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EXTINCTION IN NONAUTONOMOUS
KOLMOGOROV SYSTEMS

Abstract. We consider nonautonomous competitive Kolmogorov systems,
which are generalizations of the classical Lotka–Volterra competition model.
Applying Ahmad and Lazer’s definitions of lower and upper averages of a
function, we give an average condition which guarantees that all but one of
the species are driven to extinction.

1. Introduction. In recent years investigation of population dynamics
has developed rapidly. One of the famous models for dynamics of a popula-
tion is the Lotka–Volterra competition system

(LV) u′i(t) = ui(t)
(
ai(t)−

N∑
j=1

bij(t)uj(t)
)
, i = 1, . . . , N.

where ai, bij : [0,∞) → (0,∞). The model (LV) has been studied by many
authors. They obtained a lot of results dealing with persistence and global
attractivity. Gopalsamy [5], [6] and Tineo and Alvarez [9] showed that if

(GAT) aiL >
N∑
j=1
j 6=i

bijMajM
bjjL

for i = 1, . . . , N

where gL (resp. gM ) denotes the infimum (resp. supremum) of the function g,
then system (LV) is persistent and globally attractive. To be more precise,
Gopalsamy proved that in the almost periodic case the conditions (GAT)
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together with the conditions

(D) bjjL >
N∑
j=1
j 6=i

bijL for i = 1, . . . , N

imply persistence and global attractivity of (LV). Then Alvarez and Tineo
showed that we may drop assumption (D). Ahmad and Lazer [2] proved that
persistence and global attractivity hold under the conditions

m[ai] >
N∑
j=1
j 6=i

bijMM [aj ]
bjjL

for i = 1, . . . , N

where

m[g] = lim inf
t−s→∞

1
t− s

t�

s

g(τ) dτ, M [g] = lim sup
t−s→∞

1
t− s

t�

s

g(τ) dτ.

In [1] and [4] a nonautonomous logistic equation

(L) u′0(t) = u0(t)(a(t)− b(t)u0(t)), t ∈ R,

is considered. It is well known that an autonomous logistic equation

u′ = u(b− au)

with a, b > 0 has a global attractor on (0,∞) at the carrying capacity
x = b/a. Ahmad [1] and Coleman [4] showed that in the nonautonomous
equation (L) the role of the globally attracting carrying capacity of the au-
tonomous equation is played by a well defined canonical solution u∗i (t) to
which all other solutions converge.

Lemma 1 (Ahmad and Coleman [1], [4]). Assume that in (L) the func-
tions a(t), b(t) are continuous and bounded above and below by positive con-
stants. Then equation (L) has a unique solution u∗ which is bounded above
and below by positive reals for all t.

We should emphasize that in Lemma 1 we assume that the solution of
equation (L) is bounded and bounded away from zero on the whole of R.

Lemma 2 (Coleman [4]). Suppose that in (L) the functions a(t), b(t) are
continuous and bounded above and below by positive constants. If u(t), v(t)
are positive solutions of (L) then u(t)− v(t)→ 0 as t→∞.

Thus u(t), v(t) → u∗. At the same time Francisco Montes de Oca and
Mary Lou Zeeman dealt with extinction. They considered a competing sys-
tem (LV), where ai, bij : R → (0,∞) are continuous functions bounded by
positive reals. In [7] they gave algebraic criteria on the parameters which
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guarantee that all but one of the species are driven to extinction; namely,
for each k > 1 there exists ik < k such that for any j ≤ k,
(E) akMbikjM < bikLakjL.

They proved that under condition (E) the species u2, . . . , uN are driven to ex-
tinction whilst u1 stabilizes at the unique bounded solution u∗1 of the logistic
equation on the u1 axis. Moreover, they showed convergence of trajectories
to u∗1. Further, they gave a geometric interpretation of (E). In [3], Ahmad
and Montes de Oca studied the T -periodic system (LV), i.e., the coefficients
of (LV) are continuous and periodic with a common period T . They obtained
the same result as in [7] under the assumption that for each k > 1, there
exists ik < k such that for any j ≤ k,

ākbikj(t)− āikbkj(t) < 0,

where

āi =
1
T

T�

0

ai(τ) dτ > 0, i = 1, . . . , N.

