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LP-L7 TIME DECAY ESTIMATES FOR THE SOLUTION OF
THE LINEAR PARTIAL DIFFERENTIAL EQUATIONS
OF THERMODIFFUSION

Abstract. We consider the initial-value problem for a linear hyperbolic
parabolic system of three coupled partial differential equations of second
order describing the process of thermodiffusion in a solid body (in one-
dimensional space). We prove LP-L? time decay estimates for the solution
of the associated linear Cauchy problem.

1. Introduction. In this paper we consider the differential equations
of thermodiffusion given by W. Nowacki (cf. [18], [19]). He considered the
displacement u, the temperature 6; and the chemical potential # as inde-
pendent fields. These fields depend on the space variable x and the time
variable ¢t and satisfy the following system of equations:
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with the following initial data:

u(0,x) = ug(x), 01(0,z) = b1p(z),
du(0,z) = ui(z), 62(0,2) = b(z),
where t € Ry, x € R. In equations (1.1) we denoted by:

(1.2)

e )\ u the material coefficients,
e p the density,
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Y1, 72 the coefficients of thermal and diffusion dilatation,
k the coefficient of thermal conductivity,

D the coefficient of diffusion,

e n, ¢, d the coefficients of thermodiffusion.

All the above constants are positive and satisfy
(1.3) ne —d* > 0.
The condition implies that is a hyperbolic-parabolic system of
partial differential equations. The initial-boundary value problem for the
linear system of thermodiffusion was investigated by W. Nowacki (cf. [19]),
Ya. S. Podstrigach [21I] and G. Fichera [4] using the methods of integral
transformations and integral equations. J. Gawinecki [9] proved the exis-
tence, uniqueness and regularity of the solution to the initial-boundary value
problems for the linear system of thermodiffusion in a solid body. The ma-
trix of fundamental solutions (cf. [8], [LI0]) was constructed using the Fourier
transform for three cases:

e for the linear system of thermodiffusion,

e in the quasi-static case of the thermal stresses theory,

e for the whole system of equations.

In this paper we use the method of Sobolev spaces and LP-L9? time decay es-
timates for the solution of the linearized system of equation associated
with the nonlinear system.

The paper is organized as follows (cf. [25]). In the introduction we present
the equations of linear thermodiffusion in a solid body in one-dimensional
space and formulate the main theorem. In Section 2 some basic notation is
presented. Section 3 is devoted to the investigation of the behaviour of the
roots of the characteristic equation of the system (|1.1} - In Section 4
we study the asymptotic behaviour of the solution of the Cauchy problem
f. In Section 5 we prove L®-L' and L?-L? time decay estimates
for the initial-value problem for the system f. Section 6 is devoted
to the LP-LY time decay estimate for the solution of the Cauchy problem for

the system (|1.1))—(1.2)). First, we rewrite (1.1)—(L.2)) in the form

{ U (t,z) + A(t,x,0,,02)U =0,
U(0,z) = Uo(z),
where U = [0,u, Osu, 01, 02]7 and

(1.4)

1 2
(1'5) A(tvxaaﬂmai) = _Tuam ny1 372 ’ypknax 2 C}Dax 2
0 “ne—d? O — a nc—d? 830
0 d'r’ﬁ 272 O ne— d2 82 o m:c—Dd2 8%

We now formulate the main result of the paper.
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THEOREM 1.1 (Main Theorem). Let p, q satisfy the conditions 1 < p <
2<qg<o0,1/p+1/q=1, and N € N. If the initial data (1.2)) are sufficiently
smooth, namely Uy € WNP(R) with N > (2/p—1)(s —1) +1 >0, s > 2,
then the solution of the initial-value problem (1.1)—(1.2) has the following
properties:

Ut )z < CA+ )2 VP Upllyyns  VE> 0,
where C' is independent of Uy and t.
The proof of Theorem 1.1 will be divided into three steps:

e investigation of the behaviour of the roots of the characteristic equa-

tion of system (|L.1J),
e description of the behaviour of the solution of ([L.1)—(1.2)),

e the proof of (1.9).

2. Basic notation. Below we will give the main notation and recall
some theorems which will be used in our paper. We denote the points of
R™ by x = (21,...,2n), y = (y1,...,yn) and equip R™ with the canonical

metric

n 1/2

oyl = [ -]

i=1
If @« = (oq,...,0p) is an n-tuple of nonnegative integers «;, we call o a
multi-index of order |a| = a; + -+ + . If §; = 9/0x; for x5, i =1,...,n,
then 0% = o' - --- - 99". Let X be a Banach space and I C R a compact
interval. Then C*(I,X) (k > 0, an integer) denotes the space of k-times
continuously differentiable functions f on I with values in X (cf. [12]) with
the norm

k
1Fllewr,x) = sup D 19 F(0)]]x-
tel i3

The Fourier transformation of a function f € S(R") is defined as follows (cf.
[11], [13]):
SR 3 Ff(€) = | e ™ f(x) da.
R”
The inverse Fourier transformation of a rapidly decreasing function is defined
as follows:

SR™) 3 FHFf@) = 2m) ™" | e (F)(€) de.
Rn
The direct and inverse Fourier transformation are extended to S'(R™) by

FT(p) =T(Fg), F 'T(p)=T(F o).
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THEOREM 2.1. Let 1 < p < 2. The Fourier transformation is o linear
and continuous map from LP(R™) to LP/®*=D(R) and

I Flliro-nany < @) 2| £l o).

The Sobolev space W™P(R™), 1 < p < oo, m € N, consists of all func-
tions w € LP(R™) for which the weak partial derivatives 0%u of order «
(la] < m) belong to LP(R™) (cf. [, [2]), i.e.

W™P(R™) = {u € LP(R") : %u € LP(R"), |a| < m},

with the norm

fullmon = (32 107l )"

|a|<m
For s € R and 1 < p < oo let L*P(R"™) denote the image of LP(R™) under
the linear mapping J%u = F~1((1 + | - |2)~%/2Fu), with the norm
1 N pewny = IF A+ P)PF) o)
(cf. [2]). It is a Banach space with this norm. We denote by B, (R") the
Besov space (cf. [2]), i.e.

