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HEDGING OF THE EUROPEAN OPTION
IN DISCRETE TIME

UNDER TRANSACTION COSTS DEPENDING ON TIME

Abstract. Hedging of the European option in a discrete time financial
market with proportional transaction costs is considered. It is shown that
for a certain class of options the set of portfolios which allow the seller to
pay the claim of the buyer in quite a general discrete time market model is
the same as the set of such portfolios under the assumption that the stock
price movement is given by a suitable CRR model.

1. Introduction. In the paper we consider the problem of hedging the
European option in a discrete time market model under proportional trans-
action costs. Typically in papers on hedging under proportional transaction
costs the coefficients of the costs are constant over time. In this paper we
allow these coefficients to vary.

The problem of hedging contingent claims in discrete time under propor-
tional transaction costs was studied in many papers (see [1]–[13]). However,
it appears to be nontrivial to apply to the real market the results which
were obtained for a general model (see [3], [4], [12]). From the computa-
tional point of view the so called Cox–Ross–Rubinstein model (CRR model)
is very convenient since it easily yields the price of an option as well as the
set of portfolios which allow hedging the option (see for instance [1], [2], [10],
[11]). On the other hand the Cox–Ross–Rubinstein model seems to be too
simple to be a proper description of the real stock price movement. How-
ever, if there are no transaction costs and the payoff function of the option is
convex then the solution of the hedging problem in quite a general model of
the stock price process is the same as in a proper binomial model. This fact
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was proved for the market with one risky asset in [13] (see also [5] where the
case of the European call option is considered) and in [9] for the case of an
arbitrary number of assets. In [8] the model with proportional transaction
costs is considered and a certain class of options is defined such that the set
of portfolios which allow one to hedge an option in a model where changes
of the stock price are bounded and i.i.d. random variables is the same as the
set of such portfolios in a proper CRR model.

This paper contains the definition of another class of options such that
the problem of finding the set of portfolios which enable hedging an option
in quite a general model of stock price evolution simplifies to this problem
in the CRR model. The convexity of suitable functions is an important part
of this definition, and it is quite easy to verify if an option is an element
of the class in question. The result therefore seems to be interesting for
practitioners since it justifies the use of the CRR model to price derivatives
for a certain class of options.

2. The model. Let (Ω,F , P ) be a probability space, T a positive nat-
ural number and {Ft, t = 0, . . . , T} a family of σ-algebras such that F0 =
{∅, Ω}, Ft ⊆ Ft+1 for t = 0, . . . , T − 1 and FT = F .We assume that Ω is
finite (except Subsection 4.2).

Throughout this paper equalities and inequalities depending on ω ∈ Ω
hold for all ω ∈ Ω if not stated otherwise.

We consider a market with two primary securities, a risky stock and a
riskless bond, and assume that all assets are infinitely divisible.

The stock price movement is modeled by the process {St, t = 0, . . . , T}
where St denotes the price of the stock at time t, for t = 0, . . . , T . We assume
that St is Ft measurable for t = 0, . . . , T .

In our model the stock price process satisfies the recursive formula
St+1 = ηt+1St for t = 0, . . . , T − 1

where S0 > 0 and {ηt}Tt=1 is a sequence of i.i.d. random variables such that
ηt ∈ [d, u] and 0 < d < u.

We assume that
(2.1) P (ηt = e) > 0 for t = 1, . . . , T and e ∈ {d, u}.
It is easily seen that the price of the stock is positive at all times.

We assume that Ft = σ(ηu, 1 ≤ u ≤ t) for u = 1, . . . , T .
In our model the bond earns interest with a nonnegative, constant rate

r satisfying the inequalities d < 1 + r < u.
In this model proportional transaction costs are paid when shares of the

stock are traded. The cost of buying one share at time t is (1 + λt)St where
λt ∈ [0,∞) for t = 0, . . . , T , and the amount received for selling one share
at time t is (1− µt)St with µt ∈ [0, 1) for t = 0, . . . , T .
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We assume that for every t = 0, . . . , T −1 the following inequalities hold:

(1 + λt)(1 + r)− (1 + λt+1)d ≥ 0,(2.2)
(1 + λt+1)u− (1 + λt)(1 + r) ≥ 0,(2.3)
(1− µt+1)u− (1− µt)(1 + r) ≥ 0,(2.4)
(1− µt)(1 + r)− (1− µt+1)d ≥ 0.(2.5)

For every t = 0, . . . , T we define

ρt(z) =

{
(1 + λt)z if z ≥ 0,
(1− µt)z if z < 0.