In this paper we extend some of the above results to the case of N -species
nonautonomous competitive Kolmogorov systems. We consider a system

(1.1) u′i = uifi(t, u)

on the nonnegative cone

C = {u = (u1, . . . , uN ) : ui ≥ 0, 1 ≤ i ≤ N},
where

(1) f = (f1, . . . , fN ) : [0,∞) × C → RN is continuous together with its
first derivatives ∂fi/∂uj ,

(2) for each compact set C̃ ⊂ C, ∂fi

∂uj
(t, u) are bounded and uniformly

continuous on [0,∞)× C̃,
(3) there exist a(1)

i , a
(2)
i > 0 such that a(1)

i ≤ fi(t, 0, . . . , 0) ≤ a
(2)
i for all

t ≥ 0 and 1 ≤ i ≤ N ,
(4) ∂fi

∂uj
(t, u) ≤ 0 for all t ≥ 0, u ∈ C, and i, j = 1, . . . , N ,

(5) there exist b(1)
ii > 0 such that ∂fi

∂ui
(t, u) ≤ −b(1)

ii for all t ≥ 0, u ∈ C,
and i = 1, . . . , N .

We give a condition (Theorem 1) which implies that all but one of the species
are driven to extinction. Moreover, if U∗1 (t) is the solution of the equation

U ′1(t) = U ′1(t)f1(t, u1(t), . . . , uN (t))

and u(t) = (u1(t), . . . , uN (t)) is the positive solution of (1.1) then u1(t) −
U∗1 (t)→ 0 as t→∞ (Theorem 2).
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2. Preliminaries. We start by proving the following

Lemma 3. If u : [t0, τmax)→ C, t0 ≥ 0, is a maximally defined solution
of (1.1) such that ui(0) > 0 for i = 1, . . . , N , then ui(t) > 0 for i = 1, . . . , N
and t ∈ [t0, τmax),

Proof. By (1.1),

ui(t) = ui(0) exp
( t�

t0

fi(s, u1(s), . . . , uN (s)) ds
)
> 0, t ∈ [t0, τmax).

Lemma 4. If u : [t0, τmax)→ C, t0 ≥ 0, is a maximally defined solution
of (1.1) such that ui(0) > 0 for i = 1, . . . , N , then

(i) τmax =∞,
(ii) lim supt→∞ ui(t) ≤ a

(2)
i /b

(1)
ii for i = 1, . . . , N .

Proof. (i) Note that by assumption (4),

ui(t) ≤ ui(t0) exp
( τmax�

t0

fi(s, 0, . . . , 0) ds
)
.

Hence we see that τmax =∞.
(ii) By assumptions (3), (4) and (5),

u′i ≤ ui(a
(2)
i − b

(1)
ii ui(t)).

Let xi(t) be the solution of the logistic equation

(1.2) x′i = xi(a
(2)
i − b

(1)
ii xi(t))

satisfying the initial condition xi(t0) = ui(t0). Then by the comparison prin-
ciple,

(1.3) ui(t) ≤ xi(t) for t ≥ t0, i = 1, . . . , N.

For any positive solution xi(t) of (1.2) we have limt→∞ xi(t) = a
(2)
i /b

(1)
ii for

i = 1, . . . , N . This yields the desired result.

Define

B := [0, a(2)
1 /b

(1)
11 ]× · · · × [0, a(2)

N /b
(1)
NN ],

b
(2)
ij := − inf

{
∂fi
∂uj

(t, x) : t ≥ 0, x ∈ B
}
.(1.4)

Assumptions (2) and (4) guarantee that 0 ≤ b(2)
ij <∞. Further, define

a(1) := min{a(1)
i : i = 1, . . . , N}, b(2) := max{b(2)

ij : i, j = 1, . . . , N}.
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Lemma 5. There exists δ > 0 such that if u(t) = (u1(t), . . . , uN (t)) is a
positive solution of (1.1) then

lim inf
t→∞

N∑
i=1

ui(t) ≥ δ.