Biy(R") = {f € S'(B") : || ]l s, mr) < 0},

where
= 1/q
”fHB;q(R") = {”w*fH%p(R) + Z(QSICHSDIC * fHLp(Rn))q} .
k=1
Here
e * denotes convolution,
e 1<p<oo, s>0,
e © € C§°(R™) is a nonnegative function with
suppp C{E €R™:1/2< 6] <2}, Y p(27F¢) =1for £ £0,
k=—o0
o FY(§) =1- Zso ), For(€) = @(27%), k> 1.

If s > 0 is an integer, then B3, (R") = LS2(R") = W52(R"™).

THEOREM 2.2. Let “—7” denote a continuous imbedding, and 1 < p <
q < .

(a) If s > k +n/p, then WSP(R™) — C*(R™).

(b) If s>t and 1/q > 1/p — (s — t)/n, then WSP(R™) — WHI(R™).

THEOREM 2.3.

(a) If s > 0 is an integer, 1 <p < oo, then By (R") — W*P(R").

(b) Ifs >0,1<p<o0,1<q<o0,e>0, then LT*P(R") — By (R™).
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DEFINITION 2.1.

(a) (Xo,X1) is called an interpolation couple if X¢, X; are Banach spaces
both continuously imbedded into a topological Hausdorff space.
(b) X is called an intermediate space between Xy and X if

XoNX; — X — Xo+X; (continuous imbeddings).

(¢) [Xo, X1], [Yo, Y1] are called interpolation spaces for (Xo, X1), (Yo, Y1)
if and only if [X(, X1] is an intermediate space between Xy and X7,
[Y0, Y1] is an intermediate space between Yj and Y7 and

if T': X; — Y; is continuous for j = 0,1, then
T : [Xo, X1] — [Yo, Y] is continuous.

THEOREM 2.4 (Riesz & Thorin). Let (LPo, LPY), (L% L%), 1 < py,qo,
p1,q1 < 00, be interpolation couples, let T : LPO + [P1 — [ 4 L9 be linear
with

Trpo : LP°(R™) — L®(R"™) bounded with norm M

Trpr @ LPY(R™) — L™ (R"™) bounded with norm M.
Then for all 6 € [0, 1],
Trre = LPO(R™) — L9(R™) is bounded with norm M=% MY,

where

po po p @ q@ @
THEOREM 2.5. If so # s1, 1 < po, qo, p1,q1 < 00, © € (0,1), then

S0 81 _ Se
[Bpoqo’ Bp1q1]9 - Bp(—)q(—)

1 1-6 0 1 1-40 0
+

where
1 1-6 6 1 1-6 ©
592(1—9)80+951, — = + —,
y2C) Po b1 de 4q0 a1
All theorems mentioned above can found in [1], [2], [3], [7], [11], [15],

I16).

3. Behaviour of the roots of the characteristic equation of the
system (1.1). First, we investigate the behaviour of the roots of the char-
acteristic equation of the system . Applying the Fourier transformation
with respect to z, we can write the system in the form

d - N
% U + A(ta£7 _Z£> _52)[] = 07

U(0,€) = Uo(8),

where

A

U= ( A7@aé17é2)T — (Ula 027 U?n U4)T'



148 A. Szymaniec

The Fourier transform of the matrix ((1.5)) can be written in the form

[0 i€ 0 0 |
) A 0 —iﬁg —il2§

A(t’ 5) _7/57 _g ) = d 2 2
0 nzz d;y2 § ne— d2 5 " ne— d2 f
L 0 d’:zfi 272 § " ne— d2 52 ne— d2 §2

After some calculations we find that the characteristic equation of the system
(1.4) has the form

(3.1)  det(A—A) = A= CEN + (n€® + )N — ¢\ + cne® =0,

where
=ap(kn +c¢D), n=kDap,

¢
¥ = a[Dy} + kv3 + cip(kn + cD)],

(3.2) p = ayi(yin — y2d) + dya(eyz — dn) + o,
c% = AT 2,u’ a = 71 .
p p(nc — d?)
In order to find the roots of equation (3.1]), we put
1
A=y+ &,

so (3.1]) takes the form
(33) y oyt Fay+r =0,

where
3
p= [(n— 8C2>£2 +4C2,
1 1 1
= [2(77— C2>C§2 + Cw—w}f“’
1 1
r= 16<n 16 ¢ )c 8+ oo Cot® — 2 e + A
The resolvent of equation (|3.3]) is
(3.4) 23 4 2p2% + (p? — 4r)z — ¢* = 0.

Applying the Cardano method (cf. [I7]) we can represent the roots of ((3.4])
in the form

z1=a+ [ — 29,

35) 2= s+ B)+i L (a-p) -2,
= s+ ) =i L (a=p) -2,
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where

a= \/ 37 (€2 + )36 — <M§2 + N)EE + /A,
(3.6) 8= \/ % (g2 + ¢)*€° — L e 1+ Nyes - VA,

_ 1 § 2\ 2 2

- H(n-2e)e+de
with
(B7) A =5 T0E +)'e™ — o € + )’ (M + N>514

1 2 216 1 2 2 16 3 18
+%(M§ N)“¢ —ﬁT(ﬁf )f T°¢

and
58) M = (8¢in+ (¥ — 3ci¢*)n, N =8cing + (ot — 342,

T = 4cin — .

Now, from the real root z; of equation ({3.4]) we construct the roots of (3.1)).
We consider the linear system associated with (3.3)) in the following form:

1 q
2
- _ =0
) y +\/21y+2(21+p) N

yQ—\/Zer%(zﬁp)— 255 =
The roots of the system can be written in the following form:
Y1 :_%\/a_%\/_zl_66+2Q/\/Ea
92:—%\/54‘%\/—21—654-2(1/\/5,
:%\/5—%\/—2’1—65—%/\/57

1 1
5 Va1 + 3 \/—7z1 — 66 —2q/\/z1.
So, the roots of (3.1) have the following form:

1 1
)\1,2214.52—5\/243\/—21—6(5+2q/\/a,

(3.10)

1 1
Asa= 7€+ 5 VAT /2 — 60— 2/ /7

We can now formulate the following theorem:
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THEOREM 3.1. The characteristic roots have the following asymptotics:
(i) For & — 0 we have:

M(E) = 21@ (4 — VT — A3mR)€? + O(€),
Aa(€) = ;So (b + IE—AZnp)E® + O(¢h,

A3<s>=—w\sr+“" v
Cso 1/1

(3.11)
& +0(¢]*),

M(€) = i/lE| + 25— + O(I¢%),

with
P* — dcing > 0,

(3.12) P — /Y% —deing > 0,
Cp—9 >0,
p > 0.

