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NOTE ON THE VARIANCE OF THE SUM OF
GAUSSIAN FUNCTIONALS

Abstract. Let (X;,7=1,2,...) be a Gaussian sequence with X; € N(0,1)
for each i and suppose its correlation matrix R = (p;j)i ;>1 is the matrix of
some linear operator R : Iy — ly. Then for f; € L?(u), i = 1,2,..., where u
is the standard normal distribution, we estimate the variation of the sum of
the Gaussian functionals f;(X;),i=1,2,....

1. Introduction. Let (X,Y) be a Gaussian random vector such that
X,Y € N(0,1) and E(XY) = p, (|]p| < 1). We denote by p the normalized

one-dimensional Gaussian measure, i.e.

1 1
dr) = exp( —= 2% | dz.
i) = oxp( -3 4*)
In L?(p) we have the scalar product

(f,9)n =\ f2)g(x) p(dz).

R

Introducing a random variable Z € N(0,1) such that Z, Y are indepen-
dent, we find that the Gaussian vectors (X,Y) and (U,Y) with U = pY +
\/1 — p? Z have the same joint distribution. Thus, for f,g € L?(u) we have

(1.1) E(f(X)g(Y)) = E(f({U)g(Y)) = E(P,(Y)g(Y)),
where
Pf(y) = E(FO) Y =y) = floy+ V1= p?2)dp(z), y€ER,
R

is called the Ornstein—Uhlenbeck operator. The Ornstein—Uhlenbeck oper-
ator has a representation in terms of orthonormal Hermite polynomials
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{hn}n>0 C L*(p), namely

(1.2) Pof =Y p"(f hn)uhn,  f €L ().
n=0

In particular,
Pyhy =p" hyp,  n>0.

From (1.2)) we obtain Gebelein’s inequality (see |G] and [DK]):
PROPOSITION 1.1. If f € L? and (f,1), =0, then

(1.3) 1P fll2 < lol - [1fll2,
or equivalently for any g € L* and f as above,

[(Pofs @)ul < ol - 1 f1l2 - [lgll2-
In both inequalities we have equality if and only if f(x) = cx.

Consider a Gaussian sequence (X;,7 = 1,2,...) of random variables with
X; € N(0,1) for each 4. It is assumed that the correlation matrix R =
(Pij)i,jgh where Pij = E(XZX]), Z,j = 1, 2, ey satisfies

(1.4) C:supZ]pm < 0.
=l 51

It is evident that C' > 1. The Frobenius Theorem (see [HLP]) implies that R
is the matrix (in the standard basis) of a continuous linear operator (which
we denote by the same letter) R : [, — [, for 1 < p < oo with ||R| < C.
Hence, it is easily seen that for C' < 2 the linear operator R is invertible.
Using Gebelein’s inequality (1.3)), one can prove (see [BCI], [BC2], [V])

LEMMA 1.1. Let the Gaussian sequence (X;,i = 1,2,...) with X; €
N(0,1) for each i satisfy the hypothesis and let (fi,i = 1,2,...) C
L?(u). Then for each n > 1 we have

(15)  (2-0)3 Var(fi(Xy) < Var(Z f,-(Xi)) < O3 Var(fi(X:)).
i=1 =1 =1

For C' > 2 the left inequality in ([1.5)) holds trivially. In fact, we can say
more: an inequality of the form

(1.6) MY Var(fi(X:)) < Var (3 fi(X3) )
=1 1=1

where M is a positive constant, is not satisfied in general when C > 2.

Consider the following simple example: Let (Y;,i = 1,2,...) C N(0,1)
be a sequence of independent Gaussian random variables. Let a,b € R be
such that a? + b?> = 1 and define

X3k—2 = —Yo, Xsp_1=aYo_1—bYo,, Xgp=aYo_1+0bYo, k2>1
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Moreover, we put

far—a(t) =2bt, fap1(t)=—t, fa(t)=1t, teR, k>1
It is easy to check that
C=sup ) |pijl = 1+ |b] + max{[b], |1 — 26°[} > 2
i>1 %
= g2l

and

3n 3n
Var(Z fi(Xi)> =0 and ZVar(fi(Xi) >0, n>1.
i=1 i=1

2. Main result. In this section we are going to prove the inequality
(1.5) under a slightly weaker condition than ((1.4). First let us introduce
some notations. For a given correlation matrix R = (p;;)i j>1, we put

R(™ = (pM)1<ijen, myn>1,

and let /\Sﬁ) and /\%Wﬁl) denote the least and the greatest of the eigenvalues of
the matrix R, By the Schur lemma (see [B]) the matrix RU™ is nonneg-

ative definite. Hence, the eigenvalues )\n"i are nonnegative. For the matrix

R, = R,(Zl) we use the well known decomposition
R, = U,D,U}

where

(1)

is a diagonal matrix with eigenvalues A, ;, i = 1,...,n, of R, on the main
diagonal. The matrix U, = (un,j)1<i,j<n is an orthogonal matrix and 7'
stands for transposition. It follows that

n
1 .o
(21) Pij = Z )\7(173€un,ik:un,jka 1< (2W] <n.
k=1

Now we can state the following simple result.