Proof. Let

V (t) :=
N∑
i=1

ui(t).

Then

V ′(t) =
N∑
i=1

u′i(t) =
N∑
i=1

ui(t)fi(t, u1(t), . . . , uN (t))

≥ V (t) min{fi(t, u1(t), . . . , uN (t)) : 1 ≤ i ≤ N}.

We take 0 ≤ δ < a(1)/b(2) such that the set

Pδ =
{
u ∈ C :

N∑
i=1

ui ≤ δ
}

is contained in B. We claim that V ′(t) > 0 if u(t) = (u1(t), . . . , uN (t)) ∈ Pδ.
Indeed, if u(t) ∈ Pδ then

V ′(t) ≥ V (t)
[
a(1) −

N∑
j=1

b(2)uj(t)
]

= V (t)[a(1) − b(2)V (t)] > 0.

We have thus proved that V ′(t) > 0 as long as (0 <) V (t) ≤ δ. Consequently,
lim inft→∞ V (t) ≥ δ. By the definition of V we have lim inft→∞

∑N
i=1 ui(t)

≥ δ.

Define
B(η) := [0, a(2)

1 /b
(1)
11 + η]× · · · × [0, a(2)

N /b
(1)
NN + η], η ≥ 0,

βij(η) := − inf
{
∂fi
∂uj

(t, x) : t ≥ 0, x ∈ B(η)
}
, 1 ≤ i, j ≤ N.

By assumptions (2), (4) and (5), 0 ≤ βij(η) <∞.

Lemma 6.
lim
η→0+

βij(η) = b
(2)
ij .

In the proof of Lemma 6, u, v are elements of C, and ‖ · ‖ denotes the
Euclidean norm in RN .

Proof of Lemma 6. Notice that η 7→ βij(η) is nondecreasing. Hence the
limit limη→0+ βij(η) exists, and limη→0+ βij(η) ≥ b(2)

ij . Take ε > 0. It suffices
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to prove that there exists ϑ > 0 such that for all t ≥ 0 and u ∈ B(ϑ),

(1.5) − ∂fi
∂uj

(t, u)− b(2)
ij ≤ ε.

By assumption (2), there exists η > 0 such that if ‖u− v‖ < η then∣∣∣∣ ∂fi∂uj
(t, u)− ∂fi

∂uj
(t, v)

∣∣∣∣ < ε, u, v ∈ B(η), t ≥ 0.

For each u ∈ B(η/2) there is v ∈ B such that ‖u− v‖ ≤ η/2 < η. Hence

(1.6)
∂fi
∂uj

(t, u)− ∂fi
∂uj

(t, v) ≥ −ε, t ≥ 0, u ∈ B(η/2).

Therefore
− ∂fi
∂uj

(t, u) +
∂fi
∂uj

(t, v) ≤ ε, t ≥ 0.

By (1.4), for all t ≥ 0, x ∈ B,
∂fi
∂uj

(t, x) ≥ −b(2)
ij .

Hence, by (1.6),

− ∂fi
∂uj

(t, u) ≤ − ∂fi
∂uj

(t, v) + ε ≤ b(2)
ij + ε, t ≥ 0, u ∈ B(η/2),

which proves (1.5).
We now define the lower and upper averages of a function g which is

continuous and bounded above and below on [0,∞). If 0 < s < t we set

A[g, t, s] :=
1

t− s

t�

s

g(τ) dτ.

The lower and upper averages of g are defined by
m[g] := lim inf

t−s→∞
A[g, t, s], M [g] := lim sup

t−s→∞
A[g, t, s].

Notice that by assumption (3),

a
(1)
i ≤

1
t− s

t�

s

fi(τ, 0, . . . , 0) dτ ≤ a(2)
i for 1 ≤ i ≤ N, 0 < s < t.

Hence
a

(1)
i ≤ m[fi(·, 0, . . . , 0)] ≤M [fi(·, 0, . . . , 0)] ≤ a(2)

i .

