∥

∥

≤
K

(α + 1)(α + 2)
‖x − x∗‖2+α.

Lemma 2.2 is the same as in [5] with x1 = x∗ and the proof is given in
[12]; the above inequality is widely used in the present work.

We make the following assumptions:

(H1) ∇2f is α-center-Hölder (α ∈ ]0, 1]) with constant K2 in a neigh-
borhood Ω of x∗.

(H2) F is a set-valued map with closed graph.
(H3) (f + F )−1 is pseudo-Lipschitz around (0;x∗) with constants a, b

and modulus L.

Thanks to the assumption (H1), we can suppose without loss of gener-
ality that ∇2f is bounded on Ω by a constant K1, which implies that ∇f
is K1-Lipschitz on Ω.
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We also define the following functions:

Λk(x) = f(xk) +
M
∑

i=1

ai∇f(xk + βi(x − xk))(x − xk),(6)

Λx∗(x) = f(x∗) +
M
∑

i=1

ai∇f(x∗ + βi(x − x∗))(x − x∗),

Q(x) = Λx∗(x) + F (x)

and

Ψk(x) = Q−1(Λx∗(x) − Λk(x)).(7)

3. Description and convergence analysis. The outline of our method
is as follows:

• From a starting point x0 in a neighborhood of a solution x∗ of (1),
applying Lemma 2.1, we show that Ψ0 has a fixed point x1.

• From a current iterate xk and a function Ψk defined on X by (7),
applying Lemma 2.1, we obtain the existence of the next iterate xk+1

which is a fixed point of Ψk.

The main result of this study is as follows:

Theorem 3.1. Let x∗ be a solution of (1), f a function whose second

order Fréchet derivative satisfies (H1), and F : X ⇉ Y a set-valued function

which satisfies (H2)–(H3). Then for all c satisfying

c >
LK2

(1 + α)(2 + α)

(

1 + (2 + α)
M
∑

i=1

|ai| |1 − βi|
1+α

)

,

one can find δ > 0 such that for every starting point x0 ∈ Bδ(x
∗) with

x0 6= x∗, there exists a sequence (xk)k≥0 defined by (2) which satisfies

(8) ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2+α.

To prove the theorem, we need the following result given in [5]:

Proposition 3.1. The following are equivalent :

(a) [f(x∗) +
∑M

i=1 ai∇f(x∗ + βi(· − x∗))(· − x∗) + F (·)]−1 is pseudo-

Lipschitz around (y∗, x∗).
(b) (f + F )−1 is pseudo-Lipschitz around (y∗, x∗).

Proposition 3.2. Under the assumptions of Theorem 3.1, there exists

δ > 0 such that for all x0 ∈ Bδ(x
∗) and x0 6= x∗, the map Ψ0 admits a fixed

point x1 ∈ Bδ(x
∗).
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Proof of Proposition 3.2. We prove both assumptions (a) and (b) of
Lemma 2.1. The assumption (H3) gives constants a and b and we set

α1 =

√

2b

3K1
∑M

i=1 |ai|(1 + 2|βi|)
,

α2 = 1+α
√

1/C,

α3 = 2+α

√

b(1 + α)(2 + α)

K2(1 + (2 + α)
∑M

i=1 |ai| |1 − βi|1+α)
.

Fix δ > 0 such that

(9) δ < min{a, α1, α2, α3}.

From the definition of the excess e, we have

dist(x∗, Ψ0(x
∗)) ≤ e(Q−1(0) ∩ Bδ(x

∗), Q−1{Λx∗(x∗) − Λ0(x
∗)}).

Set
y∗ = Λx∗(x∗) − Λ0(x

∗).
We have

‖y∗‖ =
∥

∥

∥
f(x∗) − f(x0) −

M
∑

i=1

ai∇f(x0 + βi(x
∗ − x0))(x

∗ − x0)
∥

∥

∥

so

‖y∗‖ ≤

∥

∥

∥

∥

f(x∗) − f(x0) + ∇f(x∗)(x0 − x∗) +
1

2
∇2f(x∗)(x0 − x∗)2

∥

∥

∥

∥

+

∥

∥

∥

∥

−∇f(x∗)(x0 − x∗) −
M
∑

i=1

ai∇f(x0 + βi(x
∗ − x0))(x

∗ − x0)

−
1

2
∇2f(x∗)(x0 − x∗)2

∥

∥

∥

∥

=: A + B.

From Lemma 2.2, we obtain

(10) A ≤
K2

(1 + α)(2 + α)
‖x0 − x∗‖2+α.