For all (q1, q2) ∈ R2 and t = 0, . . . , T we define

Ct(q1,q2) = {(v1, v2) ∈ R2 : q1 − v1 + ρt(q2 − v2) ≤ 0}.

A trading strategy (x, y) is a pair of processes {(xt, yt), t = 0, . . . , T − 1}
where xt, yt are Ft measurable for every t = 0, . . . , T − 1. Here xt, yt denote
(cash) holdings of bonds and shares respectively by the seller at time t (after
transaction at that time). Moreover, for a strategy (x, y) let x−1, y−1 ∈ R
denote the seller’s initial holdings of bonds and shares respectively.

By convention we set S−1 = S0.
A trading strategy (x, y) is called self-financing if x0−x−1 +ρ0(y0−y−1)

≤ 0 and xt − (1 + r)xt−1 + ρt(yt − ηtyt−1) ≤ 0 for t = 1, . . . , T − 1. This
means that at every trading time, the sales must finance possible purchases.

Denote by A the set of all self-financing trading strategies.
If P (ηt = d)+P (ηt = u) = 1 for every t = 1, . . . , T and 0 < P (ηt = u) < 1

for every t = 1, . . . , T then we have the so called Cox–Ross–Rubinstein model,
denoted by CRR(u, d).

3. Some auxiliary results. Throughout this paper, if not stated other-
wise, functions are defined on (0,∞), measurable, and take values in R.

Let p = (p1, p2) be a given pair of functions.
For every t = 0, . . . , T we define

ctp,1(s) =
p1(s)
1 + λt

+ p2(s) and ctp,2(s) =
p1(s)
1− µt

+ p2(s)

for s ∈ (0,∞).
Throughout this paper, if not stated otherwise, equalities and inequalities

depending on s ∈ (0,∞) hold for all s ∈ (0,∞).
For simplicity of notation set γt = (1 + λt)u− (1− µt)d for t = 0, . . . , T .

It is easily seen that γt > 0 for t = 0, . . . , T .
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For given p = (p1, p2) and t = 0, . . . , T − 1 we define functions

I1,t
p (s) =

(
p2(us)
u
− p2(ds)

d

)
− 1

(1 + λt+1)u
(p1(ds)− p1(us)),

I2,t
p (s) =

1
(1− µt+1)d

(p1(ds)− p1(us))−
(
p2(us)
u
− p2(ds)

d

)
.

Let Ψ denote the set of all pairs of functions p such that

1. cTp,1, cTp,2 are convex,
2. I1,T−1

p (s) ≥ 0 and I2,T−1
p (s) ≥ 0 for all s ∈ (0,∞).

Definition 3.1. Let (p1, p2) be a given pair of functions. By backward
induction we define pairs of functions p(t) = (p(t)

1 , p
(t)
2 ) for t = 0, . . . , T as

follows:
p
(T )
1 (s) = p1(s), p

(T )
2 = p2(s),

p
(t)
1 (s) =

(1− µt+1)(1 + λt+1)
(1 + r)γt+1

(uct+1
p(t+1),2

(ds)− dct+1
p(t+1),1

(us)),

p
(t)
2 (s) =

−(1 + r)
(1 + λt+1)u

p
(t)
1 (s) +

1
u
ct+1
p(t+1),1

(us).

Lemma 3.2. Let (p1, p2) be a pair of functions. For all s ∈ (0,∞) and
t = 0, . . . , T − 1 the following identities hold:

p
(t+1)
1 (ds)− (1 + r)p(t)

1 (s) + ρt+1(p
(t+1)
2 (ds)− dp(t)

2 (s)) = 0,

p
(t+1)
1 (us)− (1 + r)p(t)

1 (s) + ρt+1(p
(t+1)
2 (us)− up(t)

2 (s)) = 0.

For all θ ∈ [d, u], t = 0, . . . , T − 1 and a given pair of functions p we
define functions

L1,t,θ
p (s) =

(u− θ)(1− µt+1)
γt+1

ct+1
p,2 (ds)

+
(1 + λt+1)θ − (1− µt+1)d

γt+1
ct+1
p,1 (us)− ct+1

p,1 (θs)

and
L2,t,θ
p (s) =

(1 + λt+1)u− (1− µt+1)θ
γt+1

ct+1
p,2 (ds)

+
(θ − d)(1 + λt+1)

γt+1
ct+1
p,1 (us)− ct+1

p,2 (θs).

