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ROBUST PORTFOLIO SELECTION
UNDER EXPONENTIAL PREFERENCES

Abstract. We consider an incomplete market with an untradable stochas-
tic factor and a robust investment problem based on the CARA utility. We
formulate it as a stochastic differential game problem, and use Hamilton–
Jacobi–Bellman–Isaacs equations to derive an explicit representation of the
robust optimal portfolio; the HJBI equation is transformed using a substitu-
tion of the Cole–Hopf type. Not only the pure investment problem, but also
a problem of robust hedging is taken into account: an agent tries to hedge
the risk associated with derivatives based on the stochastic factor.

1. Introduction. The purpose of this paper is to describe an optimal
financial strategy which an agent can follow in order to manage his model
risk. The agent trades between a riskless bond and a risky asset whose price
is a diffusion with dynamics affected by a correlated untradable stochastic
factor. It is worth mentioning that this model includes stochastic volatility
models, and it is usually used to describe weather influence on electric and
gas prices.

The classical optimality criterion is based on an expected utility func-
tional of the form

X 7→ E(U(X)).

Instead of supposing that the trader knows the exact model followed by the
real market, we assume here that the trader knows that the correct model
belongs to a wide class of models. Here this class is represented by a set Q
of equivalent measures. Therefore, it is reasonable to consider an optimality
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criterion based on a robust optimality functional

X 7→ inf
Q∈Q

E(U(X)).

Maximization of the robust functional was considered, among others, by
Fölmer and Gundel [3], Gundel [5], Hernández and Schied [6], Korn and
Menkens [7], Korn and Wilmott [8], Mataramvura and Øksendal [9], Øk-
sendal and Sulem [12], [11], Schied [15], Schied and Wu [16], and Talay and
Zheng [18]. Some of these papers are based on duality arguments. In this
work, however, the emphasis is on the value function and not on optimal
strategies. Our paper is closest to Hernández and Schied’s paper [6], where
they use a specific class of risk preferences, namely the HARA utility func-
tion (U(x) = xγ). This allows them to combine duality results of Schied
and Wu [15] with the stochastic control approach and determine a robust
optimal strategy.

In our work we consider the same model, but assumptions concerning
coefficients are more general, and instead of HARA we use the CARA (Con-
stant Absolute Risk Aversion) utility (U(x) = −e−γx). In addition, we do not
limit ourselves to finding a pure robust optimal strategy. We consider claims
based on the stochastic factor and try to find a robust strategy which is able
to hedge away the risk associated with this claim. Such derivatives involv-
ing catastrophic damages, weather and volatility derivatives are attractive
in many economic activities.

Our solution of the robust investment problem is based on stochastic dif-
ferential game theory and Hamilton–Jacobi–Bellman–Isaacs equations. The
associated HJBI equation can be simplified by applying transformations of
the Cole–Hopf type. The resulting equation can be regarded as a classical
HJB equation. Therefore, its solutions have a stochastic representation. As
a by-product we obtain a formula for the optimal strategy. In our opinion
the method presented in our paper works faster than the duality theory
and can be applied not only to the CARA utility but also to other utilities.
Besides, one might have difficulty applying duality results to the exponen-
tial utility, because it fails to satisfy the Inada condition (U ′(0) = +∞,
U ′(+∞) = 0).

Let us recall that the methodology based on the Cole–Hopf transforma-
tions was developed by Zariphopoulou [20], [21], Musiela and Zariphopoulou
[10], and Pham [13]. We should also mention that HJBI equations were suc-
cessfully applied to robust optimal investment problems by Mataramvura
and Øksendal [9], Øksendal and Sulem [12], [11], and Talay and Zhang [18],
but to our knowledge this is the first time they are used in models with
an untradable risk factor to obtain an explicit formula for a robust optimal
strategy.
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2. Model and main result. Let (Ω,F , P ) be a probability space with
a filtration (Ft, 0 ≤ t ≤ T ) generated by two independent Brownian motions
(W 1

t , 0 ≤ t ≤ T ), (W 2
t , 0 ≤ t ≤ T ). We consider an incomplete financial

market consisting of two tradable assets (Bt, 0 ≤ t ≤ T ) and (St, 0 ≤ t ≤ T )
and one untradable factor (Yt, 0 ≤ t ≤ T ). Bt is a risk-free asset, and St
is a risky asset. These processes are solutions of the system of stochastic
differential equations

(2.1)


dBt = rBtdt,

dSt = b(Yt)Stdt+ σ(Yt)StdW 1
t ,

dYt = g(Yt)dt+ ρdW 1
t +

√
1− ρ2 dW 2

t .