On the other hand, by (3) we have

B =

∥

∥

∥

∥

M
∑

i=1

ai(∇f(x∗)−∇f(x0+βi(x
∗−x0)))(x

∗−x0)−
1

2
∇2f(x∗)(x∗−x0)

2

∥

∥

∥

∥

.

As
M
∑

i=1

ai(∇f(x∗) −∇f(x0 + βi(x
∗ − x0)))(x

∗ − x0)

=
M
∑

i=1

ai(1 − βi)

1\
0

∇2f(x∗ + t(x0 − x∗) + tβi(x
∗ − x0)) dt (x∗ − x0)

2,
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with the use of (H1) and (3) we have

B ≤
M
∑

i=1

|ai| |1 − βi|

1\
0

‖∇2f(x∗ + t(x0 − x∗) + tβi(x
∗ − x0)) −∇2f(x∗)‖ dt

× ‖x0 − x∗‖2

≤ K2

M
∑

i=1

|ai| |1 − βi|
1+α

1\
0

tα dt · ‖x0 − x∗‖2α,

and hence

(11) B ≤
K2

1 + α

M
∑

i=1

|ai| |1 − βi|
1+α‖x0 − x∗‖2+α.

According to (10) and (11), we have

(12) ‖y∗‖ ≤
K2

(1 + α)(2 + α)

(

1 + (2 + α)
M
∑

i=1

|ai| |1 − βi|
1+α

)

‖x0 − x∗‖2+α

and using condition (9), we obtain

‖y∗‖ ≤ b.

By hypothesis (H3), since Q−1 is L-pseudo-Lipschitz, we obtain

(13) dist(x∗, Ψ0(x
∗)) ≤ L‖Λx∗(x∗) − Λ0(x

∗)‖,

which yields

(14) dist(x∗, Ψ0(x
∗))

≤
LK2

(1 + α)(2 + α)

(

1 + (2 + α)
M
∑

i=1

|ai| |1 − βi|
1+α

)

‖x∗ − x0‖
2+α.

By setting

r = r0 = c‖x∗ − x0‖
2+α, λ = LK1δ

[

M
∑

i=1

|ai|(1 + 4|βi|)
]

,

where c is as in Theorem 3.1, one can find δ small enough such that λ ∈ ]0, 1[
and

c(1 − λ) >
LK2

(1 + α)(2 + α)

(

1 + (2 + α)

M
∑

i=1

|ai| |1 − βi|
1+α

)

,

and assumption (a) in Lemma 2.1 is satisfied.
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Note that the choice of r0 implies r0 ≤ δ < a.

Now, let us show that assumption (b) is also satified. Let x ∈ Bδ(x
∗)

and set z = Λx∗(x) − Λ0(x). We have

(15) ‖z‖ ≤ ‖f(x∗) − f(x0) −
M
∑

i=1

ai∇f(x0 + βi(x − x0))(x
∗ − x0)‖

+
∥

∥

∥

(

M
∑

i=1

ai∇f(x∗ + βi(x − x∗))

−
M
∑

i=1

ai∇f(x0 + βi(x − x0))
)

(x − x∗)
∥

∥

∥
=: D + E.

With the help of (3), we have

D =
∥

∥

∥

M
∑

i=1

ai(f(x∗) − f(x0) −∇f(x0 + βi(x − x0))(x
∗ − x0))

∥

∥

∥

=
∥

∥

∥

M
∑

i=1

ai

1\
0

(∇f(x0 + t(x∗ − x0)) −∇f(x0 + βi(x − x0))) dt (x∗ − x0)
∥

∥

∥
.

Thus,

D ≤
M
∑

i=1

|ai| ‖x
∗ − x0‖

1\
0

‖∇f(x0 + t(x∗ − x0)) −∇f(x0 + βi(x − x0))‖ dt.

Since x and x0 belong to Bδ(x
∗), we obtain

(16) D ≤
K1δ

2

2

M
∑

i=1

|ai|(1 + 4|βi|).

In a similar way, we obtain

(17) E ≤ δ2K1

M
∑

i=1

|ai| |1 − βi| ≤ δ2K1

M
∑

i=1

|ai|(1 + |βi|).

