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A NOTE ON CONTROL OF
THE FALSE DISCOVERY PROPORTION

Abstract. We consider the problem of simultaneous testing of a finite
number of null hypotheses Hi, i = 1, . . . , s. Starting from the classical pa-
per of Lehmann (1957), it has become a very popular subject of research.
In many applications, particularly in molecular biology (see e.g. Dudoit et
al. (2003), Pollard et al. (2005)), the number s, i.e. the number of tested
hypotheses, is large and the popular procedures that control the familywise
error rate (FWER) have small power. Therefore, we are concerned with an-
other error rate measure, called the false discovery proportion (FDP). We
prove some theorems about control of the FDP measure. Our results differ
from those obtained by Lehmann and Romano (2005).

1. Introduction. In our paper, we consider the problem of simultane-
ous testing of a finite number of null hypotheses Hi, i = 1, . . . , s. Our main
goal is to give some results concerning control of a measure, called the false
discovery proportion (FDP). Suppose that data X come from some prob-
ability distribution P ∈ Ω, where Ω is the set of all available hypotheses
(i.e., each single hypothesis Hi is a certain subset ωi of Ω). Let N denote
the number of false rejections, and R the total number of rejections. Then

(1) FDP :=
{
N/R if R 6= 0,
0 if R = 0.

Control of the FDP requires the following condition:

(2) P{FDP > γ} ≤ α for any γ, α ∈ (0; 1),

for all possible constellations of true and false null hypotheses (i.e., for all
P ∈ Ω).
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2. Some procedures of control. In the first part of this section, we in-
troduce the generalized Holm procedure, which we apply later in our proofs.
In its second part, we present the Hochberg procedure. Before we introduce
the generalized Holm procedure, we give the description of the Holm proce-
dure in its general form (see also Holm (1979)). This procedure is described
in terms of the p-values of individual tests.

Let us consider a single null hypothesis H: P ∈ ω. To test Hi: P ∈ ωi,
i = 1, . . . , s, we denote by I(P ) the set of indices of the true null hypotheses.
Assume that Sα, the rejection regions for a family of tests of H, indexed
by α, satisfy

P{X ∈ Sα} ≤ α for all 0 < α < 1, P ∈ ω,
Sα ⊂ Sα′ if α < α′.

The p-value is defined by

p = p(X) := inf{α : X ∈ Sα}.
Let p1, . . . , ps be the p-values of s individual tests, let p(1) ≤ · · · ≤ p(s)

denote these p-values ordered, and let H(1), . . . ,H(s) stand for the corre-
sponding null hypotheses.

Put

(3) αi := α/(s− i+ 1) for some fixed 0 < α < 1, i = 1, . . . , s.

The Holm procedure is described as follows: If

(4) p(1) > α1,

we reject no null hypotheses. Otherwise, if

(5) p(1) ≤ α1, . . . , p(r) ≤ αr,
we reject hypotheses H(1), . . . ,H(r), where the largest r satisfying (5) is used.

The generalized Holm procedure has been introduced in Lehmann and
Romano (2005). It is described similarly to the Holm procedure, with the
αi’s given by

αi := kα/(s+ k − i) for some k and some 0 < α < 1, i = 1, . . . , s.

It turns out that the generalized Holm procedure with the αi’s of the form

(6) αi :=
([γi] + 1)α

s+ [γi] + 1− i
, i = 1, . . . , s,

controls the FDP measure in the sense of (2) under the assumption

P{qi ≤ u | r1, . . . , rs−|I(P )|} ≤ u for any i = 1, . . . , |I(P )| and any u∈(0; 1),

where q1, . . . , q|I(P )| denote the p-values corresponding to the |I(P )| true
null hypotheses, and r1, . . . , rs−|I(P )| are the p-values corresponding to the
s − |I(P )| false null hypotheses. For further details, see Theorem 3.1 in
Lehmann and Romano (2005), together with its proof.
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Both the Holm procedure and the generalized Holm procedure are special
cases of the so-called stepdown procedures. The stepdown procedures are
described according to the steps (4) and (5), that is, a stepdown procedure
starts with the most significant p-value and continues rejecting hypotheses
as long as their corresponding p-values are small.

In the next part of this section, we present the Hochberg procedure (see
Hochberg (1988)). It can be described as follows:

Let αi be defined by (3). If

p(s) ≤ αs,

we reject all null hypotheses. Otherwise, if

(7) p(s) > αs, . . . , p(r+1) > αr+1,

we reject hypotheses H(1), . . . ,H(r), where r denotes the smallest index sat-
isfying (7).

The Hochberg procedure belongs to the class of so-called stepup pro-
cedures. A stepup procedure begins with the least significant p-value and
continues accepting hypotheses as long as their corresponding p-values are
large.

It is worth mentioning that it is the Hochberg procedure that is used
in practice to control the FWER measure (recall that we define FWER as
the probability of the event that at least one false rejection occurs). This
procedure is more powerful, in the sense of average power, than the one
proposed by Holm. However, the Holm procedure controls the FWER under
no assumptions on the joint distribution of the p-values, whereas this is not
so for the Hochberg procedure (see Romano and Shaikh (2006)).

