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ON THE PRODUCT OF
TRIANGULAR RANDOM VARIABLES

Abstract. We derive the probability density function (pdf) for the prod-
uct of three independent triangular random variables. It involves consid-
eration of various cases and subcases. We obtain the pdf for one subcase
and present the remaining cases in tabular form. We also indicate how to
calculate the pdf for the product of n triangular random variables.

1. Introduction. The triangular distribution is often used when no or
little data is available. It is very popular for modelling a subjective esti-
mate of some uncertain quantity in business risk models. One of its earliest
applications is to model the average number of defects in a chip (Murphy
[11]). It is also used in oil and gas exploration where data is expensive to
collect and it is almost impossible to model the population being sampled
accurately. The triangular distribution, along with the beta distribution,
is also widely used in project management. The symmetric triangular dis-
tribution is commonly used in audio dithering, where it is called TPDF
(Triangular Probability Density Function). Johnson [7] explores the advan-
tages of using the triangular distribution as a proxy for the beta distribution.
Amaral-Turkman and Gonçalves [1] add some new applications of triangu-
lar and trapezoidal distributions in the genome analysis, particularly, in the
construction of physical mapping of linear and circular chromosomes. Re-
cent popularity of the triangular distribution can be attributed to its use in
discrete system simulation [2], Monte Carlo simulation technique [18] and
in standard uncertainty analysis software, such as @Risk (developed by the
Palisade Corporation) or Crystal Ball (developed by Decision Engineering).
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An extension of the triangular distribution utilized in risk analysis is also
discussed by J. Rene Van Dorp and Samuel Kotz [17], with applications
in computers and industrial engineering, geotechnical engineering, financial
engineering, screening, detection and progression of cancer. Advantages of
triangular distribution over beta distribution have been discussed in detail
by Kotz and Van Dorp [8].

Products of two or more triangular random variables arise in many situ-
ations. Consider the example where triangular distributions model the num-
ber of defects in a chip (Murphy [11]). Suppose that an electronic system is
made up of n chips and that the numbers of defects in these chips are trian-
gular random variables assumed to be independent. Then the total number
of possible failures of the system will be the product of n random variables.
Another example is in risk assessment. Many risks can be described by
sequences of independent events, say A1, . . . , An. Suppose that the proba-
bility of Ai, i = 1, . . . , n, is a random variable, with a triangular distribution
defined over the unit interval [0, 1] (see equation (1) below). Then the prob-
ability of the risk occurring will be the product of the n random variables.

The general techniques for determining the distributions of products
of random variables are discussed by Donahue [3], Springer and Thomp-
son [16] and Springer [15]. When both random variables follow the gamma,
Bessel, Lawrance and Lewis’s bivariate exponential, Pearson type VII and
the Pareto distribution, the results for the distribution of products have been
obtained by Lomnicki [10], Kotz and Srinivasan [9], Nadarajah and Ali [13],
Nadarajah and Kotz [14] and Nadarajah [12] respectively. Glen et al. [5] pro-
vide a computational algorithm for determining the distribution of the prod-
uct of two random variables. Glickman and Feng Xu [6] derive the probabil-
ity density function (pdf) of the product of two triangular random variables.

The aim of this note is to extend the work of Glickman and Xu [6]. The
paper is organized as follows: the pdf for the product of three triangular
random variables derived by the use of Mellin transform and its inverse is
presented in Section 2. It is assumed that the variables are non-identical
and independent. A brief application of this result is discussed in Section 3.
Finally, Section 4 outlines the extension to n triangular random variables.

2. PDF of product of three triangular random variables. A ran-
dom variable X is said to have triangular distribution if it is nonnegative and
has continuous probability distribution with lower limit a1>0, mode m1>0
and upper limit b1 > 0. Its pdf on the support a1 ≤ x ≤ b1 is defined as

(1) h′(x) =


2(x− a1)

(b1 − a1)(m1 − a1)
, a1 ≤ x ≤ m1,

2(b1 − x)
(b1 − a1)(b1 −m1)

, m1 ≤ x ≤ b1.
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We take two more independent and triangularly distributed random vari-
ables Y and Z on the supports a2 ≤ y ≤ b2 and a3 ≤ z ≤ b3, having modes
m2 and m3 respectively. The pdf of the product of three random variables
w = xyz can be obtained by using Mellin inversion and is expressed as [16]