The coefficients b, σ > 0, g are continuous functions and they are assumed
to satisfy all the required regularity conditions, in order to guarantee the
existence of a unique strong solution to (2.1). r > 0 is the interest rate and
ρ ∈ (−1, 1) is the correlation coefficient. Let λ denote the risk premium ratio

λ(y) =
b(y)
σ(y)

.

The time-independence of the coefficients is for notational convenience only
and can easily be relaxed.

Remark. Pham [13] noticed that the identity condition on the diffusion
term of Y is not very restrictive. Suppose we have a dynamics for Y in the
form

dYt = g(Yt)dt+ a(Yt)(ρdW 1
t +

√
1− ρ2 dW 2

t ).

Then, by assuming that there exists f ∈ C2(R) such that f ′(y) = 1/a(y) we
see, by the Itô formula, that the diffusion term of f(Yt) is identity. However,
after that change of variable the required regularity conditions are not always
satisfied.

The agent’s risk preferences are captured by a utility function. We use
the utility function of the CARA (Constant Absolute Risk Aversion) type

U(x) = −e−γx,
where γ > 0 is the risk aversion parameter.

The dynamics of the agent’s wealth process (X̄ π̄
t , 0 ≤ t ≤ T ) is given by

the stochastic differential equation{
X̄t = (rX̄t + π̄t(b(Yt)− r))dt+ π̄tσ(Yt)dW 1

t ,

X̄s = x̄,

where x̄ denotes the current wealth of the agent. It is more convenient to
rewrite the above equation in terms of forward values. More precisely, we
denote by Xt the T -forward value of the wealth, i.e.

Xt = e(T−t)rX̄t, πt = e(T−t)rπ̄t.
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Then the dynamics of the wealth process can be rewritten as

dXt = πt(b(Yt)− r)dt+ πtσ(Yt)dW 1
t .

Without loss of generality we can assume that the interest rate r is equal
to 0, which gives us

(2.2) dXt = πtb(Yt)dt+ πtσ(Yt)dW 1
t .

Definition 2.1. A control (or strategy) π = (πt, s ≤ t ≤ T ) is admis-
sible on the time interval [s, T ], written π ∈ As, if it satisfies the following
assumptions:

(1) π is progressively measurable with respect to the filtration (Ft, s ≤
t ≤ T ),

(2) the stochastic process (2.2) exists and

Ex,y,s sup
s≤t≤T

exp(−2γXπ
t ) < +∞

for each (x, y) ∈ R2.

The admissible control π can be interpreted as the part of the agent’s
wealth invested in St. Note that π is allowed to be negative.

We assume that the model is not precisely known and the agent knows
only a class of possible models. Following Hernández and Schied [6], we will
consider the class

Q :=
{
Q ∼ P

∣∣∣∣ dQdP = E
(�
ηt1 dW

1
t + ηt2 dW

2
t

)
T
, (η1, η2) ∈M

}
,

where E(·)t denotes the Doléans-Dade exponential andM denotes the set of
all progressively measurable processes η = (η1, η2) taking values in a fixed
compact convex set Γ ⊂ R2. The measure determined by η ∈M is denoted
by Qη.

Statement of the problem. Let β be a continuous function. β(YT ) is
a derivative payoff based on the factor (Yt, 0 ≤ t ≤ T ). The agent tries to
build a robust portfolio to hedge the risk associated with this claim, which
means that the objective of the agent (seller of the claim) is to

maximize inf
Q∈Q

Jπ,Qβ (x, y, t) over π ∈ At,

where
Jπ,Qβ (x, y, t) = EQx,y,t(U(Xπ

T − β(YT ))).

