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EXISTENCE OF SOLUTIONS TO
THE (rot, div)-SYSTEM IN Lp-WEIGHTED SPACES

Abstract. The existence of solutions to the elliptic problem rot v = w,
div v = 0 in a bounded domain Ω ⊂ R3, v · n̄|S = 0, S = ∂Ω in weighted
Lp-Sobolev spaces is proved. It is assumed that an axis L crosses Ω and
the weight is a negative power function of the distance to the axis. The
main part of the proof is devoted to examining solutions of the problem
in a neighbourhood of L. The existence in Ω follows from the technique of
regularization.

1. Introduction. We consider the elliptic boundary value problem

(1.1)
rot v = w in Ω,

div v = 0 in Ω,

v · n̄ = b on S,

where Ω ⊂ R3 is a bounded domain, S = ∂Ω, S ∈ C2, n̄ is the unit outward
vector normal to S and the dot denotes the scalar product in R3.

For the solvability of problem (1.1), the following compatibility conditions
have to be satisfied: �

S

b(s) ds = 0,(1.2)

divw = 0.(1.3)

Let L be an axis passing through Ω.
Our aim is to prove the existence of solutions to problem (1.1) in weighted

Sobolev spaces with the weight equal to a power function of the distance to L.
Therefore, we introduce the weighted Sobolev space V k

p,−µ(Ω) with the finite
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norm

‖u‖V kp,−µ(Ω) =
(∑
|α|≤k

�

Ω

|Dα
xu(x)|p%(x)p(−µ−k+|α|) dx

)1/p
<∞,

where %(x) = dist{x, L}, p ∈ [1,∞), µ ∈ R+, k ∈ N ∪ {0}. Moreover, we
introduce the notation

Hk
−µ(Ω) = V k

2,−µ(Ω), Lp,−µ(Ω) = V 0
p,−µ(Ω).

The main result of this paper is the following

Theorem 1.1. Assume the compatibility conditions (1.2), (1.3). Assume
that w ∈ V k

p,−µ(Ω), b ∈ V k+1−1/p
p,−µ (S), µ ∈ R+, µ 6∈ Z, k ∈ N∪{0}, p ∈ [2,∞),

S ∈ C2. Then there exists a solution to problem (1.1) such that v ∈ V k+1
p,−µ(Ω)

and

(1.4) ‖v‖V k+1
p,−µ(Ω) ≤ c(‖w‖V kp,−µ(Ω) + ‖b‖

V
k+1−1/p
p,−µ (S)

),

where c does not depend on v, w, b.

To prove Theorem 1.1 we need [4] and the following result.

Theorem 1.2 (see [7]). Assume the compatibility conditions (1.2), (1.3).
Assume that w ∈ Hk

−µ(Ω), b ∈ Hk+1/2
−µ (S), µ ∈ R+, µ 6∈ Z, k ∈ N ∪ {0}.

Then there exists a solution to problem (1.1) such that

(1.5) ‖v‖Hk+1
−µ (Ω) ≤ c(‖w‖Hk

−µ(Ω) + ‖b‖
H
k+1/2
−µ (S)

),

where c does not depend on v, w, b.

The main step in the proofs of Theorems 1.1, 1.2 is to obtain an estimate
in weighted spaces in neighbourhoods of points of the axis L because esti-
mates in neighbourhoods at a positive distance to the axis are well known
(see [1, 6]). We concentrate on local estimates, and a global estimate follows
by applying the idea of regularization (see [7, 3]). Restricting our consider-
ations to neighbourhoods of points of L we showed in [7] that it is sufficient
to examine problem (1.1) in neighbourhoods of interior points of Ω ∩ L. In
this case problem (1.1) can be replaced by the elliptic problem (see [7])

(1.6)
−∆u = f in CR,a,

u = 0 on ∂CR,a,

where CR,a is an axially symmetric cylinder with axis of symmetry L located
in Ω. Introducing the cylindrical coordinates r, ϕ, z by relations x1 = r cosϕ,
x2 = r sinϕ, x3 = z, where x1, x2, x3 are the Cartesian coordinates such as
L is the x3-axis we define

CR,a = {x ∈ R3 : r < R, −a < z < a, ϕ ∈ [0, 2π]}, CR,a ∩ S = ∅,
and the origin of the Cartesian coordinates is at an interior point of Ω ∩ L.
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Now we describe the proofs of Theorems 1.1 and 1.2 underlining their dif-
ferences. In [7] we examine problem (1.6) by applying the Fourier transforms
and using the norms of weighted spaces also in terms of the Fourier trans-
forms. This is connected with the fact that the L2-theory is developed in [7].
In this paper we improve the regularity of solutions from [7] by applying
the local regularization method (see [5]) and by using the Paley–Littlewood
partition of unity so the methods of this paper are totally different from
those in [7].