(2) h(w) = M−1
s [Msh

′(x)Msh
′′(y)Msh

′′′(z)]

where h′(x), h′′(y) and h′′′(z) denote the pdfs of X, Y , Z respectively. The
Mellin transform and its inverse under suitable conditions are defined by

Ms(f(x)) = ϕ(s) =
∞�

0

xs−1f(x) dx

and

M−1
s (ϕ(s)) = f(x) =

1
2πω

c+ω∞�

c−ω∞
x−sϕ(s) ds where ω =

√
−1

respectively. The Mellin transform of h′(x) can be easily obtained as

(3) Ms(h′(x)) =


2

(b1−a1)(m1−a1)

(ms+1
1
s+1 −

a1ms
1

s + as+1
1

s(s+1)

)
, a1 ≤ x ≤ m1,

2
(b1−a1)(b1−m1)

( bs+1
1

s(s+1) −
b1ms

1
s + ms+1

1
s+1

)
, m1 ≤ x ≤ b1.

Similarly

(4) Ms(h′′(y)) =


2

(b2−a2)(m2−a2)

(ms+1
2
s+1 −

a2ms
2

s + as+1
2

s(s+1)

)
, a2 ≤ y ≤ m2,

2
(b2−a2)(b2−m2)

( bs+1
2

s(s+1) −
b2ms

2
s + ms+1

2
s+1

)
, m2 ≤ y ≤ b2,

and

(5) Ms(h′′′(z)) =


2

(b3−a3)(m3−a3)

(ms+1
3
s+1 −

a3ms
3

s + as+1
3

s(s+1)

)
, a3 ≤ z ≤ m3,

2
(b3−a3)(b3−m3)

( bs+1
3

s(s+1) −
b3ms

3
s + ms+1

3
s+1

)
, m3 ≤ z ≤ b3.

Now derivation of the pdf h (w) requires consideration of the following eight
different cases where the values of x, y, z are located in different segments:

I. a1 ≤ x ≤ m1, a2 ≤ y ≤ m2, a3 ≤ z ≤ m3,
II. a1 ≤ x ≤ m1, a2 ≤ y ≤ m2, m3 ≤ z ≤ b3,

III. a1 ≤ x ≤ m1, m2 ≤ y ≤ b2, a3 ≤ z ≤ m3,
IV. a1 ≤ x ≤ m1, m2 ≤ y ≤ b2, m3 ≤ z ≤ b3,
V. m1 ≤ x ≤ b1, a2 ≤ y ≤ m2, a3 ≤ z ≤ m3,

VI. m1 ≤ x ≤ b1, a2 ≤ y ≤ m2, m3 ≤ z ≤ b3,
VII. m1 ≤ x ≤ b1, m2 ≤ y ≤ b2, a3 ≤ z ≤ m3,

VIII. m1 ≤ x ≤ b1, m2 ≤ y ≤ b2, m3 ≤ z ≤ b3.
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2.1. Case I. Let h1(w) be the value of h(w) in Case I. Then using (3)–(5)
in equation (2), we get

h1(w) = M−1
s

[
K1

{(
ms+1

1

s+ 1
− a1m

s
1

s
+

as+1
1

s(s+ 1)

)}
(6)

×
{(

ms+1
2

s+ 1
− a2m

s
2

s
+

as+1
2

s(s+ 1)

)}
×
{(

ms+1
3

s+ 1
− a3m

s
3

s
+

as+1
3

s(s+ 1)

)}]
,

where

K1 =
8

(b1 − a1)(b2 − a2)(b3 − a3)(m1 − a1)(m2 − a2)(m3 − a3).

Clearly, the right hand side of (6) contains 27 terms. The Mellin inversions of
these terms are obtained by partial fractions and using the following known
result [4, p. 343, (16)]:

M−1
s ((s+ a)−υ) =

xa

Γυ

(
− ln

x

a

)υ−1

, Re(υ) > 0, Re(s) > −Re(a),

with the property [4, p. 307, (2)]

M−1
s (a−sϕ(s)) = f(ax),

and are given as follows:

M−1
s

(m1m2m3)s+1

(s + 1)3
=

w

2

„
ln

w

m1m2m3

«2

, w < m1m2m3,

M−1
s


−m1m2a3(m1m2m3)s

s(s + 1)2

ff
= −m1m2a3

»
1− w

m1m2m3
+

w

m1m2m3
ln

w

m1m2m3

–
,

w < m1m2m3,

M−1
s


(m1m2a3)s+1

s(s + 1)3

ff
= m1m2a3

»
1− w

m1m2a3
+

w

m1m2a3
ln

w

m1m2a3

− 1

2

w

m1m2a3

„
ln

w

m1m2a3

«2–
, w < m1m2a3,

M−1
s


−m1a2m3(m1m2m3)s

s(s + 1)2

ff
= −m1a2m3

»
1− w

m1m2m3
+

w

m1m2m3
ln

w

m1m2m3

–
,

w < m1m2m3,

M−1
s


m1a2a3(m1m2m3)s

s2(s + 1)

ff
= m1a2a3

»
−1 +

w

m1m2m3
− ln

w

m1m2m3

–
,

w < m1m2m3,

M−1
s


−m1a2a3(m1m2a3)s

s2(s + 1)2

ff
= −m1a2a3

»
−2 +

2w

m1m2a3
− ln

w

m1m2a3

− w

m1m2a3
ln

w

m1m2a3

–
, w < m1m2a3,



Product of triangular variables 423

M−1
s


(m1a2m3)s+1

s(s + 1)3

ff
= m1a2m3

»
1− w

m1a2m3
+

w

m1a2m3
ln

w

m1a2m3

− 1

2

w

m1a2m3

„
ln

w

m1a2m3

«2–
, w < m1a2m3,

M−1
s


−m1a2a3(m1m2a3)s

s2(s + 1)2

ff
= −m1a2a3

»
−2 +

2w

m1a2m3
− ln

w

m1a2m3

− w

m1a2m3
ln

w

m1a2m3

–
, w < m1a2m3,

M−1
s


(m1a2a3)s+1

s2(s + 1)3

ff
= m1a2a3

»
−3 +

3w

m1a2a3
− ln

w

m1a2a3

− 2w

m1a2a3
ln

w

m1a2a3
+

1

2

w

m1a2a3

„
ln

w

m1a2a3

«2–
,

w < m1a2a3,

M−1
s


−a1m2m3(m1m2m3)s

s(s + 1)2

ff
= − a1m2m3

»
1− w

m1m2m3
+

w

m1m2m3
ln

w

m1m2m3

–
,

w < m1m2m3,

M−1
s


a1m2a3(m1m2m3)s

s2(s + 1)

ff
= a1m2a3

»
−1 +

w

m1m2m3
− ln

w

m1m2m3

–
,

w < m1m2m3,

M−1
s


−a1m2a3(m1m2a3)s

s2(s + 1)2

ff
= − a1m2a3

»
−2 +

2w

m1m2a3
− ln

w

m1m2a3

− w

m1m2a3
ln

w

m1m2a3

–
, w < m1m2a3,

M−1
s


a1a2m3(m1m2m3)s

s2(s + 1)

ff
= a1a2m3

»
−1 +

w

m1m2m3
− ln

w

m1m2m3

–
,

w < m1m2m3,

M−1
s


−a1a2a3

(m1m2m3)s

s3

ff
= − a1a2a3

»
1

2

„
ln

w

m1m2m3

«2–
, w < m1m2m3,

M−1
s


a1a2a3(m1m2a3)s

s3(s + 1)

ff
= a1a2a3

»
1− w

m1m2a3
+ ln

w

m1m2a3

+
1

2

„
ln

w

m1m2a3

«2–
, w < m1m2a3,

M−1
s


−a1a2m3(m1a2m3)s

s2(s + 1)2

ff
= − a1a2m3

»
−2 +

2w

m1a2m3
− ln

w

m1a2m3

− w

m1a2m3
ln

w

m1a2m3

–
, w < m1a2m3,

M−1
s


−a1a2a3(m1a2m3)s

s3(s + 1)