For all ω ∈ Ω, θ ∈ [d, u], t = 0, . . . , T − 1 and a given pair of functions p let

Gθp(t) =
{

(x, y) ∈ R2 : y ≥ max
{
−(1 + r)

(1 + λt+1)θ
x+

1
θ
ct+1
p,1 (θSt),

−(1 + r)
(1− µt+1)θ

x+
1
θ
ct+1
p,2 (θSt)

}}
.
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Moreover, let Ĝp(t) = Gdp(t) ∩Gup(t) for t = 0, . . . , T − 1. It is clear that the
set Gθp(t) depends on ω ∈ Ω and consequently so does Ĝp(t).

Lemma 3.3. For all ω ∈ Ω, θ ∈ [d, u] and t = 0, . . . , T − 1 we have the
following equivalence: Ĝp(t)(ω) ⊆ Gθp(t)(ω) if and only if L1,t,θ

p (St(ω)) ≥ 0
and L2,t,θ

p (St(ω)) ≥ 0.

Proof. We fix ω ∈ Ω, θ ∈ [d, u] and t ∈ {0, . . . , T − 1}, and omit ω in the
notation. Let

Eθ1 =
{

(v1, v2) ∈ R2 : v2 ≥
−(1 + r)

(1 + λt+1)θ
v1 +

1
θ
ct+1
p,1 (θSt)

}
,

Eθ2 =
{

(v1, v2) ∈ R2 : v2 ≥
−(1 + r)

(1− µt+1)θ
v1 +

1
θ
ct+1
p,2 (θSt)

}
.

It is easily seen that Ĝp(t) ⊆ Gθp(t) if and only if p(t)(St) ∈ Eθ1 ∩ Eθ2 .
By direct calculation we find that p(t)(St) ∈ Eθ1 if and only if L1,t,θ

p (St)
≥ 0, and p(t)(St) ∈ Eθ2 if and only if L2,t,θ

p (St) ≥ 0.

By a standard calculation we obtain:

Lemma 3.4. For every t = 0, . . . , T − 1 the following identities hold:

ct
p(t),1

(s) =
(1 + λt+1)((1 + λt)(1 + r)− (1− µt+1)d)

(1 + λt)(1 + r)γt+1
ct+1
p(t+1),1

(us)

+
(1− µt+1)((1 + λt+1)u− (1 + λt)(1 + r))

(1 + λt)(1 + r)γt+1
ct+1
p(t+1),2

(ds)

and

ct
p(t),2

(s) =
(1 + λt+1)((1− µt)(1 + r)− (1− µt+1)d)

(1− µt)(1 + r)γt+1
ct+1
p(t+1),1

(us)

+
(1− µt+1)((1 + λt+1)u− (1− µt)(1 + r))

(1− µt)(1 + r)γt+1
ct+1
p(t+1),2

(ds).

Lemma 3.5. Let p ∈ Ψ . Then I1,t

p(t+1)(s) ≥ 0 and I2,t

p(t+1)(s) ≥ 0 for every
t = 0, . . . , T − 1.

Proof. By a straightforward calculation we get

p
(t)
1 (s) =

(1− µt+1)(1 + λt+1) du
γt+1(1 + r)

I2,t

p(t+1)(s) +
p
(t+1)
1 (us)
1 + r

,(3.1)

p
(t)
2 (s) =

(1 + λt+1)u
γt+1

I1,t

p(t+1)(s) +
1
d
p
(t+1)
2 (ds),(3.2)
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p
(t)
1 (s) =

p
(t+1)
1 (ds)
1 + r

− (1− µt+1)(1 + λt+1) du
γt+1(1 + r)

I1,t

p(t+1)(s),(3.3)

p
(t)
2 (s) =

1
u
p
(t+1)
2 (us)− (1− µt+1)d

γt+1
I2,t

p(t+1)(s),(3.4)

for every t = 0, . . . , T − 1.
We now use backward induction. Since p ∈ Ψ we have I1,T−1

p(T ) (s) ≥ 0

and I2,T−1

p(T ) (s) ≥ 0. Assume that I1,t

p(t+1)(s) ≥ 0 and I2,t

p(t+1)(s) ≥ 0 for some
t ∈ {1, . . . , T − 1}. From (3.1) and (3.3) we have

(3.5) p
(t)
1 (ds)−p(t)

1 (us) =
(1−µt+1)(1+λt+1) du

(1 + r)γt+1
(I1,t

p(t+1)(us)+I
2,t

p(t+1)(ds)).