Up to now Theorem 1.1 has not been applied in proofs of existence of
regular solutions to the Navier–Stokes equations (see references in [7]). How-
ever, in more delicate proofs based on the Lp-approach Theorem 1.1 will be
needed.

2. Notation. Using the cylindrical coordinates we introduce the weight-
ed spaces

V k
p,−µ(R3) =

{
u :
(∑
|α|≤k

�

R3

|Dα
xu(x)|prp(−µ−k+|α|) dx

)1/p
<∞

}
.

3. Localization of problem (1.1). We are looking for solutions to
problem (1.1) in the form (see [7])

(3.1) v = ∇ϕ+ u,

where ϕ is a solution to the problem

(3.2) ∆ϕ = 0, n̄ · ∇ϕ|S = b

and u satisfies

(3.3)
rotu = w in Ω,

div u = 0 in Ω,

u · n̄|S = 0.

From [2] we know that (3.3)2,3 imply the existence of a vector field e such
that

(3.4) u = rot e, div e = 0, e · τ̄ |S = 0,

where τ̄ is a tangent vector to S.
In view of (3.4) problem (3.3) takes the form

(3.5) −∆e = w, e · τ̄ |S = 0, div e|S = 0.

Localizing problems (3.2) and (3.5) by a smooth function from a partition of
unity we obtain problem (1.6). The lower order terms which appear in this
procedure will be estimated by applying the regularization method.
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4. Regularity near the axis L in the Lp-approach. After localiza-
tion of problems (3.2) and (3.5) to a neighbourhood of an internal point of
L or a point where L meets S we can replace them by the problem

(4.1)
−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω = CR,a.

Lemma 4.1 (local regularity; see [5]). Let Br = {x3 ∈ R : |x3| < r},
ξi = ξi(x′), x′ = (x1, x2), ξi ∈ C∞0 (R2), i = 1, 2, ξ1ξ2 = ξ1, supp ξ2 ⊂ {x′ :
c1 < |x′| < c2}. Then for every u ∈ W l+2

p (R2 × B2) the following inequality
holds:

(4.2) ‖ξ1u‖W l+2
p (R2×B1) ≤ c(‖ξ2∆u‖W l

p(R2×B2) + ‖ξ2u‖Lp1 (R2×B2)),

for any p1 ∈ [1,∞], where c does not depend on u.

Let us introduce partitions of unity {ζj}∞j=−∞, {σj}∞j=−∞ such that

supp ζj ⊂ {x′ : 2j−1 < |x′| < 2j+1},
suppσj ⊂ {x′ : 2j−2 < |x′| < 2j+2},

σj , ζj ∈ C∞(R2), ζjσj = ζj , and for all multiindices α,

|Dαζj |+ |Dασj | ≤ cα2−j|α|.

Lemma 4.2. Let β∈R. Then for any u∈W l+2
p ({2j−2 < |x′| < 2j+2}×R1)

the following inequality holds,

(4.3) ‖ζju‖V l+2
p,β (R2×R1) ≤ c(‖σj∆u‖V lp,β(R2×R1) + ‖σju‖Lp,β−l−2(R2×R1)),

where c does not depend on u and j.

Proof. Let K = {x′ : 1 < |x′| < 2}, B = {x3 : |x3| < 2}, Kµ = {x′ : 2µ <
|x′| < 2µ+1}, Bµ = {x3 : |x3| < 2µ+1}. From (4.2) we have

l+2∑
|α|=0

‖Dα(ζju)‖Lp(K×B) ≤ c
l∑

|α|=0

‖Dα(σj∆u)‖Lp(2K×2B)(4.4)

+ c‖σju‖Lp(2K×2B),

where 2K = {x′ : 1/2 < |x′| < 4}, 2B = {x3 : |x3| < 4}. In view of scaling
x 7→ 2µx we obtain