3. Main results. Let, as previously, |I(P )| = |I| denote the number of
true hypotheses among s null hypotheses Hi, i = 1, . . . , s, q(1) ≤ · · · ≤ q(|I|)
be the ordered p-values corresponding to the |I| true null hypotheses, and
r(1) ≤ · · · ≤ r(s−|I|) denote the ordered p-values corresponding to the s− |I|
false null hypotheses.

Notice that, for the class of stepdown procedures (e.g., for the Holm
procedures), the r.v.’s: N , the number of false rejections, and T , the number
of true rejections, may be described (in terms of p-values) as follows:

N=



|{k : ∃
1≤i<s

p(1) ≤ α1, . . . , p(i) ≤ αi, p(i+1) > αi+1 ∧ q(k) ≤ p(i) < q(k+1)}|

if q(|I|) < p(s),

|I| if p(1) ≤ α1, . . . , p(s) ≤ αs and q(|I|) = p(s),

0 otherwise,
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T =



|{k : ∃
1≤i<s

p(1) ≤ α1, . . . , p(i) ≤ αi, p(i+1) > αi+1 ∧ r(k) ≤ p(i) < r(k+1)}|

if r(s−|I|) < p(s),

s− |I| if p(1) ≤ α1, . . . , p(s) ≤ αs and q(s−|I|) = p(s),

0 otherwise,

where | · | stands for cardinality.
We now formulate the main results of this paper. The proofs of Theorems

1–3, due to their length, are given in Appendix.
The first result concerns control of the FDP measure by using stepdown

procedures.

Theorem 1. Let q1, . . . , q|I| be identically distributed r.v.’s with marginal
d.f. Fq and r1, . . . , rs−|I| be identically distributed r.v.’s with marginal d.f.
Fr. Suppose moreover that the sequence {q1, . . . , q|I|} is independent of the
sequence {r1, . . . , rs−|I|}, and that

(8) Fq(u) ≤ u for all u ∈ (0; 1).

Then any stepdown procedure with constants α1 ≤ · · · ≤ αs ≤ α controls the
FDP measure in (1) in the following sense:

(a) If |I| 6= s, then for any 0 < γ < 1,

(9) P{FDP > γ}

≤
∑
il

{
min

(
|I|
l
αi, 1

)
−max

(
|I|Fq(αi)− l
|I| − l

, 0
)}

×
{

min
(
s− |I|
i− l

Fr(αi), 1
)
−max

(
(s− |I|)Fr(αi)− (i− l)

(s− |I|)− (i− l)
, 0
)}

+
|I|∑
i=1

(1− Fr(αi+1)) min
(
|I|
i
αi, 1

)

+

[
|I|−1
γ

]∧(s−1)∑
i=|I|+1

αi min
(
s− |I|
s− i

(1− Fr(αi+1)), 1
)

+ |I|αs−|I|+1,

where ∑
il

:=

[
|I|−1
γ

]∧s∑
i=1

(|I|−1)∧(i−1)∑
l=([γi]+1)∨(i−(s−|I|)+1)

.

(b) If |I| = s, then for any 0 < γ < 1,

(10) P{FDP > γ} ≤
s∑
j=1

s

j
αj .
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Remark 1 (some numerical examples). Below, we present the values for
the right hand side of (9) for the case when the generalized Holm procedure is
applied with the αi’s as in (6), where Fq is the d.f. of the uniform distribution
U [0; 1], and Fr is the d.f. of the beta distribution Be(0.001, 1).

For s = 100, α = α′/30 with α′ = 0.05, γ = 0.05 we have

|I| 10 20 30 40 50 60 70 80 90

r.h.s. 0.02 0.04 0.05 0.05 0.05 0.04 0.03 0.02 0.01

The results in the table above indicate control of the measure FDP at level
α′ = 0.05, provided α in (6) is given by α = α′/30 = 0.05/30.

For s = 100, α = α′/40 with α′ = 0.05, γ = 0.1 we have

|I| 10 20 30 40 50 60 70 80 90

r.h.s. 0.01 0.04 0.06 0.07 0.07 0.06 0.05 0.03 0.01

For s = 1000, α = α′/400 with α′ = 0.05, γ = 0.05 we have

|I| 100 200 300 400 500 600 700 800 900

r.h.s. 0.17 0.40 0.51 0.54 0.51 0.44 0.35 0.24 0.12

For s = 1000, α = α′/400 with α′ = 0.05, γ = 0.1 we have

|I| 100 200 300 400 500 600 700 800 900

r.h.s. 0.03 0.39 0.62 0.72 0.73 0.66 0.54 0.37 0.18

The script which computes the right hand side of (9) is available at http://
mors.sggw.waw.pl/∼kfurmanczyk/Theorem1.pdf.

In the case when the sequences {qn}, {rn} are i.i.d. and mutually inde-
pendent, the following assertion can be proved.