From (3.2) and (3.4) we have

(3.6)
p
(t)
2 (us)
u

− p
(t)
2 (ds)
d

=
1 + λt+1

γt+1
I1,t

p(t+1)(us) +
1− µt+1

γt+1
I2,t

p(t+1)(ds).

By (3.5) and (3.6) we obtain

I1,t−1

p(t)
(s) =

(1 + λt+1)((1 + λt)(1 + r)− (1− µt+1)d)
(1 + λt)(1 + r)γt+1

I1,t

p(t+1)(us)

+
(1− µt+1)((1 + λt)(1 + r)− (1 + λt+1)d)

(1 + λt)(1 + r)γt+1
I2,t

p(t+1)(ds),

I2,t−1

p(t)
(s) =

(1 + λt+1)((1− µt+1)u− (1− µt)(1 + r))
(1− µt)(1 + r)γt+1

I1,t

p(t+1)(us)

+
(1− µt+1)((1 + λt+1)u− (1− µt)(1 + r))

(1− µt)(1 + r)γt+1
I2,t

p(t+1)(ds)

and therefore by (2.2) and (2.4) we get I1,t−1

p(t)
(s) ≥ 0 and I2,t−1

p(t)
(s) ≥ 0.

As a consequence of (3.2), (3.4) and Lemma 3.5 we have:

Lemma 3.6. Let p = (p1, p2) ∈ Ψ. Then p
(t+1)
2 (ds) ≤ dp

(t)
2 (s) and

p
(t+1)
2 (us) ≥ up(t)

2 (s) for all s ∈ (0,∞) and t = 0, . . . , T − 1.

By a straightforward calculation we get

Lemma 3.7. For any pair of functions p = (p1, p2), all s ∈ (0,∞) and
t = 0, . . . , T − 1 the following identities hold:

L1,t,d
p (s) =

(λt+1 + µt+1)du
γt+1

I1,t
p (s), L1,t,u

p (s) = 0,

L2,t,u
p (s) =

(λt+1 + µt+1)du
γt+1

I2,t
p (s), L2,t,d

p (s) = 0.

Concluding our technical results we obtain:
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Theorem 3.8. Let p ∈ Ψ . Then L1,t,θ

p(t+1)(s) ≥ 0 and L2,t,θ

p(t+1)(s) ≥ 0 for all
θ ∈ [d, u], s ∈ (0,∞) and t = 0, . . . , T − 1.

Proof. For all s ∈ (0,∞) and t = 0, . . . , T − 1 let h1,s
t and h2,s

t be mea-
surable functions defined on [d, u] as follows:

h1,s
t (θ) = L1,t,θ

p(t+1)(s) and h2,s
t (θ) = L2,t,θ

p(t+1)(s) for all θ ∈ [d, u].

By (2.3), (2.5) and Lemma 3.4 it is easily seen that h1,s
t and h2,s

t are concave
for all s ∈ (0,∞) and t = 0, . . . , T − 1. Therefore, we only need to show that
h1,s
t (e) ≥ 0 and h2,s

t (e) ≥ 0 for all s ∈ (0,∞), e ∈ {d, u} and t = 0, . . . , T −1.
Indeed, from Lemma 3.7 we have h1,s

t (u) = 0 and h2,s
t (d) = 0 for all

s ∈ (0,∞) and t = 0, . . . , T − 1, while from Lemmas 3.5 and 3.7 we get
h1,s
t (d) ≥ 0 and h2,s

t (u) ≥ 0 for all s ∈ (0,∞) and t = 0, . . . , T − 1.

4. Hedging of the option. Let ϕ = (ϕ1, ϕ2) be a given pair of func-
tions. Define an option by a pair (ϕ1(ST ), ϕ2(ST )) of random variables where
ϕ1(ST ), ϕ2(ST ) denote the amounts (in cash) of bonds and shares respec-
tively that are paid at time T to the option’s holder assuming that he exer-
cises his claim. Throughout the paper we identify an option with the pay-off
pair of functions ϕ.

An option will also be called a contingent claim or a European option
since the option’s holder can get his payment only at time T.