(4.5)
l+2∑
|α|=0

2µ(|α|−2)‖Dα(ζju)‖Lp(Kµ×Bµ)

≤ c
l∑

|α|=0

2µ|α|‖Dασj∆u‖Lp(2Kµ×2Bµ) + c2−2µ‖σju‖Lp(2Kµ×2Bµ).
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Multiplying (4.5) by 2(β−l)µ, taking the pth power, summing over µ and
using that r ∼ 2µ on the set Kµ, we obtain

(4.6)
l+2∑
|α|=0

‖rβ−l−2+|α|Dα(ζju)‖Lp(R3)

≤ c
l∑

|α|=0

‖rβ−l+|α|Dα(σj∆u)‖Lp(R3) + c‖rβ−l−2σju‖Lp(R3).

This implies (4.3) and concludes the proof.

Summing up (4.3) with respect to j yields

(4.7) ‖u‖V l+2
p,β (R3) ≤ c‖∆u‖V lp,β(R3) + c‖u‖V 0

p,β−l−2(R3).

Let
P (∂x′ , ∂x3) = −∆, P (∂x′ , η) = −∆′ + η2,

where ∆′ = ∂2
x1

+ ∂2
x2
. Let us denote by A(η) : V l+2

p,β (R2) → V l
p,β(R2) the

operator of the problem

(4.8)
P (∂x′ , η)u = f in R2,

u = 0 on S1
R,

where S1
R = {x′ : |x′| = R}.

First, we consider the problem

(4.9)
P (∂x′ , 0)u = f in R2,

u = 0 on S1
R.

Passing to the polar coordinates (r, ϕ), next to the variable τ = − ln r and
applying the Fourier transform with respect to τ we have

P̄ (∂ϕ, λ)ũ = ẽ2τf,

u|ϕ=0 = u|ϕ=2π,

u,ϕ|ϕ=0 = u,ϕ|ϕ=2π,

(4.10)

and
ũ(λ, ϕ) =

�

R1

u(τ, ϕ)e−iλτ dτ.

On the line imλ = β − 1 6∈ Z there is no eigenvalue of problem (4.10).
Moreover, kerA(η) and cokerA(η) are trivial in the spaces V 0

2,β(R2), β 6∈ Z.
Thus the operator A(η)−1 is defined in V 0

2,β(R2), β 6∈ Z.
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Lemma 4.3. For any η ∈ R1 \ {0} and any f ∈ V 0
2,β(R2), β 6∈ Z, the

following inequality holds:

(4.11)
2∑

ν=0

|η|ν‖∂γηA(η)−1f‖V 2−ν
2,β (R2) ≤ c|η|

−γ‖f‖V 0
2,β(R2).

Proof. We have

∂γηA(η)−1 =
∑

1≤q≤γ

∑
α1+···+αq=γ

cα1...αqA
−1∂α1

η PA−1∂α2
η P . . . A−1∂

αq
η PA−1,

where cα1...αq are some constant coefficients. Since

2∑
ν=0

|η|ν‖u‖V 2−ν
2,β (R2) ≤ c‖P (∂x′ , η)u‖V 0

2,β(R2),

and

‖∂γηP (∂x′ , η)A(η)−1f‖V 0
2,β(R2) ≤ c

2−γ∑
ν=0

|η|ν‖A(η)−1f‖
V 2−γ−ν
2,β (R2)

,

we obtain

‖∂γηP (∂x′ , η)A(η)−1f‖V 0
2,β(R2) ≤ c|η|−γ‖f‖V 0

2,β(R2).

Therefore (4.11) is proved. This concludes the proof.

Lemma 4.4. Let the assumptions of Lemma 4.3 be satisfied. Let σµ, ζν be
the functions introduced after Lemma 4.1. Then for all η 6= 0 the estimate

(4.12) ‖σµA(η)−1ζν‖V 0
2,β(R2)→V 0

2,β(R2) ≤ c2−ε|µ−ν|+2µ

holds for β 6∈ Z and ε > 0 sufficiently small.

Proof. Observe that the operator σµA(η)−1ζν maps functions with sup-
port in supp ζν to functions with support in suppσµ.