Theorem 2. Suppose that {q1, . . . , q|I|}, {r1, . . . , rs−|I|} are i.i.d. r.v.’s
with marginal d.f ’s Fq, Fr, respectively , and all the assumptions of Theo-
rem 1 hold. Then any stepdown procedure with constants α1 ≤ · · · ≤ αs ≤ α
controls the FDP measure in (1) in the following sense:

(a) If |I| 6= s, then for any 0 < γ < 1,

(11) P{FDP > γ}

≤
∑
il

(|I|
l

)
(αi)l(1− Fq(αi))|I|−l

(s−|I|
i−l
)
(Fr(αi))i−l(1− Fr(αi))s−|I|−i+l

+
|I|∑
i=1

(1− Fr(αi+1))s−|I|
|I|∑
j=i

(|I|
j

)
(αi)j(1− Fq(αi))|I|−j
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+

[
|I|−1
γ

]∧(s−1)∑
i=|I|+1

(αi)|I|
i−|I|∑
j=0

(
s−|I|
j

)
(Fr(αi+1))j(1− Fr(αi+1))s−|I|−j

+

[
|I|−1
γ

]∧(s−1)∑
i=s−|I|+1

(Fr(αi))s−|I|
( |I|
i−s+|I|

)
(αi)i−s+|I|(1− Fq(αi))s−i

+ (Fr(αs))s−|I|(αs)|I|,

where
∑

il is as in Theorem 1.
(b) If |I| = s, then for any 0 < γ < 1,

(12) P{FDP > γ} ≤
s∑
i=1

s∑
j=i

(
s
j

)
(αi)j(1− Fq(αi))s−j .

Remark 2 (some numerical examples). Below, we give the values for
the right hand side of (11) for the case when the generalized Holm procedure
is applied with the αi’s as in (6), where α = 0.05, Fq is the d.f. of the uniform
distribution U [0; 1], and Fr is the d.f. of the beta distribution Be(0.01, 1).

For s = 100, γ = 0.05 we have

|I| 10 20 30 40 50 60 70 80 90

r.h.s. 0.004 0.005 0.005 0.007 0.008 0.014 0.018 0.048 0.072

For s = 100, γ = 0.1 we have

|I| 10 20 30 40 50 60 70 80 90

r.h.s. 6e-15 0.010 0.012 0.014 0.018 0.023 0.030 0.040 0.060

For s = 1000, γ = 0.05 we have

|I| 100 200 300 400 500 600 700 800 900

r.h.s. 5e-17 2e-17 e-16 2e-15 7e-15 5e-12 8e-10 2e-7 9e-15

For s = 1000, γ = 0.1 we have

|I| 100 200 300 400 500 600 700 800 900

r.h.s. 3e-15 2e-15 7e-15 8e-14 2e-12 9e-11 7e-9 1e-6 3e-4

We have obtained similar results for the case when Fq ∼ U [0; 1], Fr ∼
Be(0.05, 1).

It is worth mentioning that a good estimation of the FDP measure can
lead to a better control of this measure.

The script which computes the right hand side of (11) is available at
http://mors.sggw.waw.pl/∼kfurmanczyk/Theorem2.pdf.

Our next result is the following.
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Fig. 1. Comparison of the r.h.s. in (11) with the simulated values of FDP ; the cases when
γ = 0.05 and γ = 0.01.
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Theorem 3. Suppose that q1, . . . , q|I| are identically distributed r.v.’s
with marginal d.f. Fq and (8) holds. Then any stepdown procedure with con-
stants α1 ≤ · · · ≤ αs ≤ α controls the FDP measure in (1) in the following
sense:

For any 0 < γ < 1,

(13) P{FDP > γ} ≤
|I|∑
j=1

|I|
j
αj +

|I|
C(γ)

αs−|I|+C(γ),

where C(γ) := min([γ/(1− γ)] + 1, |I|).
Remark 3 (some numerical examples). Below, we present the values of

the right hand side of (13) for the case when the generalized Holm proce-
dure is applied with the αi’s as in (6), where Fq is the d.f. of the uniform
distribution U [0; 1].

For s = 100, α = α′/20 with α′ = 0.05, γ = 0.05 we have

|I| 10 20 30 40 50 60 70 80 90

r.h.s. 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.04

For s = 100, α = α′/25 with α′ = 0.05, γ = 0.1 we have

|I| 10 20 30 40 50 60 70 80 90

r.h.s. 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.04

For s = 1000, α = α′/100 with α′ = 0.05, γ = 0.05 we have

|I| 100 200 300 400 500 600 700 800 900

r.h.s. 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.05

For s = 1000, α = α′/180 with α′ = 0.05, γ = 0.1 we have

|I| 100 200 300 400 500 600 700 800 900

r.h.s. 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.05

The script which computes the right hand side of (13) is available at http://
mors.sggw.waw.pl/∼kfurmanczyk/Theorem3.pdf.

The result below follows immediately from Theorem 3.

Corollary 1. Let

(14) αi :=
C(γ)α

s+ C(γ)− i
, i = 1, . . . , s, C(γ) := min

([
γ

1− γ

]
+1, |I|

)
.

Then, for the generalized Holm procedure with the αi’s given by (14), the
conclusion in (13) holds.