ff
= a1a2a3

»
1− w

m1a2m3
+ ln

w

m1a2m3

+
1

2
ln

„
w

m1a2m3

«2–
, w < m1a2m3,

M−1
s


−a1a2a3(m1a2a3)s

s3(s + 1)2

ff
= − a1a2a3

»
3− 3w

m1a2a3
+ 2 ln

w

m1a2a3

+
w

m1a2a3
ln

w

m1a2a3
+

1

2

„
ln

w

m1a2a3

«2–
,

w < m1a2a3,
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M−1
s


(a1m2m3)s+1

s(s + 1)3

ff
= a1m2m3

»
1− w

a1m2m3
+

w

a1m2m3
ln

w

a1m2m3

− 1

2

w

a1m2m3

„
ln

w

a1m2m3

«2–
, w < a1m2m3,

M−1
s


−a1m2a3(a1m2m3)s

s2(s + 1)2

ff
= − a1m2a3

»
−2 +

2w

a1m2m3
− ln

w

a1m2m3

− w

a1m2m3
ln

w

a1m2m3

–
, w < a1m2m3,

M−1
s


(a1m2a3)s+1

s2(s + 1)3

ff
= a1m2a3

»
−3 +

3w

a1m2a3
− ln

w

a1m2a3

− 2w

a1m2a3
ln

w

a1m2a3
+

1

2

w

a1m2a3

„
ln

w

a1m2a3

«2–
,

w < a1m2a3,

M−1
s


−a1a2m3(a1m2m3)s

s2(s + 1)2

ff
= − a1a2m3

»
−2 +

2w

a1m2m3
− ln

w

a1m2m3

− w

a1m2m3
ln

w

a1m2m3

–
, w < a1m2m3,

M−1
s


a1a2a3(a1m2m3)s

s3(s + 1)

ff
= a1a2a3

»
1− w

a1m2m3
+ ln

w

a1m2m3

+
1

2

„
ln

w

a1m2m3

«2–
, w < a1m2m3,

M−1
s


−a1a2a3(a1m2a3)s

s3(s + 1)2

ff
= − a1a2a3

»
3− 3w

a1m2a3
+ 2 ln

w

a1m2a3

+
1

2

„
ln

w

a1m2a3

«2

+
w

a1m2a3
ln

w

a1m2a3

–
,

w < a1m2a3,

M−1
s


(a1a2m3)s+1

s2(s + 1)3

ff
= a1a2m3

»
−3 +

3w

a1a2m3
− ln

w

a1a2m3

− 2w

a1a2m3
ln

w

a1a2m3
+

1

2

w

a1a2m3

„
ln

w

a1a2m3

«2–
,

w < a1a2m3,

M−1
s


−a1a2a3(a1a2m3)s

s3(s + 1)2

ff
= − a1a2a3

»
3− 3w

a1a2m3
+ 2 ln

w

a1a2m3

+
w

a1a2m3
ln

w

a1a2m3
+

1

2

„
ln

w

a1a2m3

«2–
,

w < a1a2m3,

M−1
s


(a1a2a3)s+1

s3(s + 1)3

ff
= a1a2a3

»
6− 6w

a1a2a3
+ 3 ln

w

a1a2a3
+

1

2

„
ln

w

a1a2a3

«2

+
3w

a1a2a3
ln

w

a1a2a3
− 1

2

w

a1a2a3

„
ln

w

a1a2a3

«2–
,

w < a1a2a3.

Now with the help of these results, the value of h1(w) as given by (6) can
be written for different values of w. For example, adding all results for
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w < m1m2m3, we get the pdf h1(w) when w < m1m2m3:

(7) h1(w) = −K1

[(
1− w

m1m2m3

)
× (a1m2m3 +m1a2m3 +m1m2a3 +m1a2a3 + a1m2a3 + a1a2m3)

+
{

(m1a2a3 + a1m2a3 + a1a2m3)

+ (a1m2m3 +m1a2m3 +m1m2a3)
w

m1m2m3

}
ln

w

m1m2m3

− 1
2

(w − a1a2a3)
(

ln
w

m1m2m3

)2]
for w < m1m2m3.

Proceeding along similar lines we can obtain h1(w) for different values
of w as follows:

(8) h1(w) = K1

[
a1(m2m3 + 2m2a3 + 2a2m3 + a2a3)

(
1− w

a1m2m3

)
+
{
a1(m2a3 + a2m3 + a2a3) + (m2m3 +m2a3 + a2m3)

w

m2m3

}
× ln

w

a1m2m3
− 1

2
(w − a1a2a3)

(
ln

w

a1m2m3

)2]
for w < a1m2m3;

(9) h1(w) = K1

[
a2(m1m3 + 2m1a3 + 2a1m3 + a1a3)

(
1− w

m1a2m3

)
+
{
a2(m1a3 + a1m3 + a1a3) + (m1m3 +m1a3 + a1m3)

w

m1m3

}
× ln

w

m1a2m3
− 1

2
(w − a1a2a3)

(
ln

w

m1a2m3

)2]
for w < m1a2m3;

(10) h1(w) = K1

[
a3(m1m2 + 2m1a2 + 2a1m2 + a1a2)

(
1− w

m1m2a3

)
+
{
a3(m1a2 + a1m2 + a1a2) + (m1m2 +m1a2 + a1m2)

w

m1m2

}
× ln

w

m1m2a3
− 1

2
(w − a1a2a3)