First we examine the operator r±εA(η)r∓ε. Since A(η) = −∆′ + η2 and
A(η) maps V 2

2,β(R2) into V 0
2,β(R2) we have for small ε,

‖r±εA(η)r∓εu‖V 0
2,β(R2) = ‖r±ε(−∆′ + η2)r∓εu‖V 0

2,β(R2)

≤ ‖(−∆′ + η2)u‖V 0
2,β(R2) + ε‖r∓εr±ε−1∇′r∇′u‖V 0

2,β(R2)

+ ε(1− ε)‖r∓εr±ε−2|∇′r|2u‖V 0
2,β(R2) + ε‖r∓εr±ε−1∆′ru‖V 0

2,β(R2)

≤ ‖A(η)u‖V 0
2,β(R2) + cε‖u‖V 1

2,β−1(R2).
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Conversely,

‖A(η)u‖V 0
2,β(R2) = ‖r∓εr±εA(η)u‖V 0

2,β(R2)

= ‖r∓εr±ε(−∆′ + η2)u‖V 0
2,β(R2)

≤ ‖r∓ε(−∆′ + η2)r±εu‖V 0
2,β(R2) + cε‖u‖V 1

2,β−1(R2).

Hence for small ε, the norms of the operators r±εA(η)r∓ε and A(η) are close
to each other because∣∣ sup
‖u‖

V 2
2,β

(R2)
≤1
‖r±εA(η)r∓εu‖V 0

2,β(R2) − sup
‖u‖

V 2
2,β

(R2)
≤1
‖A(η)u‖V 0

2,β(R2)

∣∣ ≤ cε.
Therefore for β ± ε 6∈ Z and ε sufficiently small the operator A(η) is an
isomorphism from V 2

2,β±ε(R2) into V 0
2,β±ε(R2). Let uµ = uσµ and fν = fζν .

Then we examine the problem

(4.13) P (∂x′ , η)u = fν .

Since the operator A(η)−1 is defined we have

(4.14) uµ = σµA
−1(η)fν .

In view of (4.11) we obtain

‖uµ‖V 2
2,β(R2) ≤ c2εµ‖uµ‖V 2

2,β−ε(R2)

≤ c2εµ‖fν‖V 0
2,β−ε(R2) ≤ c2ε(µ−ν)‖fν‖V 0

2,β(R2).

Since
‖uµ‖V 2

2,β(R2) ≥ c2−2µ‖uµ‖V 0
2,β(R2)

we obtain
‖uµ‖V 0

2,µ(R2) ≤ c2ε(µ−ν)+2µ‖fν‖V 0
2,β(R2),

where for µ > ν we replace ε by −ε, ε > 0 and for µ < ν we take ε. Then
we have

(4.15) ‖uµ‖V 0
2,β(R2) ≤ c2−ε|µ−ν|+2µ‖fν‖V 0

2,β(R2).

From (4.15) we derive (4.12). This concludes the proof.

Lemma 4.5. Let the assumptions of Lemma 4.4 be satisfied. Then the
operator P of the problem

P (∂x′ , ∂x3)u = f,

u|SR = 0
(4.16)

is an isomorphism

(4.17) P : V 2
2,β(R3)→ V 0

2,β(R3).



134 W. M. Zajączkowski

The lemma follows from the estimate

‖u‖V 2
2,β(R3) ≤ c‖f‖V 0

2,β(R3), β 6∈ Z,

and the fact that kerP in V 2
2,β(R3) and cokerP in V 0

2,β(R3) are trivial.
To prove the next lemma we need the following Marcinkiewicz–Mikhlin

type result (see [2, Ch. 11, §11]):

Lemma 4.6. Let Lp(Rd;H) be the space of functions with the finite norm

‖f‖Lp(Rd;H) =
( �

Rd
‖f(z)‖pH dz

)1/p
<∞,

where H is a Hilbert space. Let M(ξ), ξ ∈ Rd, be a bounded function in Rd

acting as a multiplier. Let for s = 0, . . . , d, ik 6= il,

|ξ|s
∥∥∥∥ ∂sM

∂ξi1 . . . ∂ξis
(ξ)
∥∥∥∥
H→H

≤ const.

Then F−1
ξ→zM(ξ)Fz→ξ, where F is the Fourier transform in Rd, is a contin-

uous operator in Lp(Rd;H).

Lemma 4.7. Let the assumptions of Lemma 4.3 be satisfied. Let uν ∈
V 2

2,β(R3) be a solution to the problem

P (∂x′ , ∂x3)uν = ζνf.