We now introduce a new stepdown procedure which controls the FDP.
Using this procedure requires the MTP2 (multivariate totally positive of
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order two) dependence assumption for the p-values for true null hypotheses.
An n-dimensional random vector is said to have an MTP2 distribution if
the corresponding probability density function f(x) satisfies

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y) for all x, y ∈ Rn,

where x = (x1, . . . , xn), y = (y1, . . . , yn),

x ∨ y = (max(x1, y1), . . . ,max(xn, yn)),
x ∧ y = (min(x1, y1), . . . ,min(xn, yn)).

We prove the following result.

Proposition 1. Suppose that (q1, . . . , q|I|) is an MTP2 random vector
and let α1 ≤ · · · ≤ αs ≤ α denote a numerical sequence such that (αi/i)Mi=1,
where M := min([γs]+1, |I|), is nondecreasing. Then the stepdown procedure
with critical values αi controls the FDP in (1) at level α.

Proof. Observe that, for any given γ ∈ (0; 1),

(15) P{FDP > γ}

= P{FDP > γ, R > 0} = P
{ s⋃
i=1

{N/R > γ, R = i}
}

= P
{ s⋃
i=1

{N > γi,R = i}
}

= P
{ s⋃
i=1

{N ≥ [γi] + 1, R = i}
}
.

For fixed i, let j(i) denote the smallest index such that q([γi]+1) = p(j(i)).
Since the event {N ≥ [γi] + 1} is a subset of {q([γi]+1) ≤ αj(i)}, we have

(16) P
{ s⋃
i=1

{N ≥ [γi] + 1, R = i}
}
≤ P

{ s⋃
i=1

{q([γi]+1) ≤ αj(i), R = i}
}
.

It follows from the definition of j(i) that j(i) ≤ [γi] + 1 + s − |I| (see (13)
in Lehmann and Romano (2005)). Thus, we obtain

(17) αj(i) ≤ α[γi]+1+s−|I|.

For fixed i, let w := [γi] + 1. It follows from (15)–(17) that

P{FDP > γ} ≤ P
{ s⋃
i=1

{q([γi]+1) ≤ α[γi]+1+s−|I|}
}

(18)

≤ P
{ M⋃
w=1

{q(w) ≤ αw+s−|I|}
}
,

where M := min([γs] + 1, |I|). Since, in addition, (q1, . . . , qM ) is an MTP2

random vector and the sequence (αi/i)Mi=1is nondecreasing, by Theorem
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3.1(i) in Sarkar (1998) we have

P{q(1) ≥ α1+s−|I|, . . . , q(M) ≥ αM+s−|I|} ≥ 1− 1
M

M∑
w=1

αw+s−|I|.

Hence,

(19) P
{ M⋃
w=1

{q(w) < αw+s−|I|}
}

= 1− P{q(1) ≥ α1+s−|I|, . . . , q(M) ≥ αM+s−|I|} ≤
1
M

M∑
w=1

αw+s−|I| ≤ α.

Due to (18), (19), we obtain

P{FDP > γ} ≤ α,

as asserted.

Example. Suppose that we are testing the null hypothesis Hi: µi = 0
against the alternative H ′i: µi > 0, where µi is the mean of the normal
distribution. Let pi = 1−Φ(Ti), where Φ stands for the standard normal d.f.
and the Ti’s denote the standard normal, positively correlated test statistics.
Then (p1, . . . , ps) is an MTP2 random vector (for details see Sarkar (1998)),
and Proposition 1 may be applied.

We now prove the following statement.

Proposition 2. Suppose that (8) is satisfied. Then, for any stepdown
procedure with constants α1 ≤ · · · ≤ αs ≤ α, we have

(20) P{FDP > γ} ≤ |I|β1 + |I|
M∑
j=2

βj − βj−1

j
for any 0 < γ < 1,

where

βj :=
{min(αj+s−|I|, α[(j−1)/γ]+1) if [(j − 1)/γ] + 1 ≤ s,
αj+s−|I| otherwise,

(21)

M := min([γs] + 1, |I|).(22)

Proof. Recall that, by (15), (16),

P{FDP > γ} ≤ P
{ s⋃
i=1

{q([γi]+1) ≤ αj(i), R = i}
}
,

where j(i) denotes the smallest index such that q([γi]+1) = p(j(i)). Therefore
(see also (17)), we can write
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P{FDP > γ} ≤ P
{ s⋃
i=1

{q([γi]+1) ≤ min(α[γi]+1+s−|I|, αi)}
}

(23)

≤ P
{ M⋃
j=1

{q(j) ≤ min(αj+s−|I|, α[(j−1)/γ]+1)}
}

= P
{ M⋃
j=1

{q(j) ≤ βj}
}
,

where βj , M are defined by (21), (22), respectively. Observe that the se-
quence {βj} is nondecreasing. This fact together with relation (23) and
Lemma 3.1 in Lehmann and Romano (2005) yield (20).