(ii) For & — 400 we have:

A1) = —ierl€] + +0(lgl™),

= C1C
2n

A2<5>—zcl|5|+ L2+ oge ),

A3(€) = = (¢ — V(2 — 4n)¢?

(3.13) _ ( —C1C C"" V CQ - 277 B Cl —i—O(f_Q)
277\/C2 ’

_ 1 (¢ + /2 — dy)e2

(¢ — C1C (€ 2 - —2n(p — 01) -2
+ + O ,
| o f )

Y — 3¢ >0,
(3.14) ¢2—4n >0,

C4++/C2—4n > 0.

Proof. The properties (3.11]) and (3.13]) come as a result of tedious cal-
culations. First, we find the asymptotics of the root z; of equation (3.4]).
Since

with

n=a+p—20
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where a, §, § are given by and o(6) = a(©)e, pE) = B,
A(€) = A(¢)eM and

3O = {f o (02 + 9 L (e Mg+ /B K
5O = {f e (02 + 0 L (e Mgz - /B K

6
_ 1 1
A(¢) =—87T(n€2+¢) o (167 +¢)*(ME + N)
1 1
—MQ N)2e2 = T2(pe2 202 _ L 34
+ g (ME+N)TE = S T8 +¢)°¢" = - T7¢
we have
3
_ ® 1 ¥
== AQ) =—-—(T N
a0) =%, A0)=-Z (Tp+N).
Now, we can calculate the following limits:
5 _1 _Tp2 —
i M8 —39 VT Ne.
&0 [¢] 3
1/ 1 —Tp?2— Ny 1 1
3.15) lim — - = Y " | = —=N+Typ).
(3.15) £g]f(l)gg(a(f) 5P+ 3% > 3.2 <<P77 SN+ w)

After some calculations, we obtain the asymptotic expansion for @(¢) in the
neighbourhood of the origin:

>/ 2
! MKH <¢n+Tso—N>£2+0(|§!)

54(5)2590— 30

Similarly, we can obtain the asymptotics for . Finally, we have

1 i/ T2+ N 1 1
a(€)=3¢§2—WI€!3+3¢2(¢277+T90—2N>€4+O(!£\5),
i T?+ N
B6) = g o€+ VTE N g L (T - S e+ O(eP)

REMARK 3.1 (see (3.12))). We have
~Typ — N = 3(¢* — 4cing) > 0.
Using (3.5)), (3.6 we obtain

_lro)2
(3.16) 21 = W ¢+ AL+ 0(8%)
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A= Llap(! 3 s 2 :
= v gee—v) Hdane| 5Cp =¥

- % ©*1p(4n — () (; Cp — w) }

where

Moreover, from (3.16) we get the following asymptotic expansions in the
neighbourhood of the origin:

VA= 5l s o),
\/_leH;% (V1w e o), %wwo,
2iv/lé] + O(l¢]), 5Ce =¥ <0,
. 2i/lé] + O€P), HERS
\/_Zl_ VA quom Lo <0

In view of , , , , we have

Ai(§)=0 for&=0,i=1,2,34.

Putting together all the above considerations we obtain

(5o (0~ VIZ—AG)E +0(EY), 5 ¢ = >0,

AL(§) = CSO ¢ 1
—iVoldl + 25—+ 0E),  SCe-v <0,
3o (0 VP *40?7790)€2+0(£4), o>,

A2(§) = C<P w 1
iVelEl+ 25— €+ 0(leP), 5P —¥ <0,
msw“" Ce o),  ee-u>0,

As(§) =

- VI 1m0 + 0, SCp- <0,
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Cp—
2¢

5o (6= VP FAGIRE +0(EY). 5eo-v 0.

Independently of the sign of %Qp — 1) we have the same asymptotic prop-
erties for the roots of equation as in . Similarly, we can analyze
the asymptotics of the roots in the neighbourhood of +0c0. The asymptotic
expansion of z; in the neighbourhood of +o0 is

2
21(5)214254_@&7701(%52_1_;75

iole + LT @ L0, Sce-u >0,

M(§) =

B+0(£7?)
where
1 , 1 (1
B:ngo(M—nT)—g(M—nT) —1-577 gMT—nN .

The asymptotic expansion of the terms of the roots \;, ¢ = 1,2, 3,4, can be
obtained in the following form:

_ 2
2 <2n— ;C2)£4+ [2@0—2@%) - W}g?

N
L 4B (v — ci¢)? (Co — 2¢) (v — €1()
" [(277— 3¢ ><_3775C2 0 n*¢? >+4 n¢? }

+0(67?)
and

2
VA =548 - P T o),

¢_z1 — 66 +2q/ /71 = ia|é] + O(E] ),
(1 — Q)¢ — 2n(p — ¢3) _
Voa = 60— 20/y/E = VP - g+ e TOE),

Using (3.10)) we obtain (3.13]). To prove the first relation in (3.12)), using
(3.2) after easy calculations, we have

$? —Acine = &°[-Drf + k73 + & (kn — ¢D)]?
+ 462k D172 (7172 + 262 pd) + Aci@?p?kDd? > 0.

From this and ({1.3)) we obtain the second relation of (3.12]). To prove the
third relation of (3.12)), we note that by (1.3),

C(p . w _ d2p[(lm2 + Ddz)"}/% + (02D + de),Y% — 2(]{771 + CD)d’Yl’YQ]
= &*plk(ny1 — dvy2)* 4+ D(dy1 — ¢72)*] > 0
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and
ny—dy2 #0 V dy —cey2 #0.
For the last relation in , observe that
p = a(mi + e — 2dny) + &
and in view of the discriminant of the bracketed expression is equal to
4(d?® — nc) < 0.