Then

(4.18)
�

R1

( �

R2

r2β|σµ(x′)uν(x′, x3)|2 dx′
)p/2

dx3

≤ c2−pε|µ−ν|+2µp
�

R1

( �

R2

r2β|ζν(x′)f(x′, x3)|2 dx′
)p/2

dx3,

where c does not depend on u and f .

Proof. We have

uν = F−1
η→x3

A(η)−1Fx3→ηζνf,

where F is the Fourier transform in R1.
By Lemma 4.6 F−1

η→x3
M(η)Fx3→η, where M(η) = σµA(η)−1ζν , is a con-

tinuous operator in Lp(R1;V 0
2,β(R2)). Then by (4.12) we obtain (4.18). This

concludes the proof.

Lemma 4.8. Let the assumptions of Lemma 4.3 be satisfied. Let uν be
defined in the assumptions of Lemma 4.7. Then for p ≥ 2 we have
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(4.19)
�

R3

rp(β−1)−2|ζµ(x′)uν(x′, x3)|p dx′ dx3

≤ c2−ε|µ−ν|p
�

R3

rp(β+1)−2|ζν(x′)f(x′, x3)|p dx′ dx3,

where c does not depend on u and f .

Proof. By the Hölder inequality the r.h.s. of (4.18) is estimated by

(4.20) c2−pε|µ−ν|+2µp
�

R1

dx3

[
|supp ζν |(p−2)/p

( �

R2

rpβ|ζνf |p dx′
)2/p]p/2

≤ c2−pε|µ−ν|+2µp
�

R1

dx3 2ν(p−2)
�

R2

rpβ|ζνf |p dx′

≤ c2−pε|µ−ν|+2µp
�

R1

dx3

�

R2

rp(β+1)−2|ζνf |p dx′,

where we used that on supp ζν we have r ∈ (2ν−1, 2ν+1).
Divide R1 into segments Qj of length 2µ each. By 2Qj we denote a

segment with length 2µ+1 which contains Qj .
By the Hölder inequality we have

�

2Qj

�

R2

|σµuν | dx′ dx3 ≤
�

2Qj

|suppσµ|1/2
( �

R2

|σµuν |2 dx′
)1/2

dx3

≤ c
�

2Qj

2µ dx3

( �

R2

|σµuν |2 dx′
)1/2

≡ I1,

where we used that

(4.21) suppσµ ⊂ {x′ ∈ R2 : 2µ−2 < |x′| < 2µ+2}.
Continuing,

I1 ≤ c
�

2Qj

2µ−βµ
( �

R2

r2β|σµuν |2 dx′
)1/2

dx3 ≡ I2,

where we used (4.21) again. Continuing,( �

2Qj

�

R2

|σµuν | dx′ dx3

)p
≤ 2(1−β)µp

[ �

2Qj

dx3

( �

R2

r2β|σµuν |2 dx′
)1/2]p

≤ c2(1−β)µp
( �

2Qj

1p
′
dx3

)p/p′( �

2Qj

dx3

( �

R2

r2β|σµuν |2 dx′
)p/2)

≡ I3,

where 1/p+ 1/p′ = 1, p/p′ = p− 1. Hence, we have

I3 = c2(1−β)µp+µ(p−1)
�

2Qj

dx3

( �

R3

r2β|σµuν |2 dx′
)p/2

.
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Therefore, we get
(4.22)( �

2Qj

�

R2

|σµuν | dx′ dx3

)p
≤ c2−µp(β−2)−µ

�

2Qj

dx3

( �

R2

r2β|σµuν |2 dx′
)p/2

.

From Lemma 4.1 for |µ− ν| > 3 we obtain the inequality

(4.23)
�

Qj

�

R2

|ζµuν |p dx′ dx3 ≤ c23µ(1−p)
( �

2Qj

�

R2

|σµuν | dx′ dx3

)p
by a scaling argument.

From (4.22) and (4.23) and for |µ− ν| > 3 we obtain

(4.24)
�

R3

|ζµuν |p dx′ dx3 ≤ c22µ−µp(β−1)
�

R

( �

R2

r2β|σµuν |2 dx′
)p/2

dx3.

In the case |µ− ν| ≤ 3 we have to add on the r.h.s. of (4.22) the expression

c22µp
�

2Qj

�

R2

|ζνf |p dx′ dx3.