Corollary 2. Suppose that M and the βj’s are as in Proposition 2 and
(8) holds. Put

S1(s, |I|, γ) := |I|β1 + |I|
M∑
j=2

βj − βj−1

j
,

D1(s, γ) := max
1≤|I|≤s

S1(s, |I|, γ), β′j := αβj/D1(s, γ).

Then, for any stepdown procedure with critical values of the form α′i =
ααi/D1(s, γ), we have for any 0 < γ < 1,

(24) P{FDP > γ} ≤ α.
Proof. By Proposition 2, with the critical values α′i, we obtain

P{FDP > γ} ≤ |I|β′1 + |I|
M∑
j=2

β′j − β′j−1

j

=
α

D1(s, γ)

(
|I|β1 + |I|

M∑
j=2

βj − βj−1

j

)
=
αS1(s, |I|, γ)
D1(s, γ)

≤ α,

as desired.

Remark 4 (some numerical examples). The tables below give the values
of S1(s, |I|, γ) for the case when the generalized Holm procedure is applied
with the αi’s as in (6) and α = 0.05.

For s = 100, γ = 0.05 we have

|I| 10 20 30 40 50 60 70 80 90

S1(·) 0.69 1.23 1.39 1.55 1.45 1.57 1.33 1.42 0.97

For s = 100, γ = 0.1 we have

|I| 10 20 30 40 50 60 70 80 90

S1(·) 0.82 1.63 1.81 1.94 2.01 2.02 1.97 1.84 1.59
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For s = 1000, γ = 0.05 we have

|I| 100 200 300 400 500 600 700 800 900

S1(·) 1.57 1.98 2.31 2.58 2.78 2.90 2.93 2.81 2.43

For s = 1000, γ = 0.1 we have

|I| 100 200 300 400 500 600 700 800 900

S1(·) 1.54 2.18 2.60 2.96 3.24 3.45 3.55 3.52 3.19

The results above indicate that D1(100, 0.05) = 1.57, D1(100, 0.1) = 2.02,
D1(1000, 0.05) = 2.93, D1(1000, 0.1) = 3.55. The relevant script is available
at http://mors.sggw.waw.pl/∼kfurmanczyk/Remark4.pdf.

Fig. 2. The values of S1 for the generalized Holm procedure; the cases when s = 100 and
γ = 0.05, s = 100 and γ = 0.1, s = 1000 and γ = 0.05, s = 1000 and γ = 0.1.

Remark 5. By Theorem 3.3 of Lehmann and Romano (2005), we obtain
control of the FDP at level α by using the generalized Holm procedure
with the critical values α′i ∼ αi/ log([γs] + 1), where the αi’s are as in (6).
Observe that: 1) for s = 100 and γ = 0.05, we get log([γs] + 1) ≈ 1.79, 2)
for s = 100 and γ = 0.1, we obtain log([γs] + 1) ≈ 2.40, 3) for s = 1000 and
γ = 0.05, we get log([γs]+1) ≈ 3.93, 4) for s = 1000 and γ = 0.1, we obtain
log([γs] + 1) ≈ 4.62. These calculations show that the norming constants
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D1(s, γ) we have used in Corollary 2 are smaller than the norming constants
C[γs]+1 ∼ log([γs] + 1), applied in Lehmann and Romano (2005).

4. Appendix. In this section, we give the proofs of our main results,
as well as some auxiliary results.

Proof of Theorem 1(a). Assume that |I| > 0, as otherwise there is noth-
ing to prove.

Notice that

P{FDP > γ} =
s∑
i=1

P{N/R > γ,R = i}

=
s∑
i=1

P

{
N

N + T
> γ, N + T = i

}
=

s∑
i=1

P{N > γi, N + T = i}.

Hence,

P{FDP > γ} =

[
|I|−1
γ

]∧s∑
i=1

P{N ≥ [γi] + 1, N + T = i}

=

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

P{N ≥ [γi] + 1, N + T = i, N = l},

and we can write

P{FDP > γ}

≤
[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

P{N+T = i, N = l} =

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

P{T = i−l, N = l}

=

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l<s−|I|

P{T = i− l, N = l}+

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l}.

Let us consider the following cases:
1o 0 < i− l < s− |I| and 0 < l < |I|,
2o i− l = 0,
3o 0 < i− l < s− |I| and l = |I|,
4o i− l = s− |I|.

Notice that i− l < s− |I| implies l ≥ i− (s− |I|) + 1. Thus,
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P{FDP > γ} ≤
[
|I|−1
γ

]∧s∑
i=1

(|I|−1)∧(i−1)∑
l=([γi]+1)∨(i−(s−|I|)+1)

P{T = i− l, N = l}(25)

+
|I|∑
i=1

P{T = 0, N = i}

+

[
|I|−1
γ

]∧s∑
i=|I|+1

P{T = i− |I|, N = |I|}

+

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l}.