We can consider this as a zero-sum stochastic differential game problem. The
measure Q is the control of player 1 (the “market”), while the portfolio π
is the control of player 2 (the “agent”). Our aim is to find the saddle point
and the value function of that game. More precisely, we are looking for
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(π∗, Q∗) ∈ At ×Q and V (x, y, t) such that

(2.3) Jπ,Q
∗

β (x, y, t) ≤ Jπ
∗,Q∗

β (x, y, t) ≤ Jπ
∗,Q

β (x, y, t),

and

V (x, y, t) = sup
π∈At

inf
Q∈Q

Jπ,Qβ (x, y, t) = inf
Q∈Q

sup
π∈At

Jπ,Qβ (x, y, t) = Jπ
∗,Q∗

β (x, y, t).

Definition 2.2. A pair of controls (π∗, Q∗) ∈ At×Q is called an optimal
control if it satisfies (2.3) for all π ∈ At and Q ∈ Q.

From classical stochastic control theory we know that an optimal control
is usually given in the feedback form ((π(Xt, Yt, t), η(Xt, Yt, t)), 0 ≤ t ≤ T ) (η
determines the measure Qη). Such controls are often called Markov controls
and are denoted simply by (π(x, y, t), η(x, y, t)). For more information about
differential games we refer to Fleming and Soner [2] and references therein.

We summarize our main result in the following theorem:

Theorem 2.3. Let g, β, λ, λ2 be bounded and uniformly Lipschitz con-
tinuous functions. Then

sup
π∈At

inf
Q∈Q

Jπ,Qβ (x, y, t) = inf
Q∈Q

sup
π∈At

Jπ,Qβ (x, y, t) = −e−γx(α(y, t))1/(1−ρ2),

where α is the solution of the equation

αt +
1
2
αyy + (g(y)− ρλ(y))αy(2.4)

+ max
η1,η2∈Γ

(
−1− ρ2

2
(λ(y) + η1)2α+

√
1− ρ2 η2αy

)
= 0

with the terminal condition

α(y, T ) = exp((1− ρ2)γβ(y)).

Moreover, there exists an optimal pair of controls (η∗1(y, t), η∗2(y, t)) such that
η∗ realizes the maximum in (2.4), and the agent’s strategy is given by

π∗(x, y, t) =
ρ

γσ(y)
Fy
F

+
λ(y) + η∗1(y, t)

γσ(y)
,

where
F (y, t) = (α(y, t))1/(1−ρ2).

3. HJBI equations and the verification theorem. The robust in-
vestment problem stated in the previous section can be solved by applying
stochastic control theory and the Hamilton–Jacobi–Bellman–Isaacs equa-
tion. Let L denote the differential operator given by

Lπ ηV (x, y, t) = Vt +
1
2
Vyy +

1
2
π2σ2(y)Vxx + ρπσ(y)Vxy

+ π(b(y) + η1σ(y))Vx + (ρη1 +
√

1− ρ2 η2)Vy + g(y)Vy.
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Next we modify the verification theorem proposed in Mataramwura and
Øksendal [9] to make it applicable to our problem.

Theorem 3.1. Suppose there exist a function V ∈ C2,2,1(R2 × [0, T )) ∩
C(R2× [0, T ]) and an admissible Markov control (π∗(x, y, t), η∗(x, y, t)) such
that

Lπ∗(x,y,t),ηV (x, y, t) ≥ 0,(3.1)

Lπ,η∗(x,y,t)V (x, y, t) ≤ 0,(3.2)

Lπ∗(x,y,t),η∗(x,y,t)V (x, y, t) = 0,(3.3)
V (x, y, T ) = U(x− β(y))(3.4)

for all η ∈ Γ , π ∈ R, (x, y, t) ∈ R2 × [0, T ), and

EQx,y,t( sup
t≤s≤T

|V (Xπ
s , Ys, s)|) < +∞(3.5)

for all (x, y, t) ∈ R2 × [0, T ], π ∈ At, and Q ∈ Q. Then

Jπ,Q
∗

β (x, y, t) ≤ V (x, y, t) ≤ Jπ
∗,Q

β (x, y, t)

for all π ∈ At and Q ∈ Q, and

V (x, y, t) = Jπ
∗,Q∗

β (x, y, t).