Now, the first relation in ([3.14) is a consequence of (3.2) and Remark 3.1}

So, we have
) —ci¢ = a(Dyi + k) > 0.
The second inequality of is a consequence of
C? — 4n = Aa?p?*[4kDd? + (kn — ¢D)?] > 0.
The last inequality in is a consequence of the above considerations. m

REMARK 3.2. The characteristic equation (3.1)) has multiple roots for at
most eight values of £ # 0, and we have the following possibilities:

(a) For £ = 0 the characteristic equation has one fourfold root.
(b) If € # 0 the characteristic equation has one double root or two double
roots.

Proof. The characteristic equation has multiple roots if and only if A(&)
given by (13.7)) is equal to zero. We can write

317) A0 = {5 TOE + )" — & 0+ P (ME + )

1 1
2 O(MEE 4 N2 —

In brackets in (3.17)) we have a polynomial of degree eight. We consider the
following cases:

(a) If € = 0, then X;(0) =0 for i = 1,2,3,4 (cf. (3.1))).

(b) Let & # 0. The characteristic equation does not have a fourfold root,
because in this case all coefficients of the equation are zero, which is
impossible. For example:

(n-5¢)e+e=0

1 1 5 9 1 _
(77—4C>C§ +§C§0—¢—0~

1
T2 (ng* + )% — o= T354}514.

2

Solving the first equation and substituting ¢ in the second equation we have

P —2(8n —3¢*)y > 0.
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If the characteristic equation has one real triple root, then all coefficients
of the equation

1 2 1 1
7P — |3 € + ) +TE|¢Mr — o2 0 + 9)°¢" + 2 M + 2 NE =0

are zero. This is not possible, because 4np 4+ 3T >0 and £ €R. =
LEMMA 3.1.

(a) For all |¢] >0, ReX;(&) >0, j=1,2,3,4.
(b) There are positive constants ri,r2 and Cj, j = 1,2,3,4,5, that de-
pend on 11,12, for which:

(3.18)  if €] <71 then Ch|€]* < ReXj(€) < Calé* forj =1,2,3,4,
, Re (&) > Cs forj=1,2,

3.19 > 1y th J

(8:19) 4 |¢] > rz then {04{2 <Re)j(€) < C5€% for j =3,4.

Proof. This is a consequence of the asymptotic expansion and the con-
tinuity of roots.

(b) Inequalities (3.18)) and (3.19)) follow from the asymptotic expansion
of roots (3.11)) and (3.13) of the characteristic equation.

(a) In view of (b) we know that the real parts of the roots of the char-
acteristic equation are positive in a sufficiently small neighbourhood of the
points 0 and +oo. Since the roots given by (3.10) are continuous functions,
the real parts of the roots can be negative when there exist purely imaginary

roots of (3.1, i.e. ReA; =0 and
(3.20) det(A —iyl) = y* — (n€* + 9)€%y” + cine®
+i(CEy —yey =0, yeR.
(3.20)) is equivalent to the system
y' = (€ + @)% + cing® = 0,
(Cy* —yeh)ery = 0.
The second equation has two solutions
y=0 or y==xVvE/C.
The solution y = 0 does not satisfy the first equation in (3.21f). Substituting
the second solution y = +4/1&2/( to the first equation (3.21]) we get
1
2 C(A¢ =) +v(v = o)l = 0.
Basing on Remark and the formula (3.12)) we can see that the solution
of equation (3.22)) has no real part for |y| > 0.

(3.21)

(3.22)
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4. The asymptotic behaviour of the solution of the Cauchy
problem (|1.1)—(1.2)). In this subsection we prove the asymptotic behaviour
of the solution to the Cauchy problem f. After some calculations,
we get the modal matrix M of the eigenvectors in the form

(4.1) M=
i i€ i€ i€ @& i
A1 A2 A3 A
1 1 1 1
_ (1M —Bs) __i§(y122—Bs) __ i&(y1X3—Bs) __if(mAa—Bs)
(M —B1)(A\1—Ba) (A2—B1)(A2—Bz2) (A3—DB1)(A3—Bz2) (A—DB1)(A1—Bz2)
i€(y1A1—Ba) i€(y1A2—Ba) i&(y1A3—Ba) i€(71Aa—Ba)
L (A\i—B1)(A1—Bz2) (A2—B1)(A\2—Bz) (A3—B1)(A3—B2) (Aa—B1)(A4—B2) |

where

Bi= £+ V@),
(4.2) By= L €~ V&~ dn),

Bs = ap&®(kdyz + cDy1),
By = ap&®(knyz + dDy).

Using the standard calculations of the modal matrix, we can write the inverse
of the matrix (4.1) in the following form:

(4.3)
1y (M — B) (M — B) [T A
M) = — - ,
i€B1Ba (A1 — A2) (A1 — A3) (A1 — \ag)
_ A1(A1 — B1)(A1 — B2)
M) = :
M e = B 0 — ) — )
MV — - M\ — B\ — Ba)
§B1B2(Bsy2 — Bayi) (A1 — A2) (A1 — A3) (A1 — \g)
X {X2A3A4(By — 12 B2 — 72 B1) + 2 B1Ba(AaAs + A2z + A3\4)
— BlBQB4(A2 + )\3 + )\4) + BlBQ(BlB4 + BoyB4 — ’)/QBlBg)},
)y — iM (M — B1)(M — By)
EB1B2(Bsya — Bayi) (A1 — A2) (A1 — Az) (A1 — A\g)
X {A2A3 A4 (B3 — 182 — 71B1) + 1 B1Ba(AaAs + AaAz + A3\g)
— B1B3B3(A2 + A3 + A1) + B1B2(B1B3 + BaBs — 71 B1B2)},
Ao — B1)A2 — Bo) T A
(M)yy = (A2 = B1)(A2 — Bo) [iy