Observe that, provided (see case 1o) 0 < i− l < s− |I| and 0 < l < |I|,
we obtain

(26) P{N = l, T = i− l}
≤ P{q(l) ≤ αi, q(l+1) > αi, r(i−l) ≤ αi, r(i−l+1) > αi}
= P{q(l) ≤ αi, q(l+1) > αi}P{r(i−l) ≤ αi, r(i−l+1) > αi},

where the last relation follows from the assumption that {qn} is independent
of {rn}. Notice that

P{q(l) ≤ αi, q(l+1) > αi} = P{q(l) ≤ αi} − P{q(l) ≤ αi, q(l+1) ≤ αi}(27)
= P{q(l) ≤ αi} − P{q(l+1) ≤ αi}.

By Proposition A below and assumption (8), we have

(28) P{q(l) ≤ αi} ≤ min
(
|I|
l
Fq(αi), 1

)
≤ min

(
|I|
l
αi, 1

)
.

Furthermore, due to Proposition B below, we obtain

(29) P{q(l+1) ≤ αi} ≥ max
(

1− |I|
|I| − l

(1− Fq(αi)), 0
)
.

Thus, by (27)–(29),

(30) P{q(l) ≤ αi, q(l+1) > αi}

≤ min
(
|I|
l
αi, 1

)
−max

(
1− |I|
|I| − l

(1− Fq(αi)), 0
)
.

In addition, by identical reasoning to that in (27), we get

(31) P{r(i−l) ≤ αi, r(i−l+1) > αi} = P{r(i−l) ≤ αi} − P{r(i−l+1) ≤ αi}.
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It follows from Proposition A that

(32) P{r(i−l) ≤ αi} ≤ min
(
s− |I|
i− l

Fr(αi), 1
)
.

Moreover, due to Proposition B,

(33) P{r(i−l+1) ≤ αi} ≥ max
(

1− s− |I|
s− |I| − i+ l

(1− Fr(αi)), 0
)
.

The relations (31)–(33) imply

(34) P{r(i−l) ≤ αi, r(i−l+1) > αi}

≤ min
(
s− |I|
i− l

Fr(αi), 1
)
−max

(
1− s− |I|

s− |I| − i+ l
(1− Fr(αi)), 0

)
.

By (26), (30) and (34), we obtain

(35) P{T = i− l, N = l}

≤
{

min
(
|I|
l
αi, 1

)
−max

(
1− |I|
|I| − l

(1− Fq(αi)), 0
)}

×
{

min
(
s− |I|
i− l

Fr(αi), 1
)
−max

(
1− s− |I|

s− |I| − i+ l
(1− Fr(αi)), 0

)}
=
{

min
(
|I|
l
αi, 1

)
−max

(
|I|Fq (αi)− l
|I| − l

, 0
)}

×
{

min
(
s− |I|
i− l

Fr(αi), 1
)
−max

(
(s− |I|)Fr (αi)− (i− l)

(s− |I|)− (i− l)
, 0
)}

if 0 < i− l < s− |I| and 0 < l < |I|.
We now consider case 2o. Then i = l and 0 < i ≤ |I| < s (as l ≤ |I| and

|I| 6= s). Under these conditions, we get

P{T = i− l, N = l} = P{N = i, T = 0}(36)
≤ P{q(i) ≤ αi, r(1) > αi+1}
= P{q(i) ≤ αi}P{r(1) > αi+1}
≤ P{q(i) ≤ αi}P{r1 > αi+1}
= P{q(i) ≤ αi}(1− P{r1 ≤ αi+1}).

The derivation in (36), Proposition A and assumption (8) imply

(37) P{T = 0, N = i} ≤ (1− Fr(αi+1)) min
(
|I|
i
αi, 1

)
.

Next, we assume that 0 < i − l < s − |I| and l = |I| (see 3o). Then
|I| < i < s, 0 < i− |I| < s− |I|, and
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P{T = i− l, N = l} = P{N = |I|, T = i− |I|}(38)
≤ P{q(|I|) ≤ αi, r(i−|I|+1) > αi+1}
= P{q(|I|) ≤ αi}P{r(i−|I|+1) > αi+1}
= P{q(|I|) ≤ αi}(1− P{r(i−|I|+1) ≤ αi+1}).

The derivation in (38), Propositions A, B and assumption (8) yield

(39) P{T = i− |I|, N = |I|}

≤ αi
(

1−max
(

1− s− |I|
s− i

(1− Fr(αi+1)), 0
))

= αi min
(
s− |I|
s− i

(1− Fr(αi+1)), 1
)
.

We now suppose that condition 4o is satisfied, i.e. i− l = s− |I|. Then

(40)

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l}

≤
s∑

i=(s−|I|)+1

P{T = s− |I|, N = i− (s− |I|)}

≤
|I|∑
l=1

P{N = l} = P{N ≥ 1} ≤ P{q(1) ≤ αj},

where j is the smallest index satisfying p(j) = q(1). Since (see (13) in
Lehmann and Romano (2005))

1 ≤ j ≤ s− |I|+ 1,

we obtain P{q(1) ≤ αj} ≤ P{q(1) ≤ αs−|I|+1}, and consequently, by (40),

(41)

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l} ≤ P{q(1) ≤ αs−|I|+1}.

It follows from Proposition A and assumption (8) that

(42) P{q(1) ≤ αs−|I|+1} ≤ |I|Fq(αs−|I|+1) ≤ |I|αs−|I|+1.

