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HEDGING OF THE EUROPEAN OPTION
IN DISCRETE TIME
UNDER TRANSACTION COSTS DEPENDING ON TIME

Abstract. Hedging of the Furopean option in a discrete time financial
market with proportional transaction costs is considered. It is shown that
for a certain class of options the set of portfolios which allow the seller to
pay the claim of the buyer in quite a general discrete time market model is
the same as the set of such portfolios under the assumption that the stock
price movement is given by a suitable CRR model.

1. Introduction. In the paper we consider the problem of hedging the
European option in a discrete time market model under proportional trans-
action costs. Typically in papers on hedging under proportional transaction
costs the coefficients of the costs are constant over time. In this paper we
allow these coefficients to vary.

The problem of hedging contingent claims in discrete time under propor-
tional transaction costs was studied in many papers (see [I]-[13]). However,
it appears to be nontrivial to apply to the real market the results which
were obtained for a general model (see [3], [4], [12]). From the computa-
tional point of view the so called Cox—Ross—Rubinstein model (CRR model)
is very convenient since it easily yields the price of an option as well as the
set of portfolios which allow hedging the option (see for instance [I], [2], [10],
[11]). On the other hand the Cox—Ross-Rubinstein model seems to be too
simple to be a proper description of the real stock price movement. How-
ever, if there are no transaction costs and the payoff function of the option is
convex then the solution of the hedging problem in quite a general model of
the stock price process is the same as in a proper binomial model. This fact
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was proved for the market with one risky asset in [I3] (see also [5] where the
case of the European call option is considered) and in [9] for the case of an
arbitrary number of assets. In [§] the model with proportional transaction
costs is considered and a certain class of options is defined such that the set
of portfolios which allow one to hedge an option in a model where changes
of the stock price are bounded and i.i.d. random variables is the same as the
set of such portfolios in a proper CRR model.

This paper contains the definition of another class of options such that
the problem of finding the set of portfolios which enable hedging an option
in quite a general model of stock price evolution simplifies to this problem
in the CRR model. The convexity of suitable functions is an important part
of this definition, and it is quite easy to verify if an option is an element
of the class in question. The result therefore seems to be interesting for
practitioners since it justifies the use of the CRR model to price derivatives
for a certain class of options.

2. The model. Let (£2,F, P) be a probability space, T a positive nat-
ural number and {F;,t = 0,...,T} a family of o-algebras such that Fy =
{0,02}, Fy C Fyyq fort =0,...,T —1 and Fr = F .We assume that (2 is
finite (except Subsection 4.2).

Throughout this paper equalities and inequalities depending on w € {2
hold for all w € 2 if not stated otherwise.

We consider a market with two primary securities, a risky stock and a
riskless bond, and assume that all assets are infinitely divisible.

The stock price movement is modeled by the process {S;,t = 0,...,T}
where S; denotes the price of the stock at time ¢, for t =0, ..., T. We assume
that Sy is F; measurable for t =0,...,T.

In our model the stock price process satisfies the recursive formula

Siy1 =m4+1S fort=0,...,T -1
where Sy > 0 and {n;}1_; is a sequence of i.i.d. random variables such that

e € [d,u] and 0 < d < u.
We assume that

(2.1) P(npp=e)>0 fort=1,...,T and e € {d,u}.

It is easily seen that the price of the stock is positive at all times.

We assume that F; = o(ny, 1 <u <t)foru=1,...,T.

In our model the bond earns interest with a nonnegative, constant rate
r satisfying the inequalities d < 1 4+ 7 < u.

In this model proportional transaction costs are paid when shares of the
stock are traded. The cost of buying one share at time ¢ is (1 4+ \;)S; where
At € [0,00) for t = 0,...,T, and the amount received for selling one share
at time ¢ is (1 — p;)Sy with p, € [0,1) for t =0,...,T.



Hedging of the European option 203

We assume that for every t = 0,...,7 —1 the following inequalities hold:

(2.2) (L4 A1 +7) — (14 Aa1)d > 0,
(2.3) (14 An)u— (14 A) (1 +7) =0,
(2.4) (1= pgr)u— (L= p)(1+7) 20,
(2.5) (1= p)A+7) = (1= pega)d = 0.

For every t =0,...,T we define

{ (1+A)z ifz>0,

Z) =
pr(z) (1 —pu)z ifz<0.

For all (q1,q2) € R? and t = 0,...,T we define
quma) = {(v1,v2) €R®: q1 — v1 + pe(gz — v2) < 0}

A trading strategy (x,y) is a pair of processes {(z¢,y¢),t = 0,...,T — 1}
where x, y; are F; measurable for every t =0,...,T — 1. Here x¢, y; denote
(cash) holdings of bonds and shares respectively by the seller at time ¢ (after
transaction at that time). Moreover, for a strategy (z,y) let x_1,y—1 € R
denote the seller’s initial holdings of bonds and shares respectively.

By convention we set S_1 = 5.

A trading strategy (z,y) is called self-financing if zo —x_1+ po(yo —y—1)
< 0and z — (1 +r)xe—1 + pe(ye — myp—1) < Ofort = 1,...,7 — 1. This
means that at every trading time, the sales must finance possible purchases.

Denote by A the set of all self-financing trading strategies.

If P(ny =d)+P(ny =u) =1foreveryt =1,...,Tand0 < P(n; = u) < 1
foreveryt = 1,...,T then we have the so called Coz—Ross—Rubinstein model,

denoted by CRR(u,d).

3. Some auxiliary results. Throughout this paper, if not stated other-
wise, functions are defined on (0, c0), measurable, and take values in R.

Let p = (p1,p2) be a given pair of functions.

For every t =0,...,T we define

t (): pl(S)

t _ p1(s)
p,1 1 + )\t 2(8) -

+p2(s) and ¢, - + pa(s)
— Hht

for s € (0, 00).

Throughout this paper, if not stated otherwise, equalities and inequalities
depending on s € (0,00) hold for all s € (0, 00).

For simplicity of notation set v, = (1 4+ A)u — (1 — py)d for t = 0,...,T.
It is easily seen that 74 > 0 for t =0,...,T.
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For given p = (p1,p2) and t =0,...,T — 1 we define functions

Iy'(s) = (pz(:s) N pz(js)> - T im)u(pl(ds) — pi(us)),
1,"(s) = (1_;t+1)d(p1(d8) —p1(us)) — <p2(55) _ pZSlS)>.

Let ¥ denote the set of all pairs of functions p such that

1. c 1,C ]7;2 are convex,

2. IlT Y(s) > 0 and 12" (s) > 0 for all s € (0, 0).

DEFINITION 3.1. Let (p1,p2) be a given pair of functions. By backward
= ( () ()) fort =0,...,T as

induction we define pairs of functions p® = D1 Do

follows:
D) =pi(s), P57 = pals),
T — pre1) (1 + Aega
0(s) = Bl Res) () = detfL, ()

-1+ 1
# gt)(s) + " ctJ(QlH) (us).

(t)
Py ( ) (1+At+1)u
LEMMA 3.2. Let (p1,p2) be a pair of functions. For all s € (0,00) and
— 1 the following identities hold:
“+”<ds> (141997 (5) + pra (0 (ds) — dp (s)) =0,
5 (us) — upl () = 0.

¢
(L+ )P (5) + prea (9
— 1 and a given pair of functions p we

t=0,...,

P (us) —

For all § € [d,u],t =0,...,T

define functions
(U - 0)(1 - :U’t+1) t+1(d8)

Ll,t,@ s) =
b () Vt+1 “p2
(14 Aey1)0 — (1 — prgy1)d
gl (us) — 6 (09)
and 142 1 0
L[Z),t,&(s) :( + t+1)u_( _/'LtJrl) ;Bl(ds)
Vt+1
0 —d)(1
+( )( +)‘t+1) Z—i—ll(us) ;—'—21(98)
V41

Forallwe 2,6 € [d,u],t=0,...,7 — 1 and a given pair of functions p let
0 2 —(1+r) 1 A
= R=:y > D P ———
Gp(t) {(xay) S y=z max{(l WY L g Cp1 (0S),
—(1+7) 1 41
_— 0S
(1 _Mt+1)0x+ b P (65:)
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Moreover, let @p(t) = Gg(t) NGy(t) for t =0,...,T — 1. It is clear that the
set Gg(t) depends on w € {2 and consequently so does @p(t).

LEMMA 3.3. Forallw € 2, 0 € [d,u] andt =0,...,T —1 we have the
following equivalence: G,(t)(w) C Gg(t)(w) if and only if Lzl,’t’e(St(w)) >0
and L2 (S, (w)) > 0.

Proof. We fixw € 2,60 € [d,u] and t € {0,...,T—1}, and omit w in the
notation. Let

o R?: 0y > (4 Al

1 {(U17U2) € (1 +)\t+1)0 U1 + 0 pl (est) )
o _ —(1+r) t41

EQ—{(Ul,UQ)GR (1—Mt+1)91)1+9 p2(95t)}-

It is easily seen that ép(t) C GI(t) if and only if pW(S;) € B¢ N EY.
By direct calculation we find that p®)(S;) € EY if and only if Lll,’t’a(St)
>0, and p)($,) € EY if and only if L3"?(S,) > 0. u

By a standard calculation we obtain:

LEMMA 3.4. For everyt=0,...,T — 1 the following identities hold:
(L4+ A ) (A +A) (A +7) = (1= peg)d) 44q

;(t) 1) = (L+ X)X+ 7)ve41 e 1 (45)

L o)A+ A)u = A+ M)A +71) o (ds)

(T4 A) (L + 7)1 4.2
and
o (s) = A+ A ) (A= p)A+7) = (= ps1)d) e (us)
p(t) 2 (1 _ ,U«t)(l + T)’Yt-i-l p(t+1) 1
(L= o) (A +Ag)u — (1 — ) (1 4 7))
+ . (1 — ) (1 4+ 7r)ves1 tt}H) Q(dS)

LEMMA 3.5. Letp e V. ThenI(tH)( s)>0 (mdl(Hl)( s) > 0 for every
t=0,...,T—1.

Proof. By a straightforward calculation we get

61 PO = Lo A du oy P (ws)
| Yer1(1+7) p(t+1) Ty
L e L g+

T I (t+1)(3) + E (dS)

)

32  pP(s) =
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D
(3.3) pgt)(s)_ ds) (1= )4+ Npr) du g "

L+ Yer1(1+7) Pty
(t) L (t+1) (1 — py1)d o4
3.4 S SRS Ay
(3.4) Py (8) D2 (us) o S (5);

for every t =0,...,7T — 1.

We now use backward induction. Since p € ¥ we have I:1 7 (s) > 0

p(T)
and IZ(;F> 1( ) > 0. Assume that (t+1)( s) > 0 and IQ(fH)( ) > 0 for some

te {1 — 1}. From (3.1) and (3 3) we have
(1= pre41) (14 Ag1) du

() (t) -
(3.5)  py’(ds)—py”(us) = (1 +7)y41

1, 2,
(Ip<f+1> (us)+ Ip(:ﬂ) (ds)).
From (3.2) and (3.4) we have

pg) (us) pg) (ds) 14+ A4t
(3.6) —
u d Ve+1

By (3.5) and (3.6) we obtain
L1, v (LX) (T+ X)L +7) = (1= pgg1)d) 1y
Ip<t> (s) = L+ 2\) (1 + 7)1 Ip(t+1)(us)
(1 — gy )(L+A) (A + 1) = (14 Aeg1)d)
(14 A) (1 +7) 741
21(s) = (1 + A1) (A = peg)u— (1 = ) (A £ 7))

1- Fit1 o
Yt+1

Ip(t+1) (us) e

p<t+1) (ds).

2.t
+ Ip(t+l) (ds),

Ll (us)
- (1= ) (L +7)veq1 p(t+D)
(1= ) (L Ap)u— (1= ) (L4 7)) 2y
! (1 — ) (1 4+ r)vig1 Ip<t+1)(ds)

and therefore by (2.2) and (2.4) we get Il(f) '(s) > 0 and IQ(f> '(5)>0. =

As a consequence of (3.2), (3.4) and Lemma 3.5 we have:
LEMMA 3.6. Let p = (p1,p2) € W. Then p(t+1)(ds) < dpg)(s) and
pétﬂ)(us) > upg)(s) for all s € (0,00) andt=0,...,T — 1.
By a straightforward calculation we get

LEMMA 3.7. For any pair of functions p = (p1,p2), all s € (0,00) and
t=0,...,7 — 1 the following identities hold:

pti(s) = QB ey g o,
(A1 + per1)du
Yt+1
Concluding our technical results we obtain:

L2bu(s) = I2Y(s), LXM"(s) =0.
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THEOREM 3.8. Let p € ¥. Then L;Eifl)(s) >0 and L;zi’fl)(s) >0 for all

0 €ld,u], s€ (0,00) andt=0,...,T — 1.

Proof. For all s € (0,00) andt =0,...,T —1 let hi’s and h?’s be mea-

surable functions defined on [d, u] as follows:
’ ’ 79 27 27 79
h*(0) = L;<i+1>(s) and  h2°(0) = Lp(iﬂ)(s) for all 6 € [d, u].

By (2.3), (2.5) and Lemma 3.4 it is easily seen that hi’s and h?’s are concave
for all s € (0,00) and t = 0,...,T — 1. Therefore, we only need to show that
h;(e) > 0 and h2*(e) > 0 for all s € (0,00), € € {d,u} and t = 0,..., T —1.

Indeed, from Lemma 3.7 we have h%’s(u) = 0 and hf’s(d) = 0 for all
s € (0,00) and t = 0,...,T — 1, while from Lemmas 3.5 and 3.7 we get
hi*(d) >0 and h¥*(u) > 0 for all s € (0,00) and t =0,..., T — 1.

4. Hedging of the option. Let ¢ = (1, p2) be a given pair of func-
tions. Define an option by a pair (¢1(S7), ¢2(S7)) of random variables where
©1(ST), p2(ST) denote the amounts (in cash) of bonds and shares respec-
tively that are paid at time T to the option’s holder assuming that he exer-
cises his claim. Throughout the paper we identify an option with the pay-off
pair of functions .

An option will also be called a contingent claim or a FEuropean option
since the option’s holder can get his payment only at time 7.

It can be easily seen that for each option ¢ there exists a unique pair of
functions f, = (f,,1, fp,1) such that

41 Caerteatsn = C00) N Clas)patsy  forall s € (0,00).

We say that a trading strategy (z,y) € A hedges the option ¢ = (1, p2) if
(4.2) ©1(57) — (L +r)ar—1 + pr(p2(ST) — nryr—1) <0

and

(4.3) p(mryr—1) < (1 +7r)rr_1.

The condition (4.2) implies that the seller can pay the claim of the buyer,
and from (4.3) it follows that the seller can reach simultaneously 0 in the
number of bonds and shares. In other words (4.3) means that at time 7" the
seller can pay all his debts.

By (4.1) it is easily seen that (4.2) and (4.3) together are equivalent to
the following inequality:

(4.4) Jo1(ST) — (L +r)or_1 + pr(fp2(ST) — nryr—1) < 0.

In other words a trading strategy (x,y) € A hedges ¢ if and only if it satisfies
(4.4).
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The inequality (4.4) implies that the strategy (z,y) € A hedges ¢ if
and only if it ensures the payments f, 1(ST), fp2(S7) in bonds and shares
respectively at time 7.

Let 7y = (1 + r)xy—1 and yp = myi—1 for t =0,..., T — 1. For all w € 2
and t =0,...,7 — 1 define
Hy(t)(w) = {v € R? : there exists (v,y) € A such that (Ty, 7;)(w) = v

and P(f,1(S7) — Zr + pr(fea1(ST) —yr) < Zr | Fi)(w) = 1},
f[w(t)(w) = {v € R? : there exists (z,y) € A such that (z;,y:)(w) = v
and P(f,1(57) = Zr + pr(fea(ST) —yr) < Zr | Fi)(w) = 1}

H,(t) is the set of all pre-transaction portfolios which at time ¢ guarantee
hedging of ¢ at time T', and H,(t) is the analogous set of all post-transaction
portfolios.
_ T . .

Moreover, let H,(T) = C(f¢,1(ST),f¢,2(ST))' It is clear that H,(T) is the
set of all pre-transaction portfolios which at time T' guarantee the payments
fo1(ST), fo,2(ST) in bonds and shares respectively.

For every t = 0,...,7 — 1 let HSRR(t) and HSRR(t) be defined in the

same way as Hy(t) and I/—I’@(t) respectively, assuming additionally that
Pny=d)+P(ny=u) and 0<P(n,=u)<1l foru=t+1,...,T.

H SRR(t) and ﬁgRR(t) are the sets of pre-transaction and post-transaction
portfolios respectively, which at time ¢ guarantee hedging of ¢ at time T if
the stock price dynamics from time ¢ on is the same as in the CRR(d, u)
model.

The seller’s price of a contingent claim ¢ is defined by

7(¢) = inf {xo + po(vo) : (z,y) € A and (x,y) hedges ¢} .
It is easily seen that H,(0) does not depend on w € {2 and that m(p) =
inf{x € R: (x,0) € Hy(0)}.
For every t =0,...,T — 1 we have the following fact:

LEMMA 4.1. Let vi,v2 € R and w € §2. If (v1,v2) € Hy(t)(w) and

H,(t)(w) C C€v1,v2) then Hy(t)(w) = C(tvlm).

Proof. We fix w € §2 and omit it in the notation.

Suppose (vi,v2) € Hy(t) and Hy(t) C Cfvl up)- 1t Is casily seen that
CE‘/’UIKUQ) C Hy(t). We only have to prove that H,(t) C CvaQ). Let (v3,v4) €

H(t). Then there exists (vs,vg) € fISD(t) such that
Vs — U3 + pt(U(; — U4) <0.
Since I?I@(t) cct ) we have

(v1,v2

v1 — s + pr(va —v6) <0
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The last two inequalities imply
v1 — v3 + pr(ve — vg) + pr(ve —va) < 0.
It is easily seen that
pe(v2 — v6) + pi(ve — va) > pr(v2 — va).
By the last two inequalities we get
v1 — v3 + pe(ve —vg) < 0.
and so H,(t) C C!

(v1,v2)°

Therefore (vs,v4) € C'f

v1,V2)

For every i = 0,...,T let fé ( f f 2) denote the pair of functions
obtained from f, according to Deﬁnmon 3. 1

We have the following fact (compare also Theorem 1 in [I1] where the
model with constant coefficients of the transaction costs is considered):

THEOREM 4.2. Let ¢ be an option such that f, € ¥. Then HCRR( t) =

Ct for everyt =0,...,T — 1.

(18

Proof. We use backward induction. Clearly HS®R(T)=C7 . .
v (£S5 (51,453 (1)
Assume that for some ¢t =0,...,7 — 1 we have -2

HCRR t 1 Ct+1 )
14 ( + ) (f (t+1)(St+1)7f;t’42¢1)(st+1))

From Lemma 3.2 we have
@5)  fUAS) — 1+ )OS + e (FU37V (@S — dfSh () = o,
(4.6)  FUTD@S) — (L + 1) LU (Se) + pera (FU5D (wSe) — uflh(S) = o.

From now on, if not stated otherwise, we fix w € 2 and omit it in the
notation.
Let (wq,ws) € HSRR(t). By definition we have

@n) VS — (L w4 e (F95 Y (dSy) — du)
@8)  fUTV S — (1w + peea (£ (wSe) — uwn)
From (4.6) and (4.8) we obtain
(49)  pera(FUD (@S) — wwn) — pera (FUD (wSy) — ufly(50)

+ 1+ )08 < (1+r)wr.

IN

0,
0

IN

From (4.5) and (4.7) we have

(410)  praa (F3V(AS) — duwn) — pra (137 (dS) — df Y (S0))
+(1+ 1) (S < (1 + 7w,



210 M. A. Kocinski

We will prove now that

(4.11) FETD(Se) = wi + pe(F5(Se) —wa) < 0.

There are two cases:
First, suppose wy < f 2(St) Then by Lemma 3.6 we get

peat (f95 1 (uSh) — wwz) — pear (f5 1 (uSe) — ufLh(usSh))
= (1+ A1) u(fI(Sh) — ws).

Moreover, from the inequality wy < f (*) 5(St) we have

pu(F5R(S1) = w2) = (L+ M)([ER(S1) = wa).
Consequently, by (2.3), (4 9) we obtain (4.11).
Now suppose wy > f 2(St) Then by Lemma 3.6 we get

Pt (F3 0 (dSy) — dwz) — pera (FU57(dSy) — df Dy (uSy))
= (1 — 1) d( £ (Se) — wa).

From the inequality wy > f 2(S’t) we have

pr(FE(SE) = w2) = (L= ) (F5(S) —w2).
Consequently, by (2.5), (4.10) we obtain (4.11)

From (4.11) we have HSRR( ) C Cff LIS B

we obtain (f;)l(St) f(t) (Sy)) € HSRR( ) Consequently, Lemma 4.1 implies
that H,(t) = C*

y (4.5) and (4.6)

O (50,58 5"
The main result is:

THEOREM 4.3. Let ¢ be an option such that f, € W. Then Hy(t) =
HSRR(t) for everyt=0,..., T — 1.
w11y (St) > 0 for

all w e 2,0 € [dyu] and t = 0,...,T — 1. Thus from Lemma 3.3 we have
Gf(t+1) () € Moeja,u ch(tH)(t) forallwe 2 and t=0,...,T — 1. Moreover,
) ’ P

Proof. By Theorem 3.8 we have Lf’(tt’fl)(St) > 0 and Liﬁtﬁ

it is easy to verify that fg)(St) eqd FO+D) (t). Consequently,
cp

(4.12) f(t) Sy) € ﬂ GY (H—l) (t) foralwe Randt=0,...,7—1.
0eld,u]

We now use backward induction.
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It is clear that Hy,(T) =CT . Assume that for some t =

0,...,T — 1 we have (5l (S1):£35 (51)

Hy(t+1)=C"} :
ot +1) (fL’fT”(St+1),f§,’f§”(5t+1))
Then it is not difficult to check that (Nye(q, ) G?(tﬂ) (t) € Hy(t) for allw € £2.
©

C tly, by (4.12 t f9(S,) € H,(t). Hence C*
onsequently, by (4.12) we get fo’(St) »(t). Hence (5040580
H,(t) for all w € 2. Thus by Theorem 4.2 we get HSRR(t) C H,(t) for all

w € §2. The reverse inclusion follows from (2.1). =

C
)

REMARK 4.4. If we additionally assume that r = 0 and P(n; = 0) > 0 for
every t = 0,...,T, then the set of pre-transaction portfolios that at a given
time guarantee hedging of ¢ such that f, € ¥, is the same as the analogous
set for the American version of this option (pricing of the American option
is considered e.g. in [7]).

4.1. Examples

4.1.1. The European call option with delivery. Throughout this example
we assume that pur + Ap > 0. The holder of the option has the right to buy

one unit of the stock at the price K at time 7. We have ¢;(s) = K and
@a(s) = s. The pair f, is given as follows:

-K if s > ,
1 —pr
for(s)=4q 1—pr .
’ — (K —(14+ X if <s< )
)\T+MT( ( 7)) L+Ar — 1 —pr
0 otherwise,
S if s > )
1 —pr
s) = 1+ A K K
fo2(s) +tAr ¢ <5< |
Ar + pr AT + pr 1+ A7 L —prp
0 otherwise.

We have

K K
T T
wal(s) <s T ) an Cf¢72(8) <s T >

It is easily seen that the functions 6]271 and C?‘;Q are convex, and that
I};T_l(s) > 0 and I?;T_l(s) > 0. Thus f, € ¥. Consequently, H,(t) =
HSRR(t) for every t =0,...,T — 1 by Theorem 4.3.

4.1.2. The European call option with cash settlement. Throughout this
example we make the following assumption:

(4.13) (1 — pr)u> (1+ A1) (1 + 7).




212 M. A. Kocinski

We have ¢i(s) = (s — K)™ and ¢a(s) = 0. It is easily seen that ¢ = f,. By

C _ ~T-1
(4.13) we have H¢RR(T —-1)= C(gl(ST_l),gz(ST_l)) where

—-K

T if s > K/d,
= - K
g1(s) &xfmlﬁmdiﬂﬂu§s<KM,
L 0 otherwise,
( : 5 if s > K/d,
—HT
= - K
g2(s) ﬂffﬂwzd)iuwugs<Km,
0 otherwise.

It is easy to verify that H, (T — 1) = HSRR(T —1) and so H,(T — 1) =
T-1
Clor(5r-1)02(57 1)
Let g = (91,92). By (2.4), (2.5) and (4.13) it is easy to check that the

functions cifl
192’712(8) > 0. Therefore for the time horizon 7' —1 instead of T" we will have
gev.

Consequently, by Theorem 4.3 with the new terminal date T'—1 we obtain

H,(t) = HSRR(t) for every t =0,...,T — 2.

and cggl are convex. By (2.4) we get I;”7 2(s) > 0 and

4.2. Hedging in a generalized model. In this subsection we assume
a general {2 which does not have to be finite. Moreover, from now we as-
sume that the stock price dynamics satisfies the following assumption weaker
than (2.1).

ASSUMPTION 4.5. P(ni41 < d+¢) >0 and P41 > u—¢) > 0 for all
e>0andt=0,....,T — 1.

Foralle >0and t =0,...,7 — 1 let A7 denote the set of all sequences
(6,)2=¢ such that 0 < 8, <eforn=1,...,T —t.

Foralle > 0,t=0,...,7—1and d € Af let H;’é(t) be defined in the same
way as H,(t) assuming in addition that P(m41 = d 4 0y—t+1) + P41 =
u—5v_t+1) =1 andO<P(nt+1 :d—5v_t+1) <lforv=t,..., T —1.

For every t =t¢,...,T — 1 we have:

LEMMA 4.6. If fo1 and foo are continuous functions then Hy(t) C
HSRR(t) for all w € £2.

Proof. We fix w € 2 and omit it in the notation.
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Assume that (v1,v2) € Hy(t). By Assumption 4.5, for every € > 0 there

exists a sequence 0 € Af such that (vi,v2) € Hf;é(t). Since we can take

arbitrarily close to 0 and the functions f,; and f,2 are continuous we get
(Ul,UQ) S HSRR(t). [

In our generalized model, we have the following theorem which is similar
to Theorem 4.2:

THEOREM 4.7. Let ¢ be an option such that f, € ¥ and f,1, f,2
are continuous functions. Then Hy(t) = HSRR(t) forallw € 2 and t =
0,...,T—1.

Proof. Tt is clear that H,(T) = CT

. Assume that for some
(S (s7).15 (57))

t=1,...,T —1 we have

olt+D) U (S741). 08T (S141))

Following the lines of the proof of Theorem 4.3 we get H, SRR(t) C Hy(t) for
all w € 2, and Lemma 4.6 yields the reverse inclusion. =
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