From (15)–(17), we obtain

‖z‖ ≤
3K1δ

2

2

M
∑

i=1

|ai|(1 + 2|βi|),

and the inequality (9) implies ‖z‖ ≤ b.
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It follows that, for all x′, x′′ ∈ Br0
(x∗), by setting F = e(Ψ0(x

′) ∩
Br0

(x∗), Ψ0(x
′′)), we have

F ≤ e(Ψ0(x
′) ∩ Bδ(x

∗), Ψ0(x
′′))

≤ L
∥

∥

∥

M
∑

i=1

ai∇f(x∗ + βi(x
′ − x∗))(x′ − x∗)

−

M
∑

i=1

ai∇f(x0 + βi(x
′ − x0))(x

′ − x0)

−
M
∑

i=1

ai∇f(x∗ + βi(x
′′ − x∗))(x′′ − x∗)

+
M
∑

i=1

ai∇f(x0 + βi(x
′′ − x0))(x

′′ − x0)
∥

∥

∥
.

Thus

F ≤ L
∥

∥

∥

M
∑

i=1

ai∇f(x∗ + βi(x
′ − x∗))(x′ − x′′)

+
M
∑

i=1

ai∇f(x∗ + βi(x
′ − x∗))(x′′ − x∗)

−

M
∑

i=1

ai∇f(x∗ + βi(x
′′ − x∗))(x′′ − x∗)

−
M
∑

i=1

ai∇f(x0 + βi(x
′ − x0))(x

′ − x′′)

−
M
∑

i=1

ai∇f(x0 + βi(x
′ − x0))(x

′′ − x0)

+

M
∑

i=1

ai∇f(x0 + βi(x
′′ − x0))(x

′′ − x0)
∥

∥

∥
,

which yields

F ≤L
∥

∥

∥

(

M
∑

i=1

ai∇f(x∗+βi(x
′−x∗))−

M
∑

i=1

ai∇f(x0 +βi(x
′−x0))

)

(x′−x′′)
∥

∥

∥

+L
∥

∥

∥

(

M
∑

i=1

ai∇f(x∗+βi(x
′−x∗))−

M
∑

i=1

ai∇f(x∗+βi(x
′′−x∗))

)

(x′′−x∗)
∥

∥

∥

+L
∥

∥

∥

(

M
∑

i=1

ai∇f(x0 +βi(x
′′−x0))−

M
∑

i=1

ai∇f(x0 +βi(x
′−x0))

)

(x′′−x0)
∥

∥

∥
.
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The last inequality and the choice of λ imply

F ≤ LK1δ
[

M
∑

i=1

|ai|(1 + 4|βi|)
]

‖x′ − x′′‖ ≤ λ‖x′ − x′′‖,

so
e(Ψ0(x) ∩ Br0

(x∗), Ψ0(x
′)) ≤ λ‖x′ − x′′‖,

and condition (b) in Lemma 2.1 is satisfied.
Applying this lemma we deduce the existence of a fixed point x1 ∈

Br0
(x∗), which moreover satisfies inequality (8).
Proceeding by induction, suppose that xk ∈ Brk−1

(x∗); taking η0 = x∗

and setting rk = c‖xk − x∗‖2+α, we obtain the existence of a fixed point
xk+1 ∈ Brk

(x∗) for Ψk, which implies

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2+α.

Continuing this process, we obtain the existence of a sequence (xk)k≥0

with superquadratic convergence to x∗, which completes the proof of Theo-
rem 3.1.

Concluding remarks. Since the constant of Hölder continuity in [4] is
greater than the constant of center-Hölder continuity, for some choice of the
numbers βi, it seems that the lower bound obtained in [4, Theorem 3.1] is
greater than the lower bound obtained in the present paper.
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Hölder case, submitted.
[5] C. Cabuzel and A. Pietrus, Solving a variational inclusion by a method obtained

using a multipoint iteration formula, submitted.
[6] A. L. Dontchev, Local convergence of the Newton method for generalized equations,

C. R. Acad. Sci. Paris Sér. I 322 (1996), 327–331.
[7] —, Uniform convergence of the Newton method for Aubin continuous maps, Serdica

Math. J. 22 (1996), 385–398.
[8] A. L. Dontchev and W. W. Hager, An inverse function theorem for set-valued maps,

Proc. Amer. Math. Soc. 121 (1994), 481–489.
[9] A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regu-

larity, J. Convex Anal. 13 (2006), 281–297.
[10] M. H. Geoffroy, S. Hilout and A. Pietrus, Acceleration of convergence in Dontchev’s

iterative method for solving variational inclusions, Serdica Math. J. 29 (2003), 45–54.
[11] —, —, —, Stability of a cubically convergent method for generalized equations, Set-

Valued Anal. 14 (2006), 41–54.



Solving variational inclusions by a multipoint iteration method 503

[12] M. H. Geoffroy and A. Pietrus, A superquadratic method for solving generalized
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