Thus, due to (41), (42),

(43)

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l} ≤ |I|αs−|I|+1.

The relations (25), (35), (37), (39) and (43) yield (9).
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Proof of Theorem 1(b). Observe that, provided |I| = s, we have

P{FDP > γ} = P{FDP > γ, T = 0}(44)
= P{1 > γ, T = 0, R > 0} = P{T = 0, R > 0}

=
s∑
j=1

P{T = 0, R = j}.

Furthermore, notice that, for j ∈ {1, . . . , s},

(45) P{T = 0, R = j} = P{N = j, R = j} ≤ P{q(j) ≤ αj}.

By Proposition A and assumption (8), we conclude that

(46) P{q(j) ≤ αj} ≤
s

j
Fq(αj) ≤

s

j
αj .

Now (44)–(46) imply (10).

Proof of Theorem 2(a). Assume that |I| > 0, as otherwise there is noth-
ing to prove.

We shall estimate the probabilities P{T = i− l, N = l} for cases 1o–4o,
listed in the proof of Theorem 1. For this purpose, we make an extensive
use of the following well-known relation for the d.f. of the kth smallest order
statistic for an i.i.d. sequence X1, . . . , Xn:

(47) FX(k)
(x) =

n∑
j=k

(
n
j

)
(F (x))j(1− F (x))n−j ,

where F stands for the marginal d.f. of X1.
Suppose that case 1o is satisfied, i.e. 0 < i− l < s− |I| and 0 < l < |I|.

It follows from (26), (27) and (31) that

(48) P{T = i− l, N = l}
≤ (P{q(l) ≤ αi} − P{q(l+1) ≤ αi})(P{r(i−l) ≤ αi} − P{r(i−l+1) ≤ αi}).

By using the fact that the sequence {qn} is i.i.d., as well as (47) and (8), we
obtain

(49) P{q(l) ≤ αi} − P{q(l+1) ≤ αi}

=
(|I|
l

)
(Fq(αi))l(1− Fq(αi))|I|−l ≤

(|I|
l

)
(αi)l(1− Fq(αi))|I|−l.

Similarly, as {rn} is i.i.d., (47) yields

(50) P{r(i−l) ≤ αi} − P{r(i−l+1) ≤ αi}

=
(s−|I|
i−l
)
(Fr(αi))i−l(1− Fr(αi))s−|I|−i+l.
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By (48)–(50), we obtain

(51) P{T = i− l, N = l}

≤
(|I|
l

)
(αi)l(1− Fq(αi))|I|−l

(s−|I|
i−l
)
(Fr(αi))i−l(1− Fr(αi))s−|I|−i+l

if 0 < i− l < s− |I| and 0 < l < |I|.
Now consider case 2o, i.e. i− l = 0. Then i = l, 0 < i ≤ |I| < s, and (see

(36))

(52) P{T = i−l, N = l}=P{T = 0, N = i}≤P{q(i)≤αi}P{r(1) >αi+1}.
By (47) and (8), we have

(53) P{q(i) ≤ αi} ≤
|I|∑
j=i

(|I|
j

)
(αi)j(1− Fq(αi))|I|−j .

Additionally, as {rn} is i.i.d., we obtain

P{r(1) > αi+1} = P{r1 > αi+1, . . . , rs−|I| > αi+1}(54)

= (P{r1 > αi+1})s−|I| = (1− Fr(αi+1))s−|I|.

Thus, due to (52)–(54),

P{T = 0, N = i} ≤ (1− Fr(αi+1))s−|I|
|I|∑
j=i

(|I|
j

)
(αi)j(1− Fq(αi))|I|−j .(55)

Assume now that condition 3o holds, i.e. 0 < i− l < s− |I| and l = |I|.
Then |I| < i < s, 0 < i− |I| < s− |I|, and (see (38))

P{T = i− l, N = l} = P{T = i− |I|, N = |I|}(56)
≤ P{q(|I|) ≤ αi}(1− P{r(i−|I|+1) ≤ αi+1}).

Notice that, since {qn} is i.i.d. and (8) holds, we get

P{q(|I|)≤αi}=P{q1≤αi, . . . , q|I|≤αi}= (P{q1 ≤ αi})|I|≤ (αi)|I|.(57)

Furthermore, it follows from (47) that

(58) 1− P{r(i−|I|+1) ≤ αi+1}

=
i−|I|∑
j=0

(
s−|I|
j

)
(Fr(αi+1))j(1− Fr(αi+1))s−|I|−j .

By (56)–(58), we obtain

(59) P{T = i− |I|, N = |I|}

≤ (αi)|I|
i−|I|∑
j=0

(
s−|I|
j

)
(Fr(αi+1))j(1− Fr(αi+1))s−|I|−j .
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Finally, suppose that condition 4o is satisfied, i.e. i− l = s−|I|. We have

(60)

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l}

≤
s−1∑

i=(s−|I|)+1

P{T = s− |I|, N = i− (s− |I|)}+ P{T = s− |I|, N = |I|}

≤
[
|I|−1
γ

]∧(s−1)∑
i=(s−|I|)+1

P{r(s−|I|) ≤ αi}(P{q(i−(s−|I|)) ≤ αi} − P{q(i−(s−|I|)+1) ≤ αi})

+ P{r(s−|I|) ≤ αs}P{q(|I|) ≤ αs}.