Hence, in this case, we have to add the same term on the r.h.s. of (4.24).
Using (4.18) we obtain (4.19). This concludes the proof.

To prove the next lemma we need a result on operators in Banach spaces.
Let E0(R3), E1(R3) be Banach spaces of functions defined on R3, closed under
pointwise multiplication with functions from C∞0 (R2 \ {0}). Let {ζj}∞j=−∞
be the partition of unity described above.

Assume that there exist p and q, 1 ≤ p ≤ q ≤ ∞, such that for all u ∈ E0,
v ∈ E1 the following inequalities hold:

‖u‖E0 ≤ c
( ∞∑
j=−∞

‖ζju‖qE0
)1/q

,(4.25)

‖v‖E1 ≥ c
( ∞∑
j=−∞

‖ζjv‖pE1
)1/p

,(4.26)

where ‖ · ‖Ei is the norm of Ei, i = 0, 1.

Lemma 4.9. Let θ : E1 → E0 be a linear operator defined on functions
with compact supports such that for some ε > 0 and all µ, ν ∈ Z,

(4.27) ‖ζµθζνv‖E0 ≤ ce−ε|µ−ν|‖ζνv‖E1
for all v ∈ E1(R3). Then for any v ∈ E1(R3) with compact support,

(4.28) ‖θv‖E0(R3) ≤ c‖v‖E1(R3),

where c does not depend on v.
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Proof. From (4.25),

‖θv‖E0(R3) =
∥∥∥θ( ∞∑

ν=−∞
ζνv
)∥∥∥
E0(R3)

≤ c
( ∞∑
µ=−∞

∥∥∥ ∞∑
ν=−∞

ξµθξνv
∥∥∥q
E0(R3)

)1/q

≤ c
[ ∞∑
µ=−∞

( ∞∑
ν=−∞

‖ξµθξνv‖E0(R3)

)q]1/q
.

Applying (4.27) yields

‖θv‖E0(R3) ≤ c
∞∑

µ=−∞

( ∞∑
ν=−∞

e−ε|µ−ν|‖ζνv‖E1(R3)

)q]1/q
.

Since the operator of discrete convolution with the kernel {e−|j|ε}∞j=−∞ is
continuous from lp to lq for q ≥ p, we have

‖θv‖E0(R3) ≤ c
( ∞∑
ν=−∞

‖ζνv‖pE1(R3)

)1/p
.

Using now (4.26) we obtain (4.28). This concludes the proof.

Lemma 4.10. Let the assumptions of Lemma 4.4 be satisfied. Let u ∈
V 2

2,β(R3) be a solution of problem (4.16). Then for p ≥ 2 the inequality

(4.29)
�

R3

rp(β−1)−2|u(x′, x3)|p dx′ dx3 ≤ c
�

R3

rp(β+1)−2|f(x′, x3)|p dx′ dx3

is valid, where c does not depend on u and f .

Proof. We apply Lemma 4.9 to the inequality of Lemma 4.8 with q = p,
E0 = V 0

p,β−1−2/p(R
3), E1 = V 0

p,β+1−2/p(R
3) and θ : V 0

2,β(R3) → V 2
2,β(R3)

is the inverse to the operator of problem (4.16). Then (4.19) becomes the
inequality (4.27). Then Lemma 4.9 implies (4.28), which is exactly (4.29).
This concludes the proof.

Lemma 4.11. Let the assumptions of Lemma 4.4 hold. Let f ∈ V l
2,κ(R3)∩

V l
p,κ(R3), p ≥ 2. Then for solutions u ∈ V l+2

2,κ (R3) of problem (4.16) the
following inequality is valid:

(4.30) ‖u‖V l+2
p,κ (R3) ≤ c‖f‖V lp,κ(R3),

where c does not depend on u and f .

Proof. From (4.7) with β = κ we have

‖u‖V l+2
p,κ (R3) ≤ c(‖f‖V lp,κ(R3) + ‖u‖V 0

p,κ−l−2(R3)).

From Lemma 4.10 and from the assumption that f ∈ V 0
p,κ−l we have p(β+1)

− 2 = p(κ− l), so β = κ− l− 1 + 2/p, so p(β− 1)− 2 = p(κ− l− 2). Hence,
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‖u‖V 0
p,κ−l−2(R3) ≤ c‖f‖V 0

p,κ−l(R3) ≤ c‖f‖V lp,κ(R3).