Remark. Let us point out that conditions (3.1)–(3.4) hold if the follow-
ing Hamilton–Jacobi–Bellman–Isaacs equations are satisfied:

max
π∈R

min
η∈Γ
Lπ,ηV (x, y, t) = min

η∈Γ
max
π∈R
Lπ,ηV (x, y, t) = 0,(3.6)

V (x, y, T ) = U(x− β(y)).(3.7)

Proof of Theorem 3.1. Choose any η ∈M and consider the system

(3.8)
{
dXt = π∗(Xt, Yt, t)b(Yt)dt+ π∗(Xt, Yt, t)σ(Yt)dW 1

t ,

dYt = g(Yt)dt+ ρdW 1
t +

√
1− ρ2 dW 2

t .

It is convenient to consider the Qη-dynamics of the system (3.8). After ap-
plying the Girsanov transformation, we have

(3.9)

{
dXt = π∗t (b(Yt) + ηtσ(Yt))dt+ π∗t σ(Yt)dW

η1
t ,

dYt = (g(Yt) + ηt1ρ+ ηt2
√

1− ρ2)dt+ ρdW η1
t +

√
1− ρ2 dW η2

t ,

where π∗t = π∗(Xt, Yt, t) and (W η1
s ,W η2

s ) are Qη-Brownian motions given by{
dW η1

t = dW 1
t − ηt1dt,

dW η2
t = dW 2

t − ηt2dt.
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If we apply the Itô formula to (3.9) and the function V , we get

EQ
η

x,y,t(V (Xπ∗
Tn , YTn , Tn)) = V (x, y, t) + EQ

η

x,y,t

Tn�

t

Lπ∗s ,ηsV (Xπ∗
s , Ys, s) ds

+ EQ
η

x,y,t

(Tn�
t

(π∗sσ(Ys)Vx(Xπ∗
s , Ys, s) + ρVy(Xπ∗

s , Ys, s)) dW 1
s

+
Tn�

t

√
1− ρ2 Vy(Xπ∗

s , Ys, s) dW 2
s

)
,

where (Tn, n = 1, 2, . . .) (Tn → T, Tn < T ) is a localizing sequence of stop-
ping times such that

EQ
η

x,y,t

(Tn�
t

(π∗sσ(Ys)Vx(Xπ∗
s , Ys, s) + ρVy(Xπ∗

s , Ys, s)) dW 1
s

+
Tn�

t

(
√

1− ρ2 Vy(Xπ∗
s , Ys, s)) dW 2

s

)
= 0.

Using (3.1) yields

EQ
η

x,y,t(V (Xπ∗
Tn , YTn , Tn)) ≥ V (x, y, t).

Since (3.5) holds, we can apply the dominated convergence theorem. Let-
ting n→ +∞ and using (3.4) we obtain

V (x, y, t) ≤ Jπ
∗,Q

β (x, y, t).

If we replace η by η∗ and apply (3.3), we have

V (x, y, t) = Jπ
∗,Q∗

β (x, y, t).

Next we choose π ∈ At and apply the Itô formula to the system{
dXt = πt(b(Yt) + η∗t σ(Yt))dt+ πtσ(Yt)dW

η∗1
t ,

dYt = (g(Yt) + η∗t1ρ+ η∗t2
√

1− ρ2)dt+ ρdW η∗1
t +

√
1− ρ2 dW η∗2

t .

Repeating the method presented above and using (3.2) we get

V (x, y, t) ≥ Jπ,Q
∗

β (x, y, t).

4. Derivation of the optimal strategy. To verify the assumptions
of Theorem 3.1 we proceed to construct a candidate solution of the HJBI
equations (3.6) and proper controls (π∗, η∗). Let us consider first the equation

min
η∈Γ

max
π∈R
Lπ,ηV (x, y, t) = 0,
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i.e.