LEMMA 2.1. Fix n > 1. Then the least and the greatest eigenvalues of

the matrix Rgm) are monotonic with respect to m, i.e.

(2.2) A > A and A <A form=1,2,...

7n7
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(m+1) .

Proof. Since the matrix R, "'’ is symmetric, we have
n
(2.3) /\fﬁﬂ) = inf (RU"Ve¢,¢) = inf Z Pl ey,
’ lell=1 lel=1 5= "
i,7=1
where ¢ = (c1,...,¢,) € 15 and 1§ is the n-dimensional Euclidean space with
the scalar product denoted here by (-,-). From ({2.3) and ({2.1)) we conclude
that for every ¢ = (c1,...,¢,) €[5 with ||c|[| = 1 we have
Yy 1, » En 2
(2.4) Z piitleic; = Z P pijcic
7.7 1 ,] 1
_ Z Pij Z )\n L Un,ikUn,jkCiCj = Z )\n L < Z Pij Cilln, ik Cjln, ]k)
i,j=1 1,j=1
n n
>STAD ST 22, inf (R, b) = AU,
k=1 i=1 Iell=1
since
1 2,2 2 1), 2
)\n,k Z CiUnp, ik = G Z )\n EUn,ik = 1
k=1 i=1 i=1 k=1

by (2.1). Taking the infimum in (2.4) over all ¢ = (c1,...,¢,) € 1§ with
|lc|l = 1 we obtain the first inequality of (2.2)). The proof of the second one
runs similarly. =

We can now formulate our main result.

THEOREM 2.1. Let (X;,i=1,2,...) be a Gaussian sequence with X; €
N(0,1) for each i and suppose its correlation matriz R = (p;j)ij>1 15 the
matriz of some operator R : ly — ls. Then for fi € L?(u), i =1,2,..., and
for every n > 1 we have

(25) Ao 3 Var(fi(X)) < Var(3- fi(X0)) < Amax I Var(fi(X,))
=1 =1 i=1

where

Amin = ||iﬁlf1(Rx’x)’ Amax = sup (Rzx,x).
zll= [lz]|=1

REMARK. Let us point out that the assumption concerning the correla-
tion matrix R = (p;j)i j>1 of the sequence (X;,7 = 1,2,...) is slightly weaker
than the hypothesis . To see this, consider the following example: Let
(Yi,i=1,2,...) C N(0,1) be a sequence of independent Gaussian random
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variables and define
o0
X =aY1 + ZY}/ja where a =+/2—72/6,
=2
X;=Y, fori>2.

It follows immediately that the correlation matrix R = (pji;)ij>1 of the
sequence (X;,i = 1,2,...) is the matrix of some linear operator R : lo — Iy
and the hypothesis ([1.4]) is not satisfied.

Proof of Theorem 1.1. First we prove the left inequality of . Without
loss of generality we assume that E(f;(X;)) = 0,7 =1,2,.... If Apyin = 0
then the inequality holds trivially. Assume that A\pi, # 0. Expanding each
fi, i > 1, with respect to the Hermite basis in L?(u) we obtain

oo 0o
k=1 k=1

From ((1.1]) and (1.2)) and the orthonormality of Hermite polynomials {h,},>1
C L?(p) it follows that
(2.7) Elhn(Xi)himn(X5)] = p50m,  nymyi,j=1,2,...,

where 9§, is the Kronecker delta. Combining (2.6) with (2.7) and using
Lemma 2.1 we get

Var(f: fi(X0) = E(f: 7i(x)”
=1 =1

n N N n
(a0 PSS )
i=1 k=1 k=1 1i=1
N n n
- 3 Bl a00) (3 )]
k=1 i=1 j=1
N n 9 N n
= Jim, S B[S eum (0] = Jim 3 57 dbenci
k=1 i=1 k=11i,j=1
> A}gnoo )\(k Z Cip, > hm Z /\(1& icfh
=1

Amin Z Z C?k = Amin Zl E[fl(X’L)] ? = Amin Zl Var(fl(Xz))

i=1 k=1
This proves the left inequality of (2.5)). The proof of the right one is similar. =
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REMARK. Let us point out that under the assumptions of Theorem 2.1
the inequality (T.6) holds for all f; € L?(u), i = 1,2,..., with a positive
constant M if and only if the operator R : lo — [y is invertible. =

Adapting now the methods from [BCI] and [BC2] we can write the fol-
lowing two statements:

LEMMA 2.2 (Borel-Cantelli Lemma). Let (X;,i = 1,2,...) be a Gaus-
sian sequence with X; € N(0,1) fori > 1 and suppose its correlation matriz
R = (pij)ij>1 is the matriz of some linear operator R : ly — lo. Then for ev-
ery sequence of Borel sets (Ai, i =1,2,...) such that > ;2 P{X; € A;} = o0
we have P{X; € Aj i.0.} =1.n

THEOREM 2.2 (Strong Law of Large Numbers). Let (X;,i=1,2,...) be
a Gaussian sequence with X; € N(0,1) fori > 1 and suppose its correlation

matriz R = (,oij)mzl is the matriz of some linear operator R : ls — ls. Then
for f € L' (1) we have

n—oo

%Z F(X) —— Ef(X1)  as. =
=1
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