It can be easily seen that for each option ϕ there exists a unique pair of
functions fϕ = (fϕ,1, fϕ,1) such that

(4.1) CT(fϕ,1(s),fϕ,2(s)) = CT(0,0) ∩ C
T
(ϕ1(s),ϕ2(s)) for all s ∈ (0,∞).

We say that a trading strategy (x, y) ∈ A hedges the option ϕ = (ϕ1, ϕ2) if

(4.2) ϕ1(ST )− (1 + r)xT−1 + ρT (ϕ2(ST )− ηT yT−1) ≤ 0

and

(4.3) ρ(ηT yT−1) ≤ (1 + r)xT−1.

The condition (4.2) implies that the seller can pay the claim of the buyer,
and from (4.3) it follows that the seller can reach simultaneously 0 in the
number of bonds and shares. In other words (4.3) means that at time T the
seller can pay all his debts.

By (4.1) it is easily seen that (4.2) and (4.3) together are equivalent to
the following inequality:

(4.4) fϕ,1(ST )− (1 + r)xT−1 + ρT (fϕ,2(ST )− ηT yT−1) ≤ 0.

In other words a trading strategy (x, y) ∈ A hedges ϕ if and only if it satisfies
(4.4).
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The inequality (4.4) implies that the strategy (x, y) ∈ A hedges ϕ if
and only if it ensures the payments fϕ,1(ST ), fϕ,2(ST ) in bonds and shares
respectively at time T.

Let x̃t = (1 + r)xt−1 and ỹt = ηtyt−1 for t = 0, . . . , T − 1. For all ω ∈ Ω
and t = 0, . . . , T − 1 define

Hϕ(t)(ω) = {v ∈ R2 : there exists (x, y) ∈ A such that (x̃t, ỹt)(ω) = v

and P (fϕ,1(ST )− x̃T + ρT (fϕ,1(ST )− ỹT ) ≤ x̃T | Ft)(ω) = 1},
Ĥϕ(t)(ω) = {v ∈ R2 : there exists (x, y) ∈ A such that (xt, yt)(ω) = v

and P (fϕ,1(ST )− x̃T + ρT (fϕ,1(ST )− ỹT ) ≤ x̃T | Ft)(ω) = 1}.
Hϕ(t) is the set of all pre-transaction portfolios which at time t guarantee
hedging of ϕ at time T , and Ĥϕ(t) is the analogous set of all post-transaction
portfolios.

Moreover, let Hϕ(T ) = CT(fϕ,1(ST ),fϕ,2(ST )). It is clear that Hϕ(T ) is the
set of all pre-transaction portfolios which at time T guarantee the payments
fϕ,1(ST ), fϕ,2(ST ) in bonds and shares respectively.

For every t = 0, . . . , T − 1 let HCRR
ϕ (t) and ĤCRR

ϕ (t) be defined in the
same way as Hϕ(t) and Ĥϕ(t) respectively, assuming additionally that

P (ηu = d) + P (ηu = u) and 0 < P (ηu = u) < 1 for u = t+ 1, . . . , T .

HCRR
ϕ (t) and ĤCRR

ϕ (t) are the sets of pre-transaction and post-transaction
portfolios respectively, which at time t guarantee hedging of ϕ at time T if
the stock price dynamics from time t on is the same as in the CRR(d, u)
model.

The seller’s price of a contingent claim ϕ is defined by

π(ϕ) = inf {x0 + ρ0(y0) : (x, y) ∈ A and (x, y) hedges ϕ} .
It is easily seen that Hϕ(0) does not depend on ω ∈ Ω and that π(ϕ) =
inf{x ∈ R : (x, 0) ∈ Hϕ(0)}.

For every t = 0, . . . , T − 1 we have the following fact:

Lemma 4.1. Let v1, v2 ∈ R and ω ∈ Ω. If (v1, v2) ∈ Hϕ(t)(ω) and
Ĥϕ(t)(ω) ⊆ Ct(v1,v2) then Hϕ(t)(ω) = Ct(v1,v2).

Proof. We fix ω ∈ Ω and omit it in the notation.
Suppose (v1, v2) ∈ Hϕ(t) and Ĥϕ(t) ⊆ Ct(v1,v2). It is easily seen that

Ct(v1,v2) ⊆ Hϕ(t). We only have to prove that Hϕ(t) ⊆ Ct(v1,v2). Let (v3, v4) ∈
Hϕ(t). Then there exists (v5, v6) ∈ Ĥϕ(t) such that

v5 − v3 + ρt(v6 − v4) ≤ 0.

