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EXTINCTION IN NONAUTONOMOUS
KOLMOGOROV SYSTEMS

Abstract. We consider nonautonomous competitive Kolmogorov systems,
which are generalizations of the classical Lotka—Volterra competition model.
Applying Ahmad and Lazer’s definitions of lower and upper averages of a
function, we give an average condition which guarantees that all but one of
the species are driven to extinction.

1. Introduction. In recent years investigation of population dynamics
has developed rapidly. One of the famous models for dynamics of a popula-
tion is the Lotka—Volterra competition system

N
) a0 =) (a0 - Y b)) =1,
j=1

where a;, b;j: [0,00) — (0,00). The model (LV]) has been studied by many
authors. They obtained a lot of results dealing with persistence and global
attractivity. Gopalsamy [5], [6] and Tineo and Alvarez [9] showed that if

N
Disnr Qs
(GAT) aiL>ZM fori=1,...,N
= e
J#

where g1, (resp. gps) denotes the infimum (resp. supremum) of the function g,
then system (LV)) is persistent and globally attractive. To be more precise,
Gopalsamy proved that in the almost periodic case the conditions (GAT)
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together with the conditions

N
(D) bij>ZbijL fore=1,...,N
j=1
J#i
imply persistence and global attractivity of (LV|). Then Alvarez and Tineo

showed that we may drop assumption (D). Ahmad and Lazer [2] proved that
persistence and global attractivity hold under the conditions

N

boinr Ml
mla;] > W fori=1,...,N
j=1 33 L
J#i
where
t t
mlg] = %I_I? irg(f) . Sg(T) dr,  M][g] = limsup — Sg(T) dr.
- s t—s—00 S S

In [I] and [4] a nonautonomous logistic equation
(L) h(£) = uo(t) (alt) — b(t)uo(t)), tER,
is considered. It is well known that an autonomous logistic equation
u' = u(b— au)

with a,b > 0 has a global attractor on (0,00) at the carrying capacity
x = b/a. Ahmad [1] and Coleman [4] showed that in the nonautonomous
equation the role of the globally attracting carrying capacity of the au-
tonomous equation is played by a well defined canonical solution u;(t) to
which all other solutions converge.

LEMMA 1 (Ahmad and Coleman [I], [4]). Assume that in the func-
tions a(t), b(t) are continuous and bounded above and below by positive con-
stants. Then equation has a unique solution u* which is bounded above
and below by positive reals for all t.

We should emphasize that in Lemma 1 we assume that the solution of
equation is bounded and bounded away from zero on the whole of R.

LEMMA 2 (Coleman [4]). Suppose that in the functions a(t), b(t) are
continuous and bounded above and below by positive constants. If u(t),v(t)
are positive solutions of then u(t) — v(t) — 0 as t — oo.

Thus u(t),v(t) — u*. At the same time Francisco Montes de Oca and
Mary Lou Zeeman dealt with extinction. They considered a competing sys-
tem , where a;,b;;: R — (0,00) are continuous functions bounded by
positive reals. In [7] they gave algebraic criteria on the parameters which
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guarantee that all but one of the species are driven to extinction; namely,
for each k > 1 there exists ¢ < k such that for any j <k,

(E) apmbigiv < biyrag;r.

They proved that under condition the species us, . .., un are driven to ex-
tinction whilst u; stabilizes at the unique bounded solution u] of the logistic
equation on the u; axis. Moreover, they showed convergence of trajectories
to uj. Further, they gave a geometric interpretation of . In [3], Ahmad
and Montes de Oca studied the T-periodic system , i.e., the coefficients
of are continuous and periodic with a common period T'. They obtained
the same result as in [7] under the assumption that for each k > 1, there
exists i < k such that for any j <k,

arbiy;(t) — G, br;(t) <0,

where
T

c_li:T(S)ai(T)dT>0, i=1,...,N.

In this paper we extend some of the above results to the case of N-species
nonautonomous competitive Kolmogorov systems. We consider a system

(1.1) uj = u; fi(t, u)
on the nonnegative cone

C={u=(up,...,un) :u; >0,1<i< N},
where

(1) f=(f1,---,fn) : [0,00) x C — R is continuous together with its
first derivatives 0f;/0u;,
(2) for each compact set C' C C 8fi (t,u) are bounded and uniformly

’ 8’&]'

continuous on [0, c0) x C,
(3) there exist agl),a?) > 0 such that az(-l) < fi(t,0,...,0) < a§2) for all

t>0and 1 <i< N,

(4) g{:(t,u)gOforalltzo,uEC,andi,jzl,...,N,
(5) there exist bl(il) > 0 such that gﬁi (t,u) < —bgil) forallt >0, u e C,
and i =1,...,N.