In [8] we introduced average conditions for Kolmogorov systems

m[fi(·, 0, . . . , 0)] >
N∑
j=1
j 6=i

b
(2)
ij M [fj(·, 0, . . . , 0)]

b
(1)
jj

for i = 1, . . . , N,

which guarantee that system (1.1) is permanent and globally attractive.
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Define

(1.7) b
(1)
ij := − sup

{
∂fi
∂uj

(t, x) : t ≥ 0, x ∈ B
}
.

3. Main theorem

Theorem 1. Assume that for every k > 1 there exists ik < k such that
for all j ≤ k,

(E′)
M [fk(·, 0, . . . , 0)]
m[fik(·, 0, . . . , 0)]

<
b
(1)
kj

b
(2)
ikj

.

If u = (u1(t), . . . , uN (t)) is a positive solution of (1.1) then ui(t) → 0 as
t→∞ for all i = 2, . . . , N .

The idea of the proof comes from [7].

Proof. Let u(t) = (u1(t), . . . , uN (t)) be a positive solution of system
(1.1). We argue by induction. First we show that uN (t)→ 0 as t→∞. Let
i = iN be given by inequality (E′). By assumptions (3)–(5) and the mean
value theorem,

(1.8) u′N (t) ≤ uN (t)
(
fN (t, 0, . . . , 0)−

N∑
j=1

b
(1)
Njuj(t)

)
.

Fix η > 0 such that

(1.9)
M [fN (t, 0, . . . , 0)]
m[fi(t, 0, . . . , 0)]

<
b
(1)
Nj

βij(η)
.

By Lemma 4(ii) there is t1 > 0 such that u(t) ∈ B(η) for t > t1. Hence and
by the mean value theorem,

(1.10) u′i(t) ≥ ui(t)
(
fi(t, 0, . . . , 0)−

N∑
j=1

βij(η)uj(t)
)

for t > t1.

By (1.9), we can choose α, γ > 0 such that for j ≤ N ,

(1.11)
M [fN (·, 0, . . . , 0)]
m[fi(·, 0, . . . , 0)]

<
α

γ
<

b
(1)
Nj

βij(η)
.

Let
VN := u−αi uγN .

Then

(1.12)
dVN
dt

= VN

(
−αu

′
i(t)
ui(t)

+ γ
u′N (t)
uN (t)

)
.
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Therefore by (1.8) and (1.10),

dVN
dt
≤ VN

(
−α
(
fi(t, 0, . . . , 0)−

N∑
j=1

βij(η)uj(t)
)

+ γ
(
fN (t, 0, . . . , 0)−

N∑
j=1

b
(1)
Njuj(t)

))
= VN

(
γfN (t, 0, . . . , 0)− αfi(t, 0, . . . , 0)

+
N∑
j=1

γβij(η)
(
α

γ
−

b
(1)
Nj

βij(η)

)
uj(t)

)
for t > t1.

By (1.11) we can choose ζ > 0 such that

α

γ
−

b
(1)
Nj

βij(η)
< −ζ for j ≤ N.

Hence

(1.13)
dVN
dt
≤ VN

(
γfN (t, 0, . . . , 0)− αfi(t, 0, . . . , 0)− ζγβ̂i(η)

N∑
j=1

uj(t)
)

where β̂i(η) = min{βij(η) : j = 1, . . . , N}. By Lemma 5, there exists t2 > t1
such that

N∑
j=1

uj(t) > δ/2 for t > t2.

Hence
dVN
dt
≤ VN (γfN (t, 0, . . . , 0)− αfi(t, 0, . . . , 0)− ξ) for t > t2,

where
ξ = ζγβij(η)δ/2 > 0.

Hence

VN (t) ≤ VN (t2) exp
{ t�

t2

(γfN (τ, 0, . . . , 0)−αfi(τ, 0, . . . , 0)−ξ) dτ
}

for t > t2.