Since Ĥϕ(t) ⊂ Ct(v1,v2) we have

v1 − v5 + ρt(v2 − v6) ≤ 0.
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The last two inequalities imply

v1 − v3 + ρt(v2 − v6) + ρt(v6 − v4) ≤ 0.

It is easily seen that

ρt(v2 − v6) + ρt(v6 − v4) ≥ ρt(v2 − v4).
By the last two inequalities we get

v1 − v3 + ρt(v2 − v4) ≤ 0.

Therefore (v3, v4) ∈ Ct(v1,v2) and so Hϕ(t) ⊆ Ct(v1,v2).

For every i = 0, . . . , T let f (i)
ϕ = (f (i)

ϕ,1, f
(i)
ϕ,2) denote the pair of functions

obtained from fϕ according to Definition 3.1.
We have the following fact (compare also Theorem 1 in [11] where the

model with constant coefficients of the transaction costs is considered):

Theorem 4.2. Let ϕ be an option such that fϕ ∈ Ψ . Then HCRR
ϕ (t) =

Ct
(f

(t)
ϕ,1,f

(t)
ϕ,2)

for every t = 0, . . . , T − 1.

Proof. We use backward induction. ClearlyHCRR
ϕ (T )=CT

(f
(T )
ϕ,1 (ST ),f

(T )
ϕ,2 (ST ))

.
Assume that for some t = 0, . . . , T − 1 we have

HCRR
ϕ (t+ 1) = Ct+1

(f
(t+1)
ϕ,1 (St+1),f

(t+1)
ϕ,2 (St+1))

.

From Lemma 3.2 we have

f
(t+1)
ϕ,1 (dSt)− (1 + r)f (t)

ϕ,1(St) + ρt+1(f
(t+1)
ϕ,2 (dSt)− df (t)

ϕ,2(St)) = 0,(4.5)

f
(t+1)
ϕ,1 (uSt)− (1 + r)f (t)

ϕ,1(St) + ρt+1(f
(t+1)
ϕ,2 (uSt)− uf (t)

ϕ,2(St)) = 0.(4.6)

From now on, if not stated otherwise, we fix ω ∈ Ω and omit it in the
notation.

Let (w1, w2) ∈ ĤCRR
ϕ (t). By definition we have

f
(t+1)
ϕ,1 (dSt)− (1 + r)w1 + ρt+1(f

(t+1)
ϕ,2 (dSt)− dw2) ≤ 0,(4.7)

f
(t+1)
ϕ,1 (uSt)− (1 + r)w1 + ρt+1(f

(t+1)
ϕ,2 (uSt)− uw2) ≤ 0.(4.8)

From (4.6) and (4.8) we obtain

(4.9) ρt+1(f
(t+1)
ϕ,2 (uSt)− uw2)− ρt+1(f

(t+1)
ϕ,2 (uSt)− uf (t)

ϕ,2(St))

+ (1 + r)f (t)
ϕ,1(St) ≤ (1 + r)w1.

From (4.5) and (4.7) we have

(4.10) ρt+1(f
(t+1)
ϕ,2 (dSt)− dw2)− ρt+1(f

(t+1)
ϕ,2 (dSt)− df (t)

ϕ,2(St))

+ (1 + r)f (t)
ϕ,1(St) ≤ (1 + r)w1.
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We will prove now that

(4.11) f
(t+1)
ϕ,1 (St)− w1 + ρt(f

(t)
ϕ,2(St)− w2) ≤ 0.

There are two cases:
First, suppose w2 ≤ f (t)

ϕ,2(St). Then by Lemma 3.6 we get

ρt+1(f
(t+1)
ϕ,2 (uSt)− uw2)− ρt+1(f

(t+1)
ϕ,2 (uSt)− uf (t)

ϕ,2(uSt))

= (1 + λt+1)u(f
(t)
ϕ,2(St)− w2).

Moreover, from the inequality w2 ≤ f (t)
ϕ,2(St) we have

ρt(f
(t)
ϕ,2(St)− w2) = (1 + λt)(f

(t)
ϕ,2(St)− w2).