We give a condition (Theorem 1) which implies that all but one of the species
are driven to extinction. Moreover, if U (¢) is the solution of the equation

Ui(t) = Ui() f(t, ua(t), - un(t))

and u(t) = (ui(t),...,un(t)) is the positive solution of (1.1)) then wu;(t) —
Ui (t) — 0 as t — oo (Theorem 2).
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2. Preliminaries. We start by proving the following

LEMMA 3. If u: [to, Tmax) — C, to > 0, is a mazimally defined solution
of (1.1)) such that u;(0) >0 fori=1,...,N, then u;(t) >0 fori=1,...,N
and t € [to, Tmax),

Proof. By (L),

t

u;(t) = u;(0) exp ( S fi(sy,ui(s),...,un(s)) ds) >0, t€[to, Tmax)- =

LEMMA 4. If u: [to, Tmax) — C, to > 0, is a mazimally defined solution
of (L.1)) such that u;(0) >0 fori=1,..., N, then

(1) Tmax — OO,
(i) limsup;_, . u;(t) < a,EQ)/bgil) fori=1,...,N.

Proof. (i) Note that by assumption (4),
Tmax

ui(t)gui(to)exp< S fi(s,O,...,O)ds>.

to
Hence we see that mpax = 00.
(ii) By assumptions (3), (4) and (5),

uf < uial® — b ui(1)).

Let x;(t) be the solution of the logistic equation
(12) 7} = wi(af? — b i(1))

i
satisfying the initial condition x;(t9) = u;(tp). Then by the comparison prin-
ciple,
(1.3) wi(t) < wxi(t) fort>ty,i=1,...,N.

For any positive solution x;(t) of 1D we have limy_,o z;(t) = al@)/ bgll ) for
1=1,...,N. This yields the desired result. =

Define
B = (0,0 /b7 x - x [0,a$) /b,
@ ._ . [Ofi .
(1.4) bij .——1nf{auj(t,x).tZO,xEB}.

Assumptions (2) and (4) guarantee that 0 < bz(?) < 00. Further, define

al) = min{agl) ci=1,...,N}, b = max{bg) ti,j=1,...,N}.
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LEMMA 5. There exists § > 0 such that if u(t) = (u1(t),...,un(t)) is a
positive solution of (1.1) then

N
hgloglf Zl u;(t) > 9.

Proof. Let
N
V()= ut).
i=1

Then
N N
Vi(t) = Zu;(t) = Zui(t)fi(taul(t)a - un(?))
i=1 i=1

> V() min{ flt, ur(8), ..., un(t) 11 < i < N},
We take 0 < § < a(l)/b(z) such that the set

Pg—{UECZiUiS(S}
i=1

is contained in B. We claim that V'(¢) > 0 if u(t) = (u1(t),...,un(t)) € Ps.
Indeed, if u(t) € Ps then

N
V() > V(t) [a@) — 3 6@y, (t)} —V(©)a® — 5PV ()] > 0.
j=1
We have thus proved that V'(¢) > 0 as long as (0 <) V(t) < §. Consequently,
liminf; .o, V() > 6. By the definition of V' we have liminf; o SN | u;(t)
> 0. m

Define

B(77) = [07 a’§2)/b§11) + 77] X X [O,Q%)/bg\ﬂv + 7]]7 n > 0,

Bij(n) = —inf{gfi(t,x):tzo,xeB(n)}, 1<4,5<N.

s
By assumptions (2), (4) and (5), 0 < 8;;(n) < cc.
LEMMA 6.
s 5= )

In the proof of Lemma 6, u, v are elements of C, and || - || denotes the

Euclidean norm in R,

Proof of Lemma 6. Notice that n — (;;(n) is nondecreasing. Hence the
limit lim, o+ 83;(n) exists, and lim, o+ Bi;(n) > bl(-?). Take £ > 0. It suffices
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to prove that there exists ¥ > 0 such that for all ¢t > 0 and u € B(9),