Observe that, due to (47) and (8), we get

(61) P{q(i−(s−|I|)) ≤ αi} − P{q(i−(s−|I|)+1) ≤ αi}

=
( |I|
i−s+|I|

)
(Fq(αi))i−s+|I|(1− Fq(αi))s−i

≤
( |I|
i−s+|I|

)
(αi)i−s+|I|(1− Fq(αi))s−i.

Furthermore, we also have

(62) P{r(s−|I|) ≤ αi} = (Fr(αi))s−|I|, P{q(|I|) ≤ αs} ≤ (αs)|I|.

Thus, the relations (60)–(62) yield

(63)

[
|I|−1
γ

]∧s∑
i=1

|I|∧i∑
l=[γi]+1

i−l=s−|I|

P{T = i− l, N = l}

≤
[
|I|−1
γ

]∧(s−1)∑
i=s−|I|+1

(Fr(αi))s−|I|
( |I|
i−s+|I|

)
(αi)i−s+|I|(1− Fq(αi))s−i

+ (Fr(αs))s−|I|(αs)|I|.

The relations (25), (51), (55), (59) and (63) imply (11).

Proof of Theorem 2(b). By proceeding analogously to the proof of The-
orem 1(b) (see (44)–(46)), we obtain

(64) P{FDP > γ} ≤
s∑
j=1

P{q(j) ≤ αj}.
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It follows from (47) that

(65) P{q(i) ≤ αi} ≤
s∑
j=i

(
s
j

)
(αi)j(1− Fq(αi))s−j .

The relations (64), (65) imply (12).

Proof of Theorem 3. Obviously, we have

P{FDP > γ} = P{FDP > γ, T = 0}+
s−|I|∑
t=1

P{FDP > γ, T = t}(66)

=: B1 +B2.

It is clear that

B1 = P{1 > γ, T = 0, R > 0} = P{T = 0, R > 0}(67)

=
s∑
j=1

P{T = 0, R = j}

=
|I|∑
j=1

P{T = 0, R = j}+
s∑

j=|I|+1

P{T = 0, R = j}

=
|I|∑
j=1

P{T = 0, R = j},

where the last equality follows from the fact that

P{T = 0, R = j} = P{N = j, R = j} = 0 if j > |I|.

Notice that, for j ∈ {1, . . . , |I|},

(68) P{T = 0, R = j} = P{N = j, R = j} ≤ P{q(j) ≤ αj}.

By Proposition A and assumption (8), we get

(69) P{q(j) ≤ αj} ≤
|I|
j
Fq(αj) ≤

|I|
j
αj .

Due to (67)–(69), we obtain

(70) B1 ≤
|I|∑
j=1

|I|
j
αj .

We now estimate the component B2 in (66). We have
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B2 =
s−|I|∑
t=1

P{FDP > γ |T = t}P{T = t}

=
s−|I|∑
t=1

P

{
N

N + T
> γ

∣∣∣∣T = t

}
P{T = t}

=
s−|I|∑
t=1

P

{
N > t

γ

1− γ

∣∣∣∣T = t

}
P{T = t}

≤
s−|I|∑
t=1

P

{
N >

γ

1− γ

∣∣∣∣T = t

}
P{T = t}.

Thus,

(71) B2 ≤
s−|I|∑
t=1

P{N ≥ C(γ) |T = t}P{T = t} ≤ P{N ≥ C(γ)},

where C(γ) := min([γ/(1− γ)] + 1, |I|). Let m be the smallest index satis-
fying p(m) = q(C(γ)). It is easy to check that C(γ) ≤ m ≤ s − |I| + C(γ)
(see (13) in Lehmann and Romano (2005)). This, (71), Proposition A and
assumption (8) yield

B2 ≤ P{N ≥ C(γ)} ≤ P{q(C(γ)) ≤ αm}(72)

≤ |I|
C(γ)

Fq(αm) ≤ |I|
C(γ)

αm ≤
|I|
C(γ)

αs−|I|+C(γ).

The relations (66), (70) and (72) imply (13).

The following two claims are needed for the proofs of our main results.

Proposition A (Proposition 1 in Caraux and Gascuel (1992)). Let
X1, . . . , Xn be a set of n identically distributed r.v.’s (with c.d.f. F ) and
FX(k)

denote the d.f. of the kth smallest order statistic. Then

FX(k)
(x) ≤ min

(
n

k
F (x), 1

)
.

The next auxiliary result we have used extensively.

Proposition B (Proposition 2 in Caraux and Gascuel (1992)). Let
X1, . . . , Xn be a set of n identically distributed r.v.’s (with c.d.f. F ) and
FX(k)

denote the d.f. of the kth smallest order statistic. Then

FX(k)
(x) ≥ max

(
1− n

n− k + 1
(1− F (x)), 0

)
.
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