Consequently, by (2.3), (4.9) we obtain (4.11).
Now suppose w2 ≥ f (t)

ϕ,2(St). Then by Lemma 3.6 we get

ρt+1(f
(t+1)
ϕ,2 (dSt)− dw2)− ρt+1(f

(t+1)
ϕ,2 (dSt)− df (t)

ϕ,2(uSt))

= (1− µt+1)d(f
(t)
ϕ,2(St)− w2).

From the inequality w2 ≥ f (t)
ϕ,2(St) we have

ρt(f
(t)
ϕ,2(St)− w2) = (1− µt)(f (t)

ϕ,2(St)− w2).

Consequently, by (2.5), (4.10) we obtain (4.11)
From (4.11) we have ĤCRR

ϕ (t) ⊆ Ct
(f

(t)
ϕ,1(St),f

(t)
ϕ,2(St))

. By (4.5) and (4.6)

we obtain (f (t)
ϕ,1(St), f

(t)
ϕ,2(St)) ∈ HCRR

ϕ (t). Consequently, Lemma 4.1 implies
that Hϕ(t) = Ct

(f
(t)
ϕ,1(St),f

(t)
ϕ,2(St))

.

The main result is:

Theorem 4.3. Let ϕ be an option such that fϕ ∈ Ψ . Then Hϕ(t) =
HCRR
ϕ (t) for every t = 0, . . . , T − 1.

Proof. By Theorem 3.8 we have L1,t,θ

f
(t+1)
ϕ

(St) ≥ 0 and L2,t,θ

f
(t+1)
ϕ

(St) ≥ 0 for

all ω ∈ Ω, θ ∈ [d, u] and t = 0, . . . , T − 1. Thus from Lemma 3.3 we have
Ĝ
f
(t+1)
ϕ

(t) ⊆
⋂
θ∈[d,u]G

θ

f
(t+1)
ϕ

(t) for all ω ∈ Ω and t = 0, . . . , T − 1. Moreover,

it is easy to verify that f (t)
ϕ (St) ∈ Ĝf (t+1)

ϕ
(t). Consequently,

(4.12) f (t)
ϕ (St) ∈

⋂
θ∈[d,u]

Gθ
f
(t+1)
ϕ

(t) for all ω ∈ Ω and t = 0, . . . , T − 1.

We now use backward induction.
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It is clear that Hϕ(T ) = CT
(f

(T )
ϕ,1 (ST ),f

(T )
ϕ,2 (ST ))

. Assume that for some t =
0, . . . , T − 1 we have

Hϕ(t+ 1) = Ct+1

(f
(t+1)
ϕ,1 (St+1),f

(t+1)
ϕ,2 (St+1))

.

Then it is not difficult to check that
⋂
θ∈[d,u]G

θ

f
(t+1)
ϕ

(t) ⊆ Hϕ(t) for all ω ∈ Ω.

Consequently, by (4.12) we get f (t)
ϕ (St) ∈ Hϕ(t). Hence Ct

(f
(t)
ϕ,1(St),f

(t)
ϕ,2(St))

⊆

Hϕ(t) for all ω ∈ Ω. Thus by Theorem 4.2 we get HCRR
ϕ (t) ⊆ Hϕ(t) for all

ω ∈ Ω. The reverse inclusion follows from (2.1).
Remark 4.4. If we additionally assume that r = 0 and P (ηt = 0) > 0 for

every t = 0, . . . , T , then the set of pre-transaction portfolios that at a given
time guarantee hedging of ϕ such that fϕ ∈ Ψ , is the same as the analogous
set for the American version of this option (pricing of the American option
is considered e.g. in [7]).

4.1. Examples

4.1.1. The European call option with delivery. Throughout this example
we assume that µT + λT > 0. The holder of the option has the right to buy
one unit of the stock at the price K at time T. We have ϕ1(s) = K and
ϕ2(s) = s. The pair fϕ is given as follows:

fϕ,1(s) =


−K if s ≥ K

1− µT
,

1− µT
λT + µT

(K − (1 + λT )) if
K

1 + λT
≤ s < K

1− µT
,

0 otherwise,

fϕ,2(s) =


s if s ≥ K

1− µT
,

1 + λT
λT + µT

s− K

λT + µT
if

K

1 + λT
≤ s < K

1− µT
,

0 otherwise.
We have

cTfϕ,1(s) =
(
s− K

1 + λT

)+

and cTfϕ,2(s) =
(
s− K

1− µT

)+

.