Thus (4.30) holds. This concludes the proof.

Theorem 4.1. Let Imλ = β − 1 6∈ Z. Let f ∈ V l
p,β(R3), l ∈ N, p ∈

(1,∞), β ∈ R. Then there exists a solution to problem (4.1) such that u ∈
V l+2
p,β (R3) and

(4.31) ‖u‖V l+2
p,β (R3) ≤ c‖f‖V lp,β(R3),

where c does not depend on u and f .

Proof. Let {fν} be a sequence of smooth functions with compact support
in R3 \ L which converges to f in V l

p,β(R3). By Lemma 4.5 there exists a
solution uν ∈ V l+2

2,β (R3) to problem (4.1) with r.h.s. fν . From (4.30) the
sequence {uν} converges in V l+2

p,β (R3). This concludes the proof.

5. Existence in a bounded domain

Proof of Theorem 1.1. To prove Theorem 1.1 we introduce a partition
of unity (see [7]). We distinguish four types of subdomains: Ω(1)—near an
interior point of Ω ∩ L, Ω(2)—near the point where L meets S, Ω(3)—near
an interior point of Ω but at a positive distance from L, Ω(4)—near a point
of S at a positive distance from L. With each subdomain Ω(k), k = 1, 2, 3, 4,
we connect a smooth function ζ(k) which is equal to 1 in w̄(k) ⊂ Ω(k) and
vanishes outside of Ω(k).

We shall restrict our considerations to problem (3.2) only, because prob-
lem (3.5) can be treated in the same way.

Let us extend the boundary condition (3.2)2 by introducing a function b̃
such that

(5.1) n̄ · ∇b̃ = b.

Then the function

(5.2) u = ϕ− b̃

is a solution to the problem

∆u = f in Ω,

n̄ · ∇u|S = 0,
(5.3)

where f = −∆b̃. Multiplying (5.3)1 by ζ(1) and defining u(1) = uζ(1), f (1) =
f · ζ(1) we obtain, instead of (5.3), the problem

∆u(1) = f (1) + 2∇ζ(1)∇u+∆ζ(1)u,

u(1)|∂Ω(1) = 0.
(5.4)
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Multiplying (5.3) by ζ(2) we obtain

(5.5)
∆u(2) = f (2) + 2∇ζ(2)∇u+∆ζ(2)u in Ω(2) × (0, T ),

n̄ · ∇u(2) = un̄ · ∇ζ(2) on S ∩ Ω̄(2).

Let us introduce a local coordinate system y = {y1, y2, y3} with the origin at
the point where L meets S and such that y3 > 0 describes points inside Ω.
Let S(2) = S ∩ Ω̄(2) be described by the relation

(5.6) y3 = F (y1, y2).

Introducing new coordinates

zi = yi, i = 1, 2,
z3 = y3 − F (y1, y2),

(5.7)

we define a mapping z = Φ(y).
If problem (3.2) is formulated in coordinates x = {x1, x2, x3} we can pass

to coordinates y = {y1, y2, y3} by a rotation and a translation. We denote
this mapping by y = Y (x). Hence

z = (Φ ◦ Y )(x) ≡ Ψ(x),

Ω̂(2) = Ψ(Ω(2)), Ŝ(2) = Ψ(S(2)).
(5.8)

Introducing the notation

ũ(2)(z) = u(2)(Ψ−1(z)), ũ(z) = u(Ψ−1(z)),

∇Ψ =
∂z

∂x

∣∣∣∣
x=Ψ−1(z)

· ∇z = Ψx|x=Ψ−1(z) · ∇z,

n̄z = (0, 0, 1), n̄Ψ = (Fy1 , Fy2 ,−1)|y=Φ−1(z),

we can express problem (5.5) in the form

(5.9)
∇2
zũ

(2) = (∇2
z −∇2

Ψ )ũ(2) + 2∇Ψ ζ̃(2)∇Ψ ũ+∇2
Ψ ζ̃

(2)ũ in Ω̂(2),

n̄z · ∇zũ(2) = (n̄z − n̄Ψ ) · ∇zũ(2) + n̄Ψ · ∇z ζ̃(2)u on Ŝ(2).

Let η̃(2) be a function such that

(5.10)
∂

∂z3
η̃(2)

∣∣∣∣
z3=0

= (n̄z − n̄Ψ ) · ∇zũ(2) + ũn̄Ψ · ∇z ζ̃(2).