(4.1) Vt +
1
2
Vyy + min

(η1,η2)∈Γ
max
π∈R

(
1
2
π2σ2(y)Vxx + ρπσ(y)Vxy

+ π(b(y) + η1σ)Vx + (ρη1 +
√

1− ρ2 η2)Vy

)
+ g(y)Vy = 0.

The utility function of the exponential type suggests that we should be
interested in the following terminal condition:

(4.2) V (x, y, T ) = exp(−γx+ γβ(y)).

In order to demonstrate the key calculations we assume that all the required
derivatives of the relevant solutions exist. The rigorous result together with
necessary assumptions on the market coefficients is given later. Calculations
of the type presented below are commonly used in the existing literature (see
Musiela and Zariphopoulou [10] or Benth and Karlsen [1]) and are not given
here with all details.

Notice that if Vxx < 0 then the maximum over π in (4.1) is well defined.
It is achieved at

(4.3) π∗(x, y, t, η) = − ρ

σ(y)
Vxy
Vxx
− b(y) + η1σ(y)

σ2(y)
Vx
Vxx

.

Following Musiela and Zariphopoulou [10] we observe that the terminal
condition (4.2) suggest that the solution should be of the form

(4.4) V (x, y, t) = −e−γxF (y, t).

Therefore,

(4.5) π∗(x, y, t, η) =
ρ

γσ(y)
Fy
F

+
λ(y) + η1

γσ(y)
.

Substituting (4.5) and (4.4) in (4.1) shows that F solves

(4.6) Ft −
1
2
ρ2
F 2
y

F
+

1
2
Fyy + (g(y)− ρλ(y))Fy

+ max
(η1,η2)∈Γ

(
−1

2
(λ(y) + η1)2F +

√
1− ρ2 η2Fy

)
= 0,

together with the terminal condition

F (y, T ) = exp(γβ(y)).

To remove the nonlinear term F 2
y /F we make the following Cole–Hopf type

transformation:

(4.7) F (y, t) = (α(y, t))1/(1−ρ2).



Robust portfolio selection 223

Differentiating yields

Ft =
1

1− ρ2
αt · αρ

2/(1−ρ2),

Fy =
1

1− ρ2
αy · αρ

2/(1−ρ2),

Fyy =
1

1− ρ2

ρ2

1− ρ2
α2
y · α1/(1−ρ2)−2 + αyy · αρ

2/(1−ρ2).

Substituting the above derivatives in (4.6) gives

(4.8) αt +
1
2
αyy + (g(y)− ρλ(y))αy

+ max
(η1,η2)∈Γ

(
−1− ρ2

2
(λ(y) + η1)2α+

√
1− ρ2 η2αy

)
= 0,

and

(4.9) α(y, T ) = exp((1− ρ2)γβ(y)).

Remark. Note that the above equation is a quasi-linear parabolic dif-
ferential equation of the second order and has the form of a HJB equation.
This fact is used to derive a stochastic representation of its solution.

Now we are ready to prove a version of the minimax theorem needed to
ensure that the V determined above is a solution not only to the equation

min
η∈Γ

max
π∈R
Lπ,ηV (x, y, t) = 0,

but also to
max
π∈R

min
η∈Γ
Lπ,ηV (x, y, t) = 0.

Proposition 4.1. Suppose that there exist a positive solution α of the
problem (4.8)–(4.9) and let the maximum in (4.8) be attained at η∗(y, t) =
(η∗1(y, t), η∗2(y, t)). Then

max
π∈R

min
η∈Γ
Lπ,ηV (x, y, t) = min

η∈Γ
max
π∈R
Lπ,ηV (x, y, t) = Lπ∗,η∗V (x, y, t) = 0,

where
V (x, y, t) = −e−γxF (y, t) = −e−γx(α(y, t))1/(1−ρ2),

and

π∗(x, y, t) =
ρ

γσ(y)
Fy
F

+
λ(y) + η∗1(y, t)

γσ(y)
.

Proof. Since we always have

max
π∈R

min
η∈Γ
Lπ,ηV (x, y, t) ≤ min

η∈Γ
max
π∈R
Lπ,ηV (x, y, t),
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it is sufficient to prove that

min
η∈Γ
Lπ∗,ηV (x, y, t) = min

η∈Γ
max
π∈R
Lπ,ηV (x, y, t).