(
ln

w

m1m2a3

)2]
for w < m1m2a3;
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h1(w) = −K1

[
3a1a2(m3 + a3)

(
1− w

a1a2m3

)
(11)

+
{
a1a2(m3 + 2a3) + (2m3 + a3)

w

m3

}
ln

w

a1a2m3

− 1
2

(w − a1a2a3)
(

ln
w

a1a2m3

)2]
for w < a1a2m3;

h1(w) = −K1

[
3a2a3(a1 +m1)

(
1− w

m1a2a3

)
(12)

+
{
a2a3(2a1 +m1) + (a1 + 2m1)

w

m1

}
ln

w

m1a2a3

− 1
2

(w − a1a2a3)
(

ln
w

m1a2a3

)2]
for w < m1a2a3;

h1(w) = −K1

[
3a1a3(m2 + a2)

(
1− w

a1m2a3

)
(13)

+
{
a1a3(m2 + 2a2) + (2m2 + a2)

w

m2

}
ln

w

a1m2a3

− 1
2

(w − a1a2a3)
(

ln
w

a1m2a3

)2]
for w < a1m2a3;

h1(w) = K1

[
6a1a2a3

(
1− w

a1a2a3

)
+ 3(a1a2a3 + w) ln

w

a1a2a3
(14)

− 1
2

(w − a1a2a3)
(

ln
w

a1a2a3

)2]
for w < a1a2a3.

Remark.

1. The equations (8) to (14) can also be obtained from (7) on replacing
m1 by a1; m2 by a2; m3 by a3; m1,m2 by a1, a2; m2,m3 by a2, a3;
m1,m3 by a1, a3; and m1,m2,m3 by a1, a2, a3, respectively, and each
equation is multiplied by the number (−1)no. of replacements.

2. The total number of equations in the case of three variables is 23 and
it is easily observed that the number of such equations in the case of
n variables will be 2n.

We observe that in Case I, the discussion of the pdf of the product of two
triangular random variables X and Y depends upon the relative magnitudes
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of a1m2 and m1a2. Hence, the pdf of the product XY Z is first discussed
in accordance with the conditions (a1m2 < m1a2, a1m2 = m1a2, a1m2 >
m1a2). If a1m2 < m1a2 we have the following situation for w:

a1a2a3< w < a1a2m3

a1m2a3< w < a1m2m3

m1a2a3< w < m1a2m3

m1m2a3< w < m1m2m3

 (A)

This situation will further depend upon the relative magnitudes of a2m3,
m2a3, a1m2m3, m1a2a3 for which we have the following nine possibilities
termed as subcases:

(i) a1a2m3 < a1m2a3, a1m2m3 < m1a2a3, m1a2m3 < m1m2a3,
(ii) a1a2m3 < a1m2a3, a1m2m3 = m1a2a3, m1a2m3 < m1m2a3,

(iii) a1a2m3 < a1m2a3, a1m2m3 > m1a2a3, m1a2m3 < m1m2a3,
(iv) a1a2m3 = a1m2a3, a1m2m3 < m1a2a3, m1a2m3 = m1m2a3,
(v) a1a2m3 = a1m2a3, a1m2m3 = m1a2a3, m1a2m3 = m1m2a3,

(vi) a1a2m3 = a1m2a3, a1m2m3 > m1a2a3, m1a2m3 = m1m2a3,
(vii) a1a2m3 > a1m2a3, a1m2m3 < m1a2a3, m1a2m3 > m1m2a3,
(viii) a1a2m3 > a1m2a3, a1m2m3 = m1a2a3, m1a2m3 > m1m2a3,
(ix) a1a2m3 > a1m2a3, a1m2m3 > m1a2a3, m1a2m3 > m1m2a3.

Further, if a1m2 = m1a2 then

a1a2a3< w < a1a2m3

a1m2a3< w < a1m2m3

m1m2a3< w < m1m2m3

 (B)

and the corresponding subcases will be

(x) a1a2m3 < a1m2a3, a1m2m3 < m1m2a3,
(xi) a1a2m3 < a1m2a3, a1m2m3 = m1m2a3,
(xii) a1a2m3 < a1m2a3, a1m2m3 > m1m2a3,
xiii) a1a2m3 = a1m2a3, a1m2m3 < m1m2a3,

(xiv) a1a2m3 = a1m2a3, a1m2m3 = m1m2a3,
(xv) a1a2m3 = a1m2a3, a1m2m3 > m1m2a3,

(xvi) a1a2m3 > a1m2a3, a1m2m3 < m1m2a3,
(xvii) a1a2m3 > a1m2a3, a1m2m3 = m1m2a3,
(xviii) a1a2m3 > a1m2a3, a1m2m3 > m1m2a3.