By the definition of VN we have

uN (t) <
(
uαi (t)

uγN (t2)
uαi (t2)

)1/γ

× exp
{

1
γ

t�

t2

(γfN (τ, 0, . . . , 0)− αfi(τ, 0, . . . , 0)− ξ) dτ
}
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for t > t2. By Lemma 4(i) there exists R > 0 such that uj(t) < R for
j = 1, . . . , N . Therefore

(1.14) uN (t) < C exp
{

1
γ

t�

t2

(γfN (τ, 0, . . . , 0)− αfi(τ, 0, . . . , 0)− ξ) dτ
}

for t > t2, where

C =
(
Rα

uγN (t2)
uαi (t2)

)1/γ

.

Now we show that

lim
t→∞

t�

t2

(γfN (τ, 0, . . . , 0)− αfi(τ, 0, . . . , 0)− ξ) dτ = −∞.

By (1.11),

(1.15) γM [fN (t, 0, . . . , 0)]− αm[fi(t, 0, . . . , 0)] < 0.

Since

lim sup
t−t2→∞

1
t− t2

t�

t2

(γfN (t, 0, . . . , 0)− αfi(t, 0, . . . , 0)) dτ

≤ γ lim sup
t−t2→∞

1
t− t2

t�

t2

fN (t, 0, . . . , 0) dτ − α lim inf
t−t2→∞

1
t− t2

t�

t2

fi(t, 0, . . . , 0) dτ

= γM [f(t, 0, . . . , 0)]− αm[f(t, 0, . . . , 0)] < 0 for t > t2,

it follows that

lim sup
t−t2→∞

t�

t2

(γfN (τ, 0, . . . , 0)− αfi(τ, 0, . . . , 0)) dτ = −∞ for t > t2.

Therefore

(1.16) lim
t→∞

t�

t2

(γfN (τ, 0, . . . , 0)− αfi(τ, 0, . . . , 0)− ξ) dτ = −∞

for t > t2. Hence and by (1.14) it follows that uN (t)→ 0 as t→∞.
Now we prove that for 1 < p < N , up(t) → 0 as t → ∞ under the

assumption that for p < j < N , uj(t)→ 0 as t→∞. Let i = ip be given by
inequality (E′). Fix η > 0 such that

(1.17)
M [fp(·, 0, . . . , 0)]
m[fi(·, 0, . . . , 0)]

<
b
(1)
pj

βij(η)
.
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From assumption (4), (5) and by the mean value theorem,

(1.18) u′p(t) ≤ up(t)
(
fp(t, 0, . . . , 0)−

N∑
j=1

b
(1)
pj uj(t)

)
.

Lemma 4(ii) implies the existence of t1 > 0 such that u(t) ∈ B(η) for t > t1.
Hence

(1.19) u′i(t) ≥ ui(t)
(
fi(t, 0, . . . , 0)−

N∑
j=1

βij(η)uj(t)
)

for t > t1.

By (1.17), we can choose λ, κ > 0 such that for j ≤ p,

(1.20)
M [fp(·, 0, . . . , 0)]
m[fi(·, 0, . . . , 0)]

<
λ

κ
<

b
(1)
pj

βij(η)
.

Note that by (1.20) there exists ς > 0 such that

λ

κ
−

b
(1)
pj

βij(η)
< −ς < 0 for j ≤ p.

Let
Vp := u−λi uκp .

Similarly to (1.12)–(1.13) we get

dVp
dt
≤ Vp

(
κfp(t, 0, . . . , 0)− λfi(t, 0, . . . , 0)

− ρ
p∑
j=1

uj(t) +
N∑

j=p+1

(λβij(η)− κb(1)
pj )uj(t)

)
,

where ρ = κmin{βij(η) : j = 1, . . . , N}ς > 0. Note that by Lemma 5 there
exists t2 > 0 such that

p∑
i=1

ui(t) +
N∑

i=p+1

ui(t) > δ/2 for t > t2.

Hence
dVp
dt
≤ Vp

(
κfp(t, 0, . . . , 0)− λfi(t, 0, . . . , 0)− ρδ/2

+
N∑

j=p+1

(λβij(η)− κb(1)
pj )uj(t)

)
.