~i€B1Ba(Ma — A1)(Aa — A3) (A2 — Ag)’
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(M 1)g0 = Aoz — B1) (%2 — Ba) ;
(A2 = A1) (A2 = A3) (A2 — A\g)
(M_l)gg _ i)\g()\g — Bl)(/\g — Bg)
{B1Ba(B3v2 — Bami) (A2 — A1) (A2 — Az) (A2 — Ag)
X {MAsA4(By — 72B2 — 72 B1) + 72 B1B2(A1As + At Az + AzAq)
— B1B2By(M1 + A3+ A1) + B1Bo(B1By + BaBy — 2 B1Ba)},

M)as oMo — B1)(Ag — Bo)
{B1B2(Bsy2 — Bami)(A2 — A1) (A2 — Az) (A2 — A\a)
X {AMAsA4(Bs — 11 B2 — 71 B1) + 71 B1B2(A1As + A1 Az + AzAq)
— B1B2B3(A1 + A3 + M\1) + B1Bao(B1B3s + BaBs — 11B1B2)},

(ML) = (A3 = B1) (A3 — B) [Tiy A
(M)g = A3(A3 — B1)(A3 — Ba)
(A3 = A1) (A3 = A2) (A3 — \g)’
M — - iAs(As — B1) (A — Ba)
§B1Ba(B3y2 — Byyi)(A3 — A1)(Az — A2) (A3 — \g)
X {/\1)\2)\4(34 — v By — ’}/QBl) + ’YQBlBQ()\l)\4 + Ao + )\2)\4)
— B1B3By(M + A2 + A1) + B1Ba(B1Bs + BaBy — 72 B1B3)},

-y — a3 — B1)(As — By)
§B1B2(Bsya — Bay1)(As — A1) (A3 — A2)(Az — A\4)
X {A1A2 A (Bs — 71 B2 — 71 B1) + 71 B1Ba(A1Ad + AMA2 + A2 Ag)
— B1BoB3(A1 + Ao + Ay) + B1By(B1B3 + B2 Bz — 71 B1B3)},

(Mfl)u - - (As = B1)(A — By) H?:l Ai 7
i§B1Ba(Ag — A1) (A1 — A2)(Ad — A3)
(M) = M(Ag — B1)(A — Bs) ’
(A1 = A1) (Mg = A2)(Ag — A3)
PRI M\ — B1) (M — By)
§B1B2(Bsy2 — Bavi) (A — A1) (Ad — A2)(Ad — A3)
X {MA2A3(Bs — 72B2 — 72B1) + 72 B1B2(A1A3 + At A2 + A2As3)
— B1BoBy(A1 + X2 + A3) + B1By(B1By + B2 By — 72 B1Ba)},
M) M — B1)(\ — By)
§B1B2(Bsy2 — Bami) (A — A1) (Ad — A2)(Ad — A3)
X {AMA2A3(Bs — 11 B2 — 71 B1) + 11 B1B2(A1As + At A2 + A2A3)
— B1B3B3(A1 + A2 + A3) + B1Ba(B1B3 + B2 B3 — 7181 B3)}.
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Taking into account (4.3)) we can write the inverse matrix in the following
form:

Am(Am — B1)(Am — B2)

MY = A
v " BB By~ B i) O — {6 =B

X [_ H Alﬁln +BlB2(52n:| { | | (S, — Poy(B1 + By))
15;7}1 k;ém

4
+ P,B1B; Z (1= 0k1) (1 = S ) (1 = i) ANy

B, S Nk B BS54 )~ BiB:Py)| }
k=1
k#m

where

Sy = B4d3, + B3dan,
Pn - h263n + h154n’
hi = ap(niyi — dvya),

he = ap(diy1 — cy2).

After some calculations on the Fourier transform of the solution to the
Cauchy problem (|1.1))—(1.2)) we can write it in the following form:

(4.4) p= (MeAtMil)quOq

4 —Ant r
: Mt ()W (M) )
= U — i€ Oog + 20
Z Oq 4 ) <B3’72 — Bum 1§ And2g 101¢

—1&01p n 02y

¢ >+l€53p(71)\ — B3)

+ 1&0ap(v2 A — 34)}
where
Wi(An) = (7203k + Y10a6) A (A2 + 0E€7)
+ (A2 + 2€%)[Bydai, + B3dar, — (7203% + Y104x)CE]

and d;; is the Kronecker symbol. After some calculations, we get

(4.5) (MeMM™Y),; = Gy (t, €)
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where
(46) éz] (t, 5) = aije_klt + bije_/\Zt + Cije_)\gt =+ dije_A4t7 Z)] = 1a 2a 35 47

Our aim is to find the asymptotic expansion for @ij(t, €). First we consider
Gi;(t,€) in two intervals. For example we consider G11(t,&) in the neigh-
bourhood of 0 and fo00. We expand the coefficients a11, b11, c11, d11 of
as follows:
all(f) _ /\2)\3)\4()\1 — Bl)()\l — BQ)
B1Ba(A1 — A2) (A1 — A3) (M1 — A\g)
_ AW = ¢+ (W= dQe+ (p— )V —dctnp 0(e2)
201/9? — dciny
an + 0(&2),
b (€) = — AMAsAL (A2 — B1) (A2 — Bo)
B1Ba(A2 — A1)(A2 — Az) (A2 — A\g)
_ AW - )+ (=) — (p— D)V~ ddne | o)
20/9? — Aciny
= b1 +O(&?),
en(€) = — AMA2As(As — B1) (A3 — Ba)
B1Ba(A3 — A1)(A3 — A2)(A3 — A\g)
2 2
= o+ 2 e 016 = -+ O,
(€)= — AMA2A3(A — B1) (M — Bo)
B1Ba(Ag — A1) (Mg — A2) (Mg — A3)

2 2 _
_a _Z'M €]+ O0(&2) = diy + O(€)),

2¢ 402/
and similarly in the neighbourhood of +oc:
R e S —2
a1 (§) =5 —1 To €77 +0(E7),
1 Y- C% -1 -2
bu(§) = 5 +i 1o €77+ 0(E7),

() =0(€7%), du(§) =0(?).