Of; )
By assumption (2), there exists 7 > 0 such that if ||u — v|| <7 then
Ofi Ofi

— > .
o, (t,u) au, (t,v)|<e, w,veB(n),t>0

For each u € B(n/2) there is v € B such that ||u — v|| < 7/2 < n. Hence

o f; ofi
1. — > — > .
16 Gtw-glte == 120ue B/
Therefore of of
TN : < > 0.
P (t,u) + au, (t,v)<e, t>0

By (1.4), for all t > 0, x € B,

of; )
t > —b.
au, 10 = by

Hence, by (|1.6]),
9

8Uj

which proves (1.5)). m

We now define the lower and upper averages of a function g which is
continuous and bounded above and below on [0,00). If 0 < s < t we set

Oi vy 4e <t e, 120, ue Bn/2),

< — :
(tu) < g g

Alg,t,s] == Sg(T) dr.

S
The lower and upper averages of g are defined by

t—s

mlg) == liminf Alg,t,s],  Mlg] = limsup Alg,, 5]

t—s—00
Notice that by assumption (3),
t
1
oM < 7Sfi(r,0,...,0)d75a§2) for 1<i<N,0<s<t.

Hence
ol < mlfi(40,...,0)] < M[£i(-,0,...,0)] < a?.

In [8] we introduced average conditions for Kolmogorov systems

N b Mf(-,0,...,0
mlfi(0,...,0)] > 3 2 [Jé(l) )]

=1 jj

fori=1,..., N,

which guarantee that system (1.1]) is permanent and globally attractive.
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Define

(M ._ _ Ofi s
(1.7) b = sup{auj(t,a:) .t_O,xEB}.

3. Main theorem

THEOREM 1. Assume that for every k > 1 there exists ix, < k such that
for all j <k,

, M{fi(-,0,...,0)] b,i”

If u = (u1(t),...,un(t)) is a positive solution of (1.1)) then u;(t) — 0 as
t— oo foralli=2,...,N.

The idea of the proof comes from [7].

Proof. Let u(t) = (uy(t),...,un(t)) be a positive solution of system
(1.1). We argue by induction. First we show that uy(t) — 0 as t — oo. Let
i = iy be given by inequality . By assumptions (3)—(5) and the mean
value theorem,

N
(1.8) y(8) < un (D) (Fu(t,0,...,0) = 30 (1)).
7j=1
Fix n > 0 such that
M[fw(t,0,...,0)] _ )

(1.9)

By Lemma 4(ii) there is ¢; > 0 such that u(t) € B(n) for ¢ > ¢;. Hence and
by the mean value theorem,

(1.10) uh(t) > ui(t )(fz Zﬁw i (t) > for t > t;.
By (1.9), we can choose «a,~ > 0 such that for j < N,
. p)

(111> M[fN(aoavo)]<g< Nj

m[fi('vov"'70)] Yy 51‘]‘(77)
Let

Vi = u; “u).

Then

(1.12) Ny (—a“g(t) +y ulN(t)).
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Therefore by (1.8]) and ((1.10)),
Vi Y
=N < (t,0,...,0) — ()
X< Vi (—a(fi(t0,..,0) Z;awwuﬂ

N

V(0,0 = S us()) )

Jj=1

:VN(fny(t,O,...,O)—Oéfi(tvow-wo)

N bg\%
+;’Vﬁm’(n)(7 By )> (t)> for t > t;.

By (1.11]) we can choose ¢ > 0 such that
p)

< —( forj<N.

=2
=

ij ()
Hence

dVn

(1.18) =2 < Vv (3w (8.0, 0) = afi(t,0.....0) = CyBiln

()

where §;(n) = min{F;;(n) : j =1,..., N}. By Lemma 5, there exists to > ¢;
such that

HMZ

N
> ui(t) > 6/2 fort >t

Hence
dV;
dzAfN VN(’YfN( 0)-0&]2(@0,,0)-5) fOI‘t>t2,
where
§=(Bij(n)do/2 > 0.
Hence

t

Vn(t) < Vn(ta) exp{ S (vfn(7,0,...,0)—afi(1,0,...,0)=&) dT} fort > to.

t2
By the definition of VN we have
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for t > t5. By Lemma 4(i) there exists R > 0 such that u;(t) < R for
j=1,...,N. Therefore