It is easily seen that the functions cTfϕ,1
and cTfϕ,2

are convex, and that

I1,T−1
fϕ

(s) ≥ 0 and I2,T−1
fϕ

(s) ≥ 0. Thus fϕ ∈ Ψ . Consequently, Hϕ(t) =
HCRR
ϕ (t) for every t = 0, . . . , T − 1 by Theorem 4.3.
4.1.2. The European call option with cash settlement. Throughout this

example we make the following assumption:
(4.13) (1− µT )u ≥ (1 + λT−1)(1 + r).



212 M. A. Kociński

We have ϕ1(s) = (s−K)+ and ϕ2(s) = 0. It is easily seen that ϕ = fϕ. By
(4.13) we have HCRR

ϕ (T − 1) = CT−1
(g1(ST−1),g2(ST−1)) where

g1(s) =


−K
1 + r

if s ≥ K/d,

(us−K)
(d− u)(1 + r)

d if K/u ≤ s < K/d,

0 otherwise,

g2(s) =


s

1− µT
if s ≥ K/d,

(us−K)
(1− µT )(u− d)

if K/u ≤ s < K/d,

0 otherwise.

It is easy to verify that Hϕ(T − 1) = HCRR
ϕ (T − 1) and so Hϕ(T − 1) =

CT−1
(g1(ST−1),g2(ST−1).

Let g = (g1, g2). By (2.4), (2.5) and (4.13) it is easy to check that the
functions cT−1

g,1 and cT−1
g,2 are convex. By (2.4) we get I1,T−2

g (s) ≥ 0 and
I2,T−2
g (s) ≥ 0. Therefore for the time horizon T −1 instead of T we will have
g ∈ Ψ .

Consequently, by Theorem 4.3 with the new terminal date T−1 we obtain
Hϕ(t) = HCRR

ϕ (t) for every t = 0, . . . , T − 2.

4.2. Hedging in a generalized model. In this subsection we assume
a general Ω which does not have to be finite. Moreover, from now we as-
sume that the stock price dynamics satisfies the following assumption weaker
than (2.1).

Assumption 4.5. P (ηt+1 < d+ ε) > 0 and P (ηt+1 > u− ε) > 0 for all
ε > 0 and t = 0, . . . , T − 1.

For all ε > 0 and t = 0, . . . , T − 1 let ∆ε
t denote the set of all sequences

(δn)T−tn=1 such that 0 < δn < ε for n = 1, . . . , T − t.
For all ε > 0, t = 0, . . . , T−1 and δ ∈ ∆ε

t letH
ε,δ
ϕ (t) be defined in the same

way as Hϕ(t) assuming in addition that P (ηt+1 = d + δv−t+1) + P (ηt+1 =
u− δv−t+1) = 1 and 0 < P (ηt+1 = d− δv−t+1) < 1 for v = t, . . . , T − 1.

For every t = t, . . . , T − 1 we have:

Lemma 4.6. If fϕ,1 and fϕ,2 are continuous functions then Hϕ(t) ⊆
HCRR
ϕ (t) for all ω ∈ Ω.

Proof. We fix ω ∈ Ω and omit it in the notation.
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Assume that (v1, v2) ∈ Hϕ(t). By Assumption 4.5, for every ε > 0 there
exists a sequence δ ∈ ∆ε

t such that (v1, v2) ∈ Hε,δ
ϕ (t). Since we can take ε

arbitrarily close to 0 and the functions fϕ,1 and fϕ,2 are continuous we get
(v1, v2) ∈ HCRR

ϕ (t).

In our generalized model, we have the following theorem which is similar
to Theorem 4.2:

Theorem 4.7. Let ϕ be an option such that fϕ ∈ Ψ and fϕ,1, fϕ,2
are continuous functions. Then Hϕ(t) = HCRR

ϕ (t) for all ω ∈ Ω and t =
0, . . . , T − 1.

Proof. It is clear that Hϕ(T ) = CT
(f

(T )
ϕ,1 (ST ),f

(T )
ϕ,1 (ST ))

. Assume that for some

t = 1, . . . , T − 1 we have

Hϕ(t+ 1) = Ct+1

(f
(t+1)
ϕ,1 (ST+1),f

(t+1)
ϕ,1 (St+1))

.

Following the lines of the proof of Theorem 4.3 we get HCRR
ϕ (t) ⊆ Hϕ(t) for

all ω ∈ Ω, and Lemma 4.6 yields the reverse inclusion.
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