It follows from calculations (4.4)–(4.9) that the right side above is equal to

− e−γx
(
Ft +

1
2
Fyy −

1
2
ρ2
F 2
y

F
+ (g(y)− ρλ(y))Fy

+ max
η∈Γ

(
−1

2
(λ(y) + η1)2F +

√
1− ρ2 η2Fy

))
,

where the maximum is achieved at η∗ = (η∗1, η
∗
2), while the left side is

equal to

−e−γx
(
Ft +

1
2
Fyy −

1
2
ρ2
F 2
y

F
+ (g(y)− ρλ(y))Fy

+ max
η∈Γ

(
1
2

(λ(y) + η∗1(y, t))2F

− (λ(y) + η∗1(y, t))(λ(y) + η1)F +
√

1− ρ2 η2Fy

))
.

Therefore, we need to show that

max
(η1,η2)∈Γ

(
−1

2
(λ(y) + η1)2F +

√
1− ρ2 η2Fy

)
= max

(η1,η2)∈Γ

(
1
2

(λ(y) + η∗1(y, t))2F

− (λ(y) + η∗1(y, t))(λ(y) + η1)F +
√

1− ρ2 η2Fy

)
.

Suppose that Fy 6= 0 and the first maximum is attained on the parabola

−1
2

(λ(y) + η1)2F +
√

1− ρ2 η2Fy = C∗(y, t).

Then the line
1
2

(λ(y) + η∗1(y, t))2F − (λ(y) + η∗1(y, t))(λ(y) + η1)F +
√

1− ρ2 η2Fy

= C∗(y, t)

is tangent to the parabola at the point η∗. Convexity of the set Γ implies
that the second maximum must be achieved at η∗ and both maxima are
equal. The case Fy = 0 reduces our problem to maximizing, respectively, a
quadratic and a linear function on an interval. Hence, the desired equality
can be easily proved.
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5. Solution of the problem and related results. Let us begin with
the following

Lemma 5.1. Suppose that g, λ are bounded and uniformly Lipschitz con-
tinuous functions, and β is a bounded function. If there exists a bounded
solution of the Cauchy problem (4.8)–(4.9), then it is positive and bounded
away from zero.

Proof. Let (Ys, t ≤ s ≤ T ) be the unique solution of the problem{
dYs = (g(Ys)− ρλ(Ys))dt+ ρdW 1

s +
√

1− ρ2 dW 2
s ,

Yt = x.

Choose any η ∈M and consider the measure Q given by
dQ

dP
= E

(�
ηs2 dW

2
s

)
.

The dynamics of Y under Q is given by

dYt = (g(Yt)− ρλ(Yt) +
√

1− ρ2 η2t)dt+ ρdW 1
t +

√
1− ρ2 dW 2η

t .

If we apply the Itô formula and use the standard stochastic control argument
to the function α and the process Y , we get

α(y, t) ≥ EQy,t
(

exp
(
γ(1− ρ2)β(YT )− 1− ρ2

2

T�

t

(λ(YS) + η2s)2 ds

))
.

Since β, λ, η are bounded, there exists ε > 0 such that α(y, t) > ε for all
(y, t) ∈ R2 × [0, T ].

To complete the preparations for the proof of our main result, we need
only find a set of assumptions to ensure existence of a smooth and bounded
solution to (4.8). Let us recall the classical result proved by Friedman [4].

Theorem 5.2. Suppose that H(t, y, u, p) is uniformly Lipschitz continu-
ous in (y, u, p) and uniformly Hölder continuous in t in compact subsets of
[0, T ]× R× R× R and let H satisfy

H(t, y, 0, 0) ≤ K,(5.1)

H(t, y, u, 0)−H(t, y, ū, 0) ≤ K(u− ū) if u > ū,(5.2)

H(t, y, u, p)−H(t, y, ū, p) ≤ KR(u− ū) if |u|, |ū| ≤ R, u > ū,(5.3)

|H(t, y, u, p)−H(t, ȳ, u, p)| ≤ KR(1 + |p|)|y − ȳ| if |u| ≤ R,(5.4)

|H(t, y, u, p)−H(t, y, u, p̄)| ≤ KR(1 + |y|)|p− p̄| if |u| ≤ R(5.5)

for any R > 0 and 0 ≤ t ≤ T , x, x̄, p, p̄ ∈ R. Moreover, let ϕ be a bounded and
uniformly Lipschitz continuous function. Then there exists a unique solution
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u of the Cauchy problem{
ut + 1

2uyy +H(t, y, u, uy) = 0,
u(y, T ) = ϕ(y),

which is bounded together with the derivative uy.