Then the function

(5.11) ψ̃(2) = ũ(2) − η̃(2)
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is a solution to the problem

(5.12)

∇2
zψ̃

(2) = ∆η̃(2) + (∇2
z −∇2

Ψ )ũ(2) + 2∇Ψ ζ̃(2)∇Ψ ũ
+∇2

Ψ ζ̃
(2)ũ ≡ F̃ (2) in Ω̂(2),

∂

∂z3
ψ̃(2)

∣∣∣∣
z3=0

= 0,

ψ̃(2)|∂Ω̂(2)\{z:z3=0} = 0,

where

Ω̂(2) = {z ∈ R3 : (z2
1 + z2

2)1/2 < R, 0 < z3 < a, ϕz ∈ [0, 2π]},
ϕz = arctg( z2z1 ). After reflection with respect to the plane z3 = 0 problem
(5.12) assumes the form

(5.13)
−∇2

zψ̃
′(2) = F̃

′(2),

ψ̃
′(2)|∂Ω̂′(2) = 0,

where η′ means that η′(z′, z3) = η(z′, z3) for z3 > 0, z′ = (z1, z2) and
η′(z′, z3) = η(z′,−z3) for z3 < 0, and

Ω̂
′(2) = {z ∈ R3 : (z2

1 + z2
2)1/2 < R, −a < z3 < a, ϕz ∈ [0, 2π]}.

Applying Lemma 4.11 we obtain for solutions to problems (5.4) and (5.13)
the estimate

‖u(k)‖V l+2
p,−µ(Ω) ≤ c‖f

(k)‖V lp,−µ(Ω)(5.14)

+ c(‖∇u‖V lp,−µ(Ω∩Ω(k)) + ‖u‖V lp,−µ(Ω∩Ω(k))),

where k = 1, 2 and in the case of problem (5.13) we used that diamΩ(2) is
sufficiently small.

In the case of the subdomains Ω(3) and Ω(4) we obtain problems similar
to (5.4) and (5.9). Then instead of (5.14) we get

(5.15) ‖u(k)‖W l+2
p (Ω) ≤ c‖f

(k)‖W l
p(Ω) + c(‖∇u‖W l

p(Ω
(k)) + ‖u‖W l

p(Ω
(k))).

Moreover, for solutions to problem (5.3) we have

(5.16) ‖u‖W l+2
p (Ω) ≤ c‖f‖W l

p(Ω).

Let µ ∈ (0, 1). Then summing up inequalities (5.14) and (5.15) and applying
the Hardy inequality with estimate (5.16) to the last two terms on the r.h.s.
of (5.15) we obtain

(5.17) ‖u‖V l+2
p,−µ(Ω) ≤ c‖f‖V lp,−µ(Ω).

Now let µ ∈ (1, 2). Then the last two terms on the r.h.s. of (5.14) can be
estimated in view of the Hardy inequality and (5.17). Repeating the other
arguments we obtain (5.17) for µ ∈ (1, 2).
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Continuing the above considerations and assuming that u ∈ V l+2
p,−µ(Ω),

µ ∈ (k − 1, k) we obtain (5.17) for µ ∈ (k, k + 1), k ∈ N.

Repeating the above considerations for problem (3.5) we obtain by (3.1)
the following estimate for solutions to problem (1.1):

(5.18) ‖v‖V l+1
p,−µ(Ω) ≤ c(‖w‖V lp,−µ(Ω) + ‖b‖

V
l+1−1/p
p,−µ (S)

).

This holds for smooth functions vanishing sufficiently fast near L.

To prove Theorem 1.1 we use Theorem 1.2. Let (wν , bν) be a sequence of
smooth functions with compact support in Ω̄ \L which converges to (w, b) ∈
V k
p,−µ(Ω) × V k+1−1/p

p,−µ (S). In view of Theorem 1.2 we have the existence of
an approximate solution of the problem

(5.19)
rot vν = wν ,

div vν = 0,
n̄ · vν = bν .

By Theorem 1.2 there exists a solution to problem (5.19) such that vν ∈
H l+2
−µ (Ω) with r.h.s. equal to wν and bν . Using estimate (5.18) we find that

the sequence converges in V l+2
p,−µ(Ω) and (1.4) holds. This concludes the proof.
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