(114)  un(t) < Cexp{rly [ (4fx(7,0,...,0) — afi(r,0,...,0) = &) dr}

to

for ¢t > to, where

Now we show that
t

lim § (/n(7,0,...,0) = afi(7,0,...,0) =€) dr = —o0.

to
By (L),
(1.15) YMIfn(t,0,...,0)] — am[fi(t,0,...,0)] <O0.
Since
t
lim sup S(ny(t,O,...,O)—afi(t,O,...,()))dT

_ t—1
t—to—00 2t2

t
SfN(t,O,...,O)dr—atlirgglofot_tz Sfi(t,O,...,O)dT

to to
=~yMI[f(t,0,...,0)] —am[f(t,0,...,0)] <0 for ¢ > to,

it follows that
t
lim sup S(’ny(T,O, oo, 0) —afi(r,0,...,0))dr = —o0  for t > ta.

< v limsup

t—ta—oo U — 2

t—to—00 to
Therefore
t
(1.16) lim V(7 fn(7,0,...,0) = afi(7,0,...,0) = &) dr = —o0
— 00

2

for ¢ > to. Hence and by it follows that un(t) — 0 as t — oc.

Now we prove that for 1 < p < N, up(t) — 0 as t — oo under the
assumption that for p < j < N, u;(t) — 0 as t — oco. Let i = i), be given by
inequality . Fix n > 0 such that
M[fp('7 0,... 70)] < bl()?
m[fl(v()??o)] 51](77)

(1.17)
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From assumption (4), (5) and by the mean value theorem,

(1.18) (1) < up(t )(fp Z by )

Lemma 4(ii) implies the existence of ¢; > 0 such that u(t) € B(n) for t > t;.
Hence

(1.19)  wl(t) > wilt )(fz Z@] t) for t > 1.

By (1.17), we can choose A, x > 0 such that for j < p,

€]
M[fy(+,0,...,0)] _ A _ by, ‘
Note that by (1.20) there exists ¢ > 0 such that

(1.20)

(1)
A bpj
M <—¢<0 forj<np.
Kk Bij(n)

Let

=X K
Vp i=u; "u

5
Similarly to ((1.12))—(1.13) we get

d
s <V(/sfp(t,O,...,O)—/\fi(t,O,...,O)

dt
- 1)
1
- PZUJ Z (ABij(n) — Kby, )Uj(t)>,
Jj=p+1
where p = kmin{f;;(n) : j = 1, ..., N}¢ > 0. Note that by Lemma 5 there
exists to > 0 such that

p N
> wit)+ > wilt) >6/2  fort >t
i=1 i=p+1

Hence
v
Yy (/ffp(t,O,...,O) CN(t,0,...,0) — pd /2

dt
Y Ot - ) i0).

Jj=p+1

Choose p > 0 such that p < pd/2. Since Z i—pi1 Ui(t) — 0 as t — oo, there
exists t3 > t9 such that

p
Zuz(t) >0/3 fort > ts.
=1
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Hence
N
(1.21) ST (ABi(n) — kb )u(t) < < pdj2 for t > t.
Jj=p+1
Therefore
dVy
E S V;,(K;fp(t,(], e ,0) — /\fz(t,O, e ,0) + 0'),

where 0 = pu — pd/2 < 0 for t > t3. Hence

V,(t) < V(ts) exp{ [ (kf5(20,...,0) = Afi(t,0,...,0) + o) dT}.

t3
By the definition of V}, we have

up(t)
ub 1/k t
< (u;‘(t) uigii;) exp{i S(pr(T,O, oo, 0) = Afi(7,0,...,0) — o) dT}

for ¢t > t3. By Lemma 4(i) there exists R > 0 such that u;(t) < R. Hence
t

(122)  wy(t) < Dexp{i [ (5£,(7,0,...,0) = Afi(7,0,...,0) — ) dT}

t3

t3

for t > t3, where

D (m u;(t@)”“

u (t3)

Similarly to (1.13)—(1.15) we show that
t

lim V(kfp(7,0,...,0) = Afi(7,0,...,0) — ) dr = —c0.
t3

By (1.22) it now follows that u,(t) — 0 ast — co. =
LEMMA 7. Any positive solution of the equation
(1.23) Ui(t) = Ur(t) f1(t, U1 (1), 0,...,0)

is defined on [0,00), bounded above and below by positive constants, and
globally attractive.