Below we summarize the results obtained so far and prove our main
theorem. We rewrite it here once more.

Theorem 5.3. Let g, β, λ, λ2 be bounded and uniformly Lipschitz con-
tinuous functions. Then

sup
π∈At

inf
Q∈Q

Jπ,Qβ (x, y, t) = inf
Q∈Q

sup
π∈At

Jπ,Qβ (x, y, t) = −e−γx(α(y, t))1/(1−ρ2),

where α is the solution of the equation

αt +
1
2
αyy + (g(y)− ρλ(y))αy(5.6)

+ max
η1,η2∈Γ

(
−1− ρ2

2
(λ(y) + η1)2α+

√
1− ρ2 η2αy

)
= 0

with terminal condition

(5.7) α(y, T ) = exp((1− ρ2)γβ(y)).

Moreover, there exists an optimal pair of controls (η∗1(y, t), η∗2(y, t)) such that
η∗ realizes the maximum in (5.6), and the agent’s strategy is given by

π∗(x, y, t) =
ρ

γσ(y)
Fy
F

+
λ(y) + η∗1(y, t)

γσ(y)
.

Proof. First, we need to show that there exists a solution of (5.6)–(5.7).
Let us consider a function H(t, y, α, p) given by

H(t, y, α, αy) = max
η∈Γ

f(t, y, α, αy, η),

where

f(t, y, α, αy, η) =− 1− ρ2

2
(λ(y) + η1)2α+

√
1− ρ2 η2αy

+ (g(y)− ρλ(y))αy.

The function f is linear with respect to α and αy. Therefore, from the as-
sumed regularity of λ and g and the well known inequality

|max
η

f(z, η)−max
η

f(z̄, η)| ≤ max
η
|f(z, η)− f(z̄, η)|,

it follows that H satisfies all conditions of Theorem 5.2. Hence, there exists
a unique solution α of the problem (5.6)–(5.7), which is bounded together
with the derivative αy. In addition, Lemma 5.1 shows that this solution is
positive and bounded away from zero. By the classical measurable selection



Robust portfolio selection 227

theorem (Wagner [19, Theorem 4.1]) there exists a Borel measurable η∗ ∈ Γ
which attains the maximum in (5.6). If we set

π∗(y, t) =
ρ

γσ(y)
Fy
F

+
λ(y) + η∗1(y, t)

γσ(y)
,

then π∗b and π∗σ are bounded functions. Hence, the wealth process (Xπ∗
t , s ≤

t ≤ T ) exists for all s ∈ [0, T ].
In order to prove that π∗ is admissible, we must show that

Ex,y,t sup
t≤r≤T

exp(−2γXπ∗
r ) < +∞

for all (x, y, t) ∈ R2 × [0, T ].
Since π∗σ is bounded, the Novikov condition holds, i.e.

Ey,t exp
(

1
2

T�

t

4γ2(π∗s(Ys, s))
2σ2(Ys) ds

)
< +∞.

Hence, the process

exp
(
−1

2

r�

t

4γ2π∗s(Ys, s)σ
2(Ys) ds−

r�

t

2γπ∗s(Ys, s)σ(Ys) dW 1
s

)
, t ≤ r ≤ T,

is a martingale and it follows from the standard martingale Doob inequalities
(Revuz and Yor [14, Chapter II, Theorem 1.7]) that

Ey,t sup
t≤r≤T

exp
(
−1

2

r�

t

γ2(π∗s(Ys, s))
2σ2(Ys) ds

−
r�

t

γπ∗s(Ys, s)σ(Ys) dW 1
s

)
< +∞.