Next, if a1m2 > m1a2, then

a1a2a3< w < a1a2m3

m1a2a3< w < m1a2m3

a1m2a3< w < a1m2m3

m1m2a3< w < m1m2m3

 (C)
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and the subcases are

(xix) a1a2m3 < m1a2a3, m1a2m3 < a1m2a3, a1m2m3 < m1m2a3,
(xx) a1a2m3 < m1a2a3, m1a2m3 = a1m2a3, a1m2m3 < m1m2a3,
(xxi) a1a2m3 < m1a2a3, m1a2m3 > a1m2a3, a1m2m3 < m1m2a3,
(xxii) a1a2m3 = m1a2a3, m1a2m3 < a1m2a3, a1m2m3 = m1m2a3,

(xxiii) a1a2m3 = m1a2a3, m1a2m3 = a1m2a3, a1m2m3 = m1m2a3,
(xxiv) a1a2m3 = m1a2a3, m1a2m3 > a1m2a3, a1m2m3 = m1m2a3,
(xxv) a1a2m3 > m1a2a3, m1a2m3 < a1m2a3, a1m2m3 > m1m2a3,

(xxvi) a1a2m3 > m1a2a3, m1a2m3 = a1m2a3, a1m2m3 > m1m2a3,
(xxvii) a1a2m3 > m1a2a3, m1a2m3 > a1m2a3, a1m2m3 > m1m2a3.

2.2. Evaluation of pdf for a particular subcase. To find the value of h1(w)
for subcases (i) to (xxvii), we will require the following equations which are
combinations of equations (7) to (13) and give pdf for different intervals of w:

(15) h1(w) = K1

[
−6a1a2a3 + 6w − (3w + 3a1a2a3) ln

w

a1a2a3

+
1
2

(w − a1a2a3)
(

ln
w

a1a2a3

)2]
,

(16) h1(w) = K1

[
(3a1a2m3 − 3a1a2a3)− w

(
−3 +

3a3

m3

)
− (w + a1a2a3)

(
ln

w

a1a2a3
− 2 ln

a3

m3

)
+
(
wa3

m3
+ a1a2m3

)
ln

w

a1a2m3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

m1a2a3

)2

−
(

ln
w

m1a2m3

)2

+
(

ln
w

a1m2a3

)2

−
(

ln
w

a1m2m3

)2}]
,

(17) h1(w) = K1

[
3(a1m2a3 + a1a2m3)− 3w

(
a2

m2
+
a3

m3

)
+ (w + a1a2a3)

(
ln

w

a1m2m3
+ ln

a2a3

m2m3

)
+
(
wa2

m2
+ a1m2a3

)
ln

w

a1m2a3
+
(
wa3

m3
+ a1a2m3

)
ln

w

a1a2m3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

m1a2a3

)2

−
(

ln
w

m1a2m3

)2

−
(

ln
w

a1m2m3

)2}]
,
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(18) h1(w) = K1

[
(a1a2m3 + a1m2a3 − a1m2m3 − a1a2a3)

− w
(
−1 +

a2

m2
+
a3

m3
− a2a3

m2m3

)
+ (w + a1a2a3)

(
ln

a2a3

m2m3

)
−
(
wa2

m2
+ a1m2a3

)
ln
a3

m3
−
(
wa3

m3
+ a1a2m3

)
ln
a2

m2

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

m1a2a3

)2

−
(

ln
w

m1a2m3

)2}]
,

(19) h1(w) = K1

[
(3m1a2a3 + a1m2a3 + a1a2m3 − a1m2m3 + 2a1a2a3)

− w
(

2 +
3a1

m1
+
a2

m2

a3

m3
− a2a3

m2m3

)
+ (w + a1a2a3)

(
ln

w

m1a2m3
+ ln

w

m1m2a3

)
+
(
wa1

m1
+m1a2a3

)
ln

w

m1a2a3
−
(
wa2

m2
+ a1m2a3

)
ln
a3

m3

−
(
wa3

m3
+ a1a2m3

)
ln
a2

m2

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

m1m2a3

)2

−
(

ln
w

m1a2m3

)2}]
,

(20) h1(w) = K1

[
(m1a2a3 + a1m2a3 − a1a2m3 −m1a2m3 − a1m2m3

+ a1a2a3)− w
(

1 +
a1

m1
+
a2

m2
− a3

m3
− a2a3

m2m3
− a1a3

m1m3

)
+ (w + a1a2a3)

(
ln

w

m1m2a3

)
−
(
wa1

m1
+
wa2

m2
+m1a2a3 + a1m2a3

)
ln
a3

m3

−
(
wa3

m3
+ a1a2m3

)
ln

w

m1m2m3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

m1m2a3

)2}]
,
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(21) h1(w) = K1

[
(−a1m2m3 −m1a2m3 −m1m2a3 − a1a2m3 −m1a2a3

− a1m2a3) + w

(
a1

m1
+
a2

m2
+
a3

m3
+

a1a2

m1m2
+

a2a3

m2m3
+

a1a3

m1m3

)
−
(
wa1

m1
+
wa2

m2
+
wa3

m3
+ a1a2m3 + a1m2a3 +m1a2a3

)
× ln

w

m1m2m3
+

1
2

(w − a1a2a3)
(

ln
w

m1m2m3

)2]
,

(22) h1(w) = K1

[
(3m1a2a3 + 3a1m2a3 + 3a1a2m3 + 3a1a2a3)

− w
(

3 +
3a1

m1
+

3a2

m2
+

3a3

m3

)
+ (w + a1a2a3)

(
ln

w

a1a2a3
+ 2 ln

w

m1m2m3

)
+
(
wa1

m1
+m1a2a3

)
ln

w

m1a2a3

+
(
wa2

m2
+ a1m2a3

)
ln

w

a1m2a3

+
(
wa3

m3
+ a1a2m3

)
ln

w

a1a2m3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1a2m3

)2

−
(

ln
w

m1m2a3

)2}]
,

(23) h1(w) = K1

[
(3a1m2a3 − 3a1a2a3) + w

(
3− 3a2

m2

)
− (w + a1a2a3)

(
ln

w

a1a2a3
+ 2 ln

m2

a2

)
+
(
wa2

m2
+ a1m2a3

)
ln

w

a1m2a3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1a2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

m1a2a3

)2

+
(

ln
w

a1a2m3

)2}]
,
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(24) h1(w) = K1

[
(m1a2a3 + a1a2a3 + a1a2m3 −m1m2a3 − a1m2m3

− a1m2a3) + w

(
−1− a1

m1
+
a2

m2
− a3

m3
+

a2a3

m2m3
+

a1a2

m1m2

)
+ (w + a1a2a3)

(
ln

w

m1a2m3

)
−
(
wa2

m2
+ a1m2a3

)
ln

w

m1m2m3

+
(
wa3

m3
+ a1a2m3

)
ln
m2

a2
+
(
wa1

m1
+m1a2a3

)
ln
m2

a2

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

m1a2m3

)2}]
,

(25) h1(w) = K1

[
(a1m2a3 + 2a1a2a3 + 3a1a2m3 +m1a2a3 −m1m2a3)

− w
(

2 +
a1

m1
+
a2

m2
+

3a3

m3
− a1a2

m1m2

)
+ (w + a1a2a3)

(
ln

w

a1m2m3
+ ln

w

m1a2m3

)
+
(
wa2

m2
+ a1m2a3

)
ln
m1

a1
+
(
wa1

m1
+m1a2a3

)
ln
m2

a2

+
(
wa3

m3
+ a1a2m3

)
ln

w

a1a2m3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1a2m3

)2}]
,

(26) h1(w) = K1

[
(3a1m2a3 + 3m1a2a3)− w

(
3a1

m1
+

3a2

m2

)
+ (w + a1a2a3)

(
ln

w

m1m2a3
+ ln

a1a2

m1m2

)
+
(
wa1

m1
+m1a2a3

)
ln

w

m1a2a3
+
(
wa2

m2
+ a1m2a3

)
ln

w

a1m2a3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1a2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

a1a2m3

)2}]
,
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(27) h1(w) = K1

[
(3m1a2a3 + 3a1a2m3)− w

(
3a1

m1
+

3a3

m3

)
+ (w + a1a2a3)

(
ln

w

m1a2m3
+ ln

a1a3

m1m3

)
+
(
wa1

m1
+m1a2m3

)
ln

w

m1a2m3

+
(
wa3

m3
+ a1a2m3

)
ln

w

a1a2m3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1a2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

a1m2a3

)2}]
,

(28) h1(w) = K1

[
(a1a2m3 − a1a2a3 +m1a2a3 −m1a2m3)

+ w

(
1− a1

m1
− a3

m3
+

a1a3

m1m3

)
+ (w + a1a2a3)

(
ln

a1a3

m1m3

)
+
(
wa1

m1
+m1a2a3

)
ln
m3

a3
+
(
wa3

m3
+ a1a2m3

)
ln
m1

a1

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

a1m2a3

)2}]
,

(29) h1(w) = K1

[
(a1a2m3 + 2a1a2a3 + 3a1m2a3 +m1a2a3 −m1a2m3)

+ w

(
−2− a1

m1
− 3a2

m2
− a3

m3
+

a1a3

m1m3

)
+ (w + a1a2a3)

(
ln

w

a1m2m3
+ ln

w

m1m2a3

)
×
(
wa1

m1
+m1a2a3

)
ln
m3

a3
+
(
wa2

m2
+ a1m2a3

)
ln

w

a1m2a3

+
(
wa3

m3
+ a1a2m3

)
ln
m1

a1

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1m2a3

)2}]
,
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(30) h1(w) = K1

[
(3m1a2a3 − 3a1a2a3) + w

(
3− 3a1

m1

)
+ (w + a1a2a3)

(
− ln

w

a1a2a3
− 2 ln

m1

a1

)
+
(
wa1

m1
+m1a2a3

)
ln

w

m1a2a3

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2

−
(

ln
w

m1a2m3

)2

−
(

ln
w

m1m2a3

)2

+
(

ln
w

a1a2m3

)2

+
(

ln
w

a1m2a3

)2}]
,

(31) h1(w) = K1

[
(a1m2a3 + a1a2m3 + a1a2a3 −m1m2a3 −m1a2m3

−m1a2a3) + w

(
−1 +

a1

m1
− a2

m2
− a3

m3
+

a1a2

m1m2
+

a1a3

m1m3

)
+ (w + a1a2a3)

(
ln

w

a1m2m3

)
−
(
wa1

m1
+m1a2a3

)
ln

w

m1m2m3

+
(
wa2

m2
+ a1m2a3

)
ln
m1

a1
+
(
wa3

m3
+ a1a2m3

)
ln
m1

a1

+
1
2

(w − a1a2a3)
{(

ln
w

m1m2m3

)2

−
(

ln
w

a1m2m3

)2}]
.

Under conditions (A) and its subcase (i), i.e. (a1a2m3 < a1m2a3, a1m2m3 <
m1a2a3, m1a2m3 < m1m2a3) we observe that w is defined for seven dif-
ferent intervals which are (a1a2a3, a1a2m3), (a1a2m3, a1m2a3), (a1m2a3,
a1m2m3), (a1m2m3,m1a2a3), (m1a2a3,m1a2m3), (m1a2m3,m1m2a3), and
(m1m2a3,m1m2m3). Also, a1a2m3 < (a1m2a3, a1m2m3, m1a2a3, m1a2m3,
m1m2a3, m1m2m3) and for the first interval we have w < a1a2m3, thus the
pdf for this interval is obtained by adding equations (7) to (13) and is given
in (15). Similarly, the pdf for the remaining six intervals can be calculated
and are given by eqs. (16) to (21), respectively, and represented in Table 1.

Table 1. Sequence of points determining intervals for w and pdf for respective intervals
(Case I)

Subcase Sequence of points determining intervals for w Equations giving
pdf for respective
interval

(i) a1a2a3 < a1a2m3 < a1m2a3 < a1m2m3 < m1a2a3 <
m1a2m3 < m1m2a3 < m1m2m3

(15), (16), (17),
(18), (19), (20), (21)

(ii) a1a2a3 < a1a2m3 < a1m2a3 < a1m2m3 = m1a2a3 <
m1a2m3 < m1m2a3 < m1m2m3

(15), (16), (17),
(19), (20), (21)

(iii) a1a2a3 < a1a2m3 < a1m2a3 < m1a2a3 < a1m2m3 <
m1a2m3 < m1m2a3 < m1m2m3

(15), (16), (17),
(22), (19), (20), (21)
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(iv) a1a2a3 < a1a2m3 = a1m2a3 < a1m2m3 < m1a2a3 <
m1a2m3 = m1m2a3 < m1m2m3

(15), (16), (18),
(19), (21)

(v) a1a2a3 < a1a2m3 = a1