By the above, we have for |{| < r; (where r; is sufficiently small), with
accuracy up to terms with powers of highest exponents of &,

C11(t,€) = (a11(€) — ann) (€™M — e o ayy (e Mt — 78
+ (a11(8) — @ )e €+ ag e 4 (by1(€) — byy)(e M2t — 70287
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+ b1 (e — e 4 (byy(€) — by)e @ 4 bye
+ (e11(€) — En1) (et — e VPl —ase®t

+ (c11(¢) — Ell)e—i\/@\ﬁlt—agf% + (—311(6—>\3t _ 6—i\/¢|§|t—a3§2t)
+ & e VPllt—asg®t | (d11(€) — dyp)(e Mt — ei\/@\g|tﬂ3§2t>
+ (d11(€) — dip )elVPRIEas€®t o ) (o=t _ giv/PlElt-ast®ty
 dy eVl ase’t

where
o= 5o (W= VI AGg), a3 = o (6 + IE— AG0g)
2¢ 1 ’ 20 1 )
g SP Y
3 2%
Moreover,
e Mt _ pman€’t _ 0(54)&370‘15%7
e—>\2t o e—agEQt _ 0(54)t€_a2§2t,
e Ast _ e*i\/@ﬂ*as@t — O(’§|3)t67i\/¢|§|fa3§2t’
et _ e—iﬁlﬁl—a3§2t _ O(’g‘?’)te—i\/@lﬁl—azségt'
Then

Gri(t,€) = O()e " + O(1)e ¢,

Similarly we have for || > ry (for ry large enough), with accuracy up to
terms with powers of highest exponents of &,

Gll(t7§) = (all —_ ;) (ef)qt _ eiC1|5|t*,31t) + % (67)\115 . eicl|§\t751t)
4 (an _ 1) gierlelipit | L iengii-i | <b11 _ 1) (et _ g—ianleli-pt
2 2 2
+ 1 (e—Mt _ e—ic1|§|t—ﬂlt) + (b1 — 1 e—ic1|§|t—ﬂ1t + le_icl|§|t_61t
2 2 2

+oeqp(€) (e 3t — e BeEt=aty 4 o)) o BalPt- Dot
iy (€) (et — e BBty | o o~ BitHBat

where (cf. (3.15]))

g ==l 5 W dOEH VE —dn) (e - )
2n 20+/C% — 4n ’

B; = B;&?, i=1,2.
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Moreover,
oMt _ gicil€lt—pit _ O(‘ﬂ—l)teicﬂﬂt—ﬂlt,
ot _ p—iciléft—pit _ O(|£|—1)t6_i51‘§|t—51t’
e st _ e*B2£2t7ﬁ2t _ 0(672)15671?25%4%21&7
e Mt _ e—B1§2t+ﬁ2t _ 0(5—2)t6—31§2t+62t‘
Thus

Cha(t,€) = O(1)e™ + O(|¢] e~

For the other elements of the matrix G we obtain (c and B are universal
positive constants):
1. For [¢] < ry:

G (t,€) = 0(E)e ™ + O(1)e ™™,

Gia(t,€) = O(E)e™ ™ + O(1)e ™™,

Gi3(t,€) = O(&)e™ ™ + O(E)te ™,
Ga(t,€) = 0(€)e™ ™ + O(E2)te =™,
Gian (t,€) = O(1)e ™,

Giaa(t,€) = O([€))e ™" + O(1)e =™,
Ga3(t,€) = O(E)e™ ™ + O(1)e ™™,

Cau(t,€) = 0(€)e™ ™t + O(1)e ™™,

Gar(t,€) = O(1)e ™7,

Gaa(t,€) = O(E)e™ ™ + O(1)e ™™,

Giss(t,€) = O(|€))e™*"" + O(1)e ™™,
Gisa(t,€) = O(J))e ™™ + O(1)e ™
Ga(t,€) = O(1)e 4,

Gua(t,€) = O(€)e™ ™ + O(1)e™ "

Gias(t,€) = O(|€))e™ " + O(1)e ™™,
Gaa(t,€) = O(|€)e™ ™ + O(1)e ™,

2. For [£] > ra:
Cra(t,€) = O(1)e™ +O(lg[ e,
Gia(t, &) = O(1)e ™,
Gis(t, &) = O(¢ Ve BEEPE L O(1)eBEAL
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(t,€) = O(

(t,€) = O(
Gaa(t,€) = O(lg] ™ )te™ ’“’t+0( )e =,
G‘gg(t,g) — O )te™ + O] Ve + O™ BEt4ft
Gaa(t,€) = O(E)te™ + O(I¢] Ve + O(¢ ) BE D
Ciat(1,€) = O(€)te™ + O(€ )™ + O(¢ %) HEH

+O0(E7 e,
-0 §72)t€fct + O(,f‘fl)efct + O(éfl)efB@tiﬁt’
-0 f_Q)te_Ct + O(’f_l)e_d + O(g—l)e—B§2t:|:Bt
(1 efBg%i,Bt_i_O |§’71)67352ti,8t’

)

+
S

) (
Gaa(t, &) = O(€ )te @ + O(E Ve + O 1) BEEA
O(1)e  BEERL L O(|¢|~1)e BEHAL
)

G41(t,§) =0(& d)te_Ct + O(g_2 et 4 ot )e—BSQtiBt

+

+ 0(5—1)6—352&& + 0(5—2)6—352&&7
G42( ) =0(E e +0(l¢) He ™ + 06 He fB§2ti6t7
Gaa(t,€) = O(§ 2)te™ + O([g] e + O e P

)
)
+O(1)e B¢ tiﬁt+0(|£’ 1) Bg%iﬁt
Gu1,6) = Ot + O(JE e~ + Oy PEs
+ O(1)e BEHBL 1 O(|¢|L)e BE L,

Summarizing the above considerations we have:

COROLLARY 4.1. There exist positive constants r1 and ro such that:

1. If |&] < r1, then
(4.7) Gii(t,€) = 0(&)e € + O(1)e™ ™, i,j=1,2,3,4,

2. If r1 < |€]| < ra, then
(4.8) IC>0 |Gy(tE)<C, VE>0,i0,5=1,2,3,4.

3. If |&] > 1o, then
(4.9)  Gij(t,€) = 0(€)e™ + O(1)e BEHO 4 j =123 4.

Proof. Properties 1 and 3 are simple consequences of the above con-
siderations. We prove the second property Let & be the value of £ for
which the characteristic equation ) has multiple roots. We can show
that the limit of GU (t,€) is bounded at the point &y. Let Ai(&0) = Aj(&o)
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for some i,57 = 1,2,3,4 (cf. Remark (3.2 - In particular, if we assume that
A1(&o) = Aa2(&), then there exists C > 0 for which |Gy;(t,€)] < C for
i,7=1,2,3,4 and t > 0, |£| > 0. This follows by tedious calculations. For
example consider G11(t, 5) We write it (cf. (4.6)) in the following form:

Gn(t, &) = are M 4+ bre 2t 4 epe Mt 4 dyem M
AoA3Ag (A1 — By) (A — Ba) oMt

B1Ba(A1 — A2) (A1 — A3) (A1 — Ag)

_ MdsMe Bl —Br)
B1Ba(A2 — A1) (A2 — A3) (A2 — Ag)

MM — Bi) (A3 — Ba) ot
B1Ba(A3 — M)Az — A2) (A3 — \g)

MM = B (M — By) ot
B1Ba(A1 — A1) (A1 — A2) (A1 — A3) ‘

We write the first two terms in the form

Ml et
C 2asha(A - B)(A — By)
N BlBQ()\l — )\2)()\1 — )\3)()\1 — )\4)
Ao = B)(A = Ba)(Ae = A3)(de —A)] e
BlBQ()\l — )\2)()\1 — )\3)()\1 — )\4)()\2 — )\3)()\2 — )\4)
AsAafA1 (A2 — Br)(Az = Ba)(M = A3) (M — Al e
B1Ba(A1 — X2) (A1 — A3) (A1 — Ag) (A2 — A3) (A2 — \y)

After some calculations we have

aile

e_)‘lt(l _ e(/\1—>\2)t)

a11€_>\1t + b11€_>\2t

_ MMM = B)(A - ot Z -1
B Ba(A — A3) (A1 —

_ AsAg[(As g — )\1)\2)()\1>\2 - BlBg)] oAt
B1Ba(A — A3)(A1 — Ag) (A2 — A3) (A2 — Ag)
B )\3)\4[()\1 + Ay — A3 — )\4)(31 + By — BlBQ(}\l + )\2))] 6_/\2t
B1Ba(A1 — A3)(A1 — M) (A2 — A3) (A2 — Ag) '

Then
AA3AL (A — Bl)(/\l Bs) te—it
B1Bz(A1 — A3)(A1 — \4)
~ AsM[(AsAg — A%)()\% — BiBy)] e
B1Ba(A1 — A3)2(A1 — A\g)?

lim Gqi(t, &) =
Eglgo 11( 5)
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_ /\3)\4[(2)\1 — A3 — A4)<Bl + By — 2B132)\1)] e_)\lt
BlBQ()\l — )\3)2()\1 — )\4)2
~ AMM(A3 = Bi)(A3 — By) ot _ APA3(As = B1)(As — Bo) =it
B1Ba(A3 — A1)%2(A3 — \g) B1Ba(A — A1)%2(Aa — A3)
The above limit is bounded, because A1 (&o) # A3(€o0) # A1(&o) (cf. Remark
3.2). If the characteristic equation has two double roots, i.e. A\1(§) =

A2(60) and A3(60) = Aa(&o), then we proceed as above, but we analyse two
pairs of terms of G11(¢,&). m

5. L*°-L' and L?-L? time decay estimates for the initial-value
problem (|1.1)—(1.2)). Basing on the considerations of the previous section
we prove the L™-L! and L2-L? time decay estimates. Writing

4
(5.1) Ui(t,ib) :ZGij(t,l‘) X Ugj(l’), 1= 1,...,4,
7j=1

we have
4 4
Ut ) oo <D0 NGt ) . Uoj(-)]|zoe-

i=1 j=1

By the properties of the Fourier transformation (cf. [19], [22]), we obtain
1G5 (t,-) *. Uoj (Wl = 1[G (¢, €)Uos ()] ()|
< OG5t )Uoi ()l < CllGs(E, )l 2 [[Uoj ] 21

Now, we prove the following lemma.

LEMMA 5.1. Let

el €t for |¢| <1y,
ftepa =" Jor le <mi
0 for [§] > 11,
forte Ry, E€R, and p,qg >0, c,ry > 0. Then
(5.2) £t py0) |l < O(1+ )P (atD/2,
C(1+t)P92 ¢>1,
(53) It )l < { SEHOTT 0
tpa q = 0.

Sketch of proof. For t > 1 we have

IFtpa)llp = | |tree ™ dg
[€]<r1

Viry

[c=£vil p—1/2 S |t 9/2¢0e=<C | d¢ < p(atD)/2 S Cle™" | d¢ < op—(atD/2,
Vitry R
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For t <1 we have
e
£t p @)l = | |Pgtetag<C | |¢lde<C
[§l<r €]<r1

where C' is a universal positive constant. From the above we get (5.2).

The proof of ([5.3)) is a consequence of the analysis of the extreme points
of f.m

LEMMA 5.2. Let f(§) be a bounded function which vanishes inside the
ring r1 < [£| < 72 and let

ReXi(€§) >C3>0 VE#0,i=1,2,3,4.
Then
1F(€)e MO 1 < Ce™t, Vt>0,i=1,2,34,
1£(€)e || o0 < Ce™, Wt >0,
where the norms are taken with respect to &.
The proof is simple and we omit it.