Proof. By assumption (5) we have
Ui(t) < DA (-0, ... 0) = b U (1)),
From assumptions (3) and (5) it follows that
Ui(1)(ay") = B T(0) < T (i (1,0.....,0) = 6T (1)
< Ui()(ay?” = by U (1)),
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Let ¢; and dy be positive numbers such that 0 < ¢; < agl)/bgll) and d; >

a§2) / bgll). The theory of differential inequalities shows that there exists T > 0
such that
c1 < Ul(t) <d;y fort>T.

Now we prove attractivity of (1.23).
Suppose that Uy (t),Vi(t) are any two positive solutions of (1.23). Then

(1.24) U{(t) :Ul(t)fl(t, Ul,(),...,()),
(1.25) Vi(t) = Vi(t) f1(t, V4,0,...,0).

For simplicity, assume U;(0) > V;(0). Consequently, U (t) > Vi(t) for all
t > 0. Let

O(t) = In ‘U/i((g
Then - -
Ui(t) V(1)
By and (L.25),
oy = 1O VIO _ o g0, 0)— At TA0).0... . 0),

S Oit) ()

(
Since v < Uy (t) <7 and v < V;(t) < 7, using the mean value theorem we
find that for ¢t > 0,

Vi(t)
Therefore _
0,(t) — Th(t) > uln( f“”)
1(t)

Hence .

O'(t) < —bY (n) v O(1)
So
(1.26) 0<6(t) < e MO(0)  for t > 0.

By (1.26]), ©(t) — 0 as t — oo. By the definition of © it follows that ((1.23])
is globally attractive. m

Fix a positive solution U (¢) of the equation
Ui(t) = Ur(t)(f1(t,U1(t),0,...,0)).
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THEOREM 2. If u(t) = (ui(t),...,un(t)) is a positive solution of (|1.1))
then uy(t) — Uy (t) — 0 as t — oo.

Proof. Let u(t) = (ui(t),...,un(t)) be a positive solution of system
(1.1)). Let Uy(¢) be the solution of the equation

(2.1) Ui(t) = Uy (t)(f1(t, U1(t),0,...,0))

satisfying the initial condition U1(0) = u1(0). Then by the comparison prin-
ciple
up(t) <U(t) fort>0,i=1,...,N.

By assumption (5) and by the mean value theorem,

N
(2.2) Wl (t) < g (t) <f1(t,u1(t),0, BROESY bg.)uj(t)).

j=2
Let 0
= In u1
vien()
Hence
d (m m(t)) IRAORNAG
dt Ul(t) ul(t Ul(t)
Therefore by ,
Ui(t)
Ui(t) f1(t,UL(1),0,...,0)
By 23), N
Zig; < fl(tv ul(t)7 07 70) - 22 bg)u] (t)
j=
Hence

v )
(23)  — < Altw(),0,...,0) = Ai(t,T1(1),0,...,0) = b ().

By the Lagrange theorem and assumption (4),

(2'4) fl(t7 Ul(t)a 07 s 70) - fl(tv ul(t)a 07 s 70) > —511(77)(U1(t) - ul(t))
for t > t1. Therefore

N
< B0 — () = Y b

Since YN ui(t) > 6/2 for t > ty and SN, ui(t) — 0 exponentially as
t — oo it follows that

ul(t)>5/2 for t > to.
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Hence and by Lemma 4(ii),
5/2§U1(t)§R for t > to.

Using the mean value theorem we see that for ¢t > 0,

0@ -0 <m0 < 2o - o),

Ui(t)
Therefore
U1 (t) - ul(t) S len(ul (t) - U1 (t))

Hence

av al

o S PRI (t) Ui (0) — 37w (1),

=2
< 511 Z blj U] < _¢V(t) + g(t)
where
Z b Yui(t) and ¢ =pu(n)R

Hence

to
Vt) < eiﬁb(t*t?)( S g(T)ed)(T*tQ) dr + V(tz)).

Since g(t) — 0 as t — oo it is easy to prove that V(t) — 0 as t — oo. Hence
and by the definition of V' it follows that u;(t) — U (t) — 0. Since (|1.23)) is
globally attractive, we conclude that u;(t) — U;(t) — 0. =
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