Boundedness of π∗b and π∗σ yields

Ex,y,t sup
t≤r≤T

exp(−γXπ∗
r ) = Ey,t sup

t≤r≤T

(
exp(−2γx)

× exp
(
−
r�

t

2γπ∗s(Ys, s)b(Ys) ds+
r�

t

2γ2(π∗s(Ys, s))
2σ2(Ys) ds

)
× exp

(
−
r�

t

2γ2(π∗s(Ys, s))
2σ2(Ys) ds−

r�

t

2γπ∗s(Ys, s)σ(Ys) dW 1
s

))
<+∞.

Applying Proposition 4.1 to α and η∗ shows that

V (y, t) = e−γx(α(y, t))1/(1−ρ2)

and (π∗(y, t), η∗(y, t)) satisfy the assumptions of Proposition 3.1. Conse-
quently, the pair (π∗(y, t), η∗(y, t)) is optimal.
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Now our aim is to study our differential game problem under an addi-
tional hypothesis. We assume that the set Γ is a rectangle [A,B] × [C,D].
It is useful to introduce a function m given by

m(y) =


A if −λ(y) ≤ A,
−λ(y) if −λ(y) ∈ [A,B],
B if −λ(y) ≥ B,

and the set M̄ of all progressively measurable processes η with values in
[C,D].

Corollary 5.4. If Γ = [A,B] × [C,D] then the maximum in (5.6) is
achieved at η∗1 = m(y), η∗2 ∈ {C,D} and

αt +
1
2
αyy −

1− ρ2

2
(λ(y) +m(y))2α

+ max
η2∈{C,D}

(g(y) +
√

1− ρ2 η2 − ρλ(y))αy = 0.

Below, we derive a stochastic representation for the value function V .
From the classical verification theorem we have

Corollary 5.5. Let g, β, λ, λ2 be bounded and uniformly Lipschitz
continuous functions. Then

sup
π∈At

inf
Q∈Q

Jπ,Qβ (x, y, t) = inf
Q∈Q

sup
π∈At

Jπ,Qβ (x, y, t) = −e−γx(α(y, t))1/(1−ρ2),

where

(5.8) α(y, t)

= sup
η∈M̄

Ey,t exp
(
γ(1− ρ2)β(Y η

T )− 1− ρ2

2

T�

t

(λ(Y η
s ) +m(Y η

s ))2 ds

)
and Y η

t denotes the strong solution of

dYt = (g(Yt)− ρλ(Yt) +
√

1− ρ2 ηt)dt+ ρdW 1
t +

√
1− ρ2 dW 2

t .

Moreover, the optimal strategy for the agent is given by

π∗(x, y, t) =
ρ

γσ(y)
Fy
F

+
λ(y) +m(y)

γσ(y)
.

Remark. It follows from the Girsanov theorem that the stochastic rep-
resentation of α can be rewritten in the following form:

α(y, t) = sup
Q∈Q̄

EQy,t exp
(
γ(1− ρ2)β(YT )− 1− ρ2

2

T�

t

(λ(Ys) +m(Ys))2 ds

)
,

where
dYt = g(Yt)dt+ ρdW 1

t +
√

1− ρ2 dW 2
t ,



Robust portfolio selection 229

and

Q̄ =
{
Q ∼ P

∣∣∣∣ dQdP = E
(�
−λ(Yt) dW 1

t + ηt dW
2
t

)
T
, η ∈ M̄

}
.

To conclude, let us investigate the pure investment problem (β ≡ 0).
Suppose that (−λ(y)) ∈ [A,B] when y belongs to some open set. In that
case λ(y) +m(y) = 0 and it follows from the stochastic representation (5.8)
that π∗(x, y, t) = 0. Therefore if the model uncertainty is large (the interval
[A,B] is large), then the best possible strategy is not to invest in the risky
asset at all. Moreover, if (−λ(y)) ∈ [A,B] for all y ∈ R then the dynamics
of St under the measure Q∗ is given by

dSt = σ(Yt)dW ∗t .

Hence, a martingale measure is chosen to be an optimal strategy for the
market.
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