Choose µ > 0 such that µ < ρδ/2. Since
∑N

i=p+1 ui(t)→ 0 as t→∞, there
exists t3 > t2 such that

p∑
i=1

ui(t) > δ/3 for t > t3.
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Hence

(1.21)
N∑

j=p+1

(λβij(η)− κb(1)
pj )uj(t) < µ < ρδ/2 for t > t3.

Therefore
dVp
dt
≤ Vp(κfp(t, 0, . . . , 0)− λfi(t, 0, . . . , 0) + σ),

where σ = µ− ρδ/2 < 0 for t > t3. Hence

Vp(t) ≤ Vp(t3) exp
{ t�

t3

(κfp(t, 0, . . . , 0)− λfi(t, 0, . . . , 0) + σ) dτ
}
.

By the definition of Vp we have

up(t)

<

(
uλp(t)

uκp(t3)
uλi (t3)

)1/κ

exp
{

1
κ

t�

t3

(κfp(τ, 0, . . . , 0)− λfi(τ, 0, . . . , 0)− σ) dτ
}

for t > t3. By Lemma 4(i) there exists R > 0 such that uj(t) < R. Hence

(1.22) up(t) < D exp
{

1
κ

t�

t3

(κfp(τ, 0, . . . , 0)− λfi(τ, 0, . . . , 0)− σ) dτ
}

for t > t3, where

D =
(
Rλ

uκp(t3)
uλi (t3)

)1/κ

Similarly to (1.13)–(1.15) we show that

lim
t→∞

t�

t3

(κfp(τ, 0, . . . , 0)− λfi(τ, 0, . . . , 0)− σ) dτ = −∞.

By (1.22) it now follows that up(t)→ 0 as t→∞.
Lemma 7. Any positive solution of the equation

(1.23) U ′1(t) = U1(t)f1(t, U1(t), 0, . . . , 0)

is defined on [0,∞), bounded above and below by positive constants, and
globally attractive.

Proof. By assumption (5) we have

U ′1(t) ≤ U1(t)(f1(t, 0, . . . , 0)− b(1)
11 U1(t)).

From assumptions (3) and (5) it follows that

U1(t)(a(1)
1 − b

(1)
11 U1(t)) ≤ U1(t)(f1(t, 0, . . . , 0)− b(1)

1 U1(t))

≤ U1(t)(a(2)
1 − b

(1)
11 U1(t)).
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Let c1 and d1 be positive numbers such that 0 ≤ c1 < a
(1)
1 /b

(1)
11 and d1 >

a
(2)
1 /b

(1)
11 . The theory of differential inequalities shows that there exists T > 0

such that
c1 ≤ U1(t) ≤ d1 for t ≥ T.

Now we prove attractivity of (1.23).
Suppose that Ũ1(t),Ṽ1(t) are any two positive solutions of (1.23). Then

Ũ ′1(t) = Ũ1(t)f1(t, Ũ1, 0, . . . , 0),(1.24)

Ṽ ′1(t) = Ṽ1(t)f1(t, Ṽ1, 0, . . . , 0).(1.25)

For simplicity, assume Ũ1(0) > Ṽ1(0). Consequently, Ũ1(t) > Ṽ1(t) for all
t ≥ 0. Let

Θ(t) = ln
Ũ1(t)
Ṽ1(t)

.

Then

Θ′(t) =
Ũ ′1(t)
Ũ1(t)

− Ṽ ′1(t)
Ṽ1(t)

.

By (1.24) and (1.25),

Θ′(t) =
Ũ ′1(t)
Ũ1(t)

− Ṽ ′1(t)
Ṽ1(t)

= f1(t, Ũ1(t), 0, . . . , 0)− f1(t, Ṽ1(t), 0, . . . , 0),

and assumptions (4) and (5) yield

Θ′(t) ≤ −b(1)
11 (Ũ1(t)− Ṽ1(t)).

Since ν ≤ Ũ1(t) ≤ ν and ν ≤ Ṽ1(t) ≤ ν, using the mean value theorem we
find that for t > 0,

1
ν

(Ũ1(t)− Ṽ1(t)) ≤ ln
(
Ũ1(t)
Ṽ1(t)

)
≤ 1
ν

(Ũ1(t)− Ṽ1(t)).