LEMMA 5.3. Let

e, g > o,
f@t.&p,q) = {

0, €] < 7o,

forte Ry, £E€R, p,q€Z, q<—1. Then for c,B,3 > 0 we have
_ _Be? _

(5.4) £t pea)e™ o, £ (8 € po@)e™ P | o < Ce™
and
(55) Hf(@&]% q)e_CtHLoo’ ||f(t7£7pa Q)G_B€2tiﬂt||L°° < Ce_Ct-

Proof. We have
£t &p el = | [Pe%edg = et | |9 dg < Cem

|§[>r2 §>r2
_ B2
1£(t, & p, @)e” P80
_ S ’tpé-qe—B§2t:t/8t| d& — P S |€q6_B§2t:t/6t| dé < Ce™ .
|€]>r2 |€]>r2

We skip the proof of (5.5)). =
We consider the term Gyj;(t, z) %, Up;(x) in three intervals:
1G0T =( § +  § + | )IGute0y©)ld
[El<rr rmi<|gl<re  |&]>r2
1 2 3
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We estimate the above integrals using (3.19) and Theorem 3.1. First,
_ee? _
I <ClUoll | lem"|de < C(1+ )72 Ug| -
€]<r1
We estimate the second integral using (4.8]) and Lemma 3.1:
I < Cem Ul -
The last integral satisfies (cf. (4.9) and Lemma 5.1)
et _Be? ~
=\l Uyl de + | |emPE00;(6)  de
€1>72 €]>72
_ _ I _ Lol __Re2
= | T Ie Uyl de+ |1 [€0 Unje P de
§I>r2 §I>72
< Ce Upllps, s> 2.

We summarize the above considerations in the following formula:

4
DG ) *2 Uy ()l < CL+ )2 Upl| o VE>0, 5> 2.

ij=1

In view of (5.1]) we have
4 4
Utz < C DD NGt ) %2 Uoj ()l 2

i=1 j=1
Then using the properties of the Fourier transformation (cf. [I], [20]), we
obtain

(5.6) 1Gij(t, ) *. Unj ()2 = I|IF (G (t, )Un; ()1 ()] 2
= [1Gi;(t, - )Uo; ()l L2 < G (E, )|z [[Uoj| 2
Now, we consider G;;(t, z) *, Up;(x), using the second row of (5.16). We have
Gyt 00 OlF = (§ +  § + | )IGu(t. 000 de
[€l<ry  mi<[él<ra  [€]>r2
_ 7l 2 73
= Iij + Iij + IZJ
Next we estimate the above integrals (cf. Theorem 3.1 and Lemmas 3.1,
5.1):
(5:7) Ly < CllUs|Fz esssup |e™? < C|Ua2,

[€]<r
(5.8) I} < Cem||Upl|72,
(5.9)  IZ= | leeOn(e)Pde+ | e PEE Ty ()] de
|§]>r2 [&]>72
< Ce U2 1
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From (5.7)—(5.9) we have

4
D Gt ) %2 Uoj (llz2 < CllUollgae, ¥t > 0.
ij=1

6. LP-L9 time decay estimates for the Cauchy problem (|1.1))—(L.2])
and the proof of the main theorem. We summarize the considerations
of Section 5 as follows:

6.1) [T 0)E e < CL+ ) 2[(To, 00)| o1 VE>0,5>2
and

(6.2) (T, 0)(t, )2 < Cll(To, 00) || 12, Yt > 0.

The proof of the main theorem will be preceded by the following lemma.

LEMMA 6.1. Let T be a linear operator satisfying the following condi-
tions:

(6.3) T : W™ — L™ is bounded with norm Mo,
(6.4) T:LF? - L% s bounded with norm M,

where k,m € N. Let 1 <p<2<g<oo,1/p+1/g=1,60=2/q, N €N
and N > (1 —O)m + Ok > 0. Then

T : WNP — L9 is bounded with norm M
where
M < c(k,m,p)My—° MP.

Sketch of proof. Lemma 6.1 is a consequence of the imbedding theorems
for Besov spaces B, and Bessel spaces L*P (cf. [1], [22], [24]). We have

= W
BY, — w2,
Therefore, by —
T : BY} — L is bounded with norm My,
T : B%, — L? is bounded with norm M;.
Then by the interpolation theorem (cf. [2]) we have:

(6.5) [L® %o =LY ¢=2/60,0<6 <1,
(6.6) [Bit, Bhle = By, ok,
therefore

WN,p — LN,p — L(l—@)m-l—@k‘-f—é,p N B(l—@)m+@k
= = P .
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On the other hand, by the Riesz—Thorin theorem (cf. Theorem 2.4) the
operator
T: [Bi}; Bihle — [L%, L%e

is bounded by M, and M < M&_@Mle. Now basing on (6.5) and we
conclude the proof. m

Proof of the Main Theorem 1.1. Let T* be the linear operator defined
by
(67) T*(ta )f = G(t> ) * f
where G(t,-) = F'G(t,-) is given by formula (&.5), and f € L¥'(R) N
LY2(R), s > 2, are some functions corresponding to the initial value Uy. By

(6.1), (6.2) and (6.7)) the operator T™* is linear and bounded and has the
following properties:

T : LY (R) — L®, ||T*]| <C(1+1)~Y2 s> 2,

T : LY*(R) — L*, |T*|| <C.
In view of Lemma 6.1 the linear operator 7* maps W™P(R) to the space
L1(R), i.e.

T : WNP(R) — LY(R)
and is bounded by M, where 1 < p < ¢ < o0, 1/p+1/qg =1, © = 2/q,
N € N and the condition N > (1 —©@)s+ © > 0 in this case has the form
N>@2/p-1)(s—1)+1>0.
The constant M has the form
M = C(s,p)(1+ 1)/,

This ends the proof of the Main Theorem .

7. Summary. In this paper we proved LP-L? time decay estimates for
the solution of three coupled partial differential equations of the second
order describing the process of thermodiffusion in a solid body (in one-
dimensional space). The same approach can be applied to other hyperbolic-
parabolic or hyperbolic systems of equations used in continuum mechanics.
In the subsequent paper (cf. [25]) we shall apply Theorem 1.1 in the proof of
global (in time) existence of solution of the Cauchy problem for the nonlinear
hyperbolic-parabolic system of partial differential equations describing the
thermodiffusion in a solid body associated with the linear system f.
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