Therefore

Ũ1(t)− Ṽ1(t) ≥ ν ln
(
Ũ1(t)
Ṽ1(t)

)
.

Hence
Θ′(t) ≤ −b(1)

11 (η) ν Θ(t).

So

(1.26) 0 ≤ Θ(t) ≤ e−b
(1)
11 νtΘ(0) for t > 0.

By (1.26), Θ(t)→ 0 as t→∞. By the definition of Θ it follows that (1.23)
is globally attractive.

Fix a positive solution U∗1 (t) of the equation

U ′1(t) = U1(t)(f1(t, U1(t), 0, . . . , 0)).
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Theorem 2. If u(t) = (u1(t), . . . , uN (t)) is a positive solution of (1.1)
then u1(t)− U∗1 (t)→ 0 as t→∞.

Proof. Let u(t) = (u1(t), . . . , uN (t)) be a positive solution of system
(1.1). Let U1(t) be the solution of the equation

(2.1) U ′1(t) = U1(t)(f1(t, U1(t), 0, . . . , 0))

satisfying the initial condition U1(0) = u1(0). Then by the comparison prin-
ciple

u1(t) ≤ U1(t) for t ≥ 0, i = 1, . . . , N.

By assumption (5) and by the mean value theorem,

(2.2) u′1(t) ≤ u1(t)
(
f1(t, u1(t), 0, . . . , 0)−

N∑
j=2

b
(1)
1j uj(t)

)
.

Let
V := ln

(
u1(t)
U1(t)

)
.

Hence
d

dt

(
ln
u1(t)
U1(t)

)
=
u′1(t)
u1(t)

− U ′1(t)
U1(t)

.

Therefore by (2.1),
U ′1(t)
U1(t)

= f1(t, U1(t), 0, . . . , 0).

By (2.2),
u′1(t)
u1(t)

≤ f1(t, u1(t), 0, . . . , 0)−
N∑
j=2

b
(1)
1j uj(t).

Hence

(2.3)
dV

dt
≤ f1(t, u1(t), 0, . . . , 0)− f1(t, U1(t), 0, . . . , 0)−

N∑
j=2

b
(1)
1j uj(t).

By the Lagrange theorem and assumption (4),

(2.4) f1(t, U1(t), 0, . . . , 0)− f1(t, u1(t), 0, . . . , 0) ≥ −β11(η)(U1(t)− u1(t))

for t > t1. Therefore

dV

dt
≤ β11(η)(U1(t)− u1(t))−

N∑
j=2

b
(1)
1j uj(t).

Since
∑N

i=1 ui(t) ≥ δ/2 for t > t2 and
∑N

i=2 ui(t) → 0 exponentially as
t→∞ it follows that

u1(t) > δ/2 for t > t2.
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Hence and by Lemma 4(ii),

δ/2 ≤ u1(t) ≤ R for t > t2.

Using the mean value theorem we see that for t > 0,
1
R

(u1(t)− U1(t)) ≤ ln
(
u1(t)
U1(t)

)
≤ 2
δ

(u1(t)− U1(t)).

Therefore
U1(t)− u1(t) ≤ −R ln(u1(t)− U1(t)).

Hence

dV

dt
≤ −β11(η)R ln(u1(t)− U1(t))−

N∑
j=2

b
(1)
1j uj(t),

≤ −β11(η)RV (t)−
N∑
j=2

b
(1)
1j uj(t) ≤ −φV (t) + g(t)

where

g(t) = −
N∑
j=2

b
(1)
1j uj(t) and φ = β11(η)R.

Hence

V (t) ≤ e−φ(t−t2)
( t2�
t

g(τ)eφ(τ−t2) dτ + V (t2)
)
.

Since g(t)→ 0 as t→∞ it is easy to prove that V (t)→ 0 as t→∞. Hence
and by the definition of V it follows that u1(t)− U1(t) → 0. Since (1.23) is
globally attractive, we conclude that u1(t)− U∗1 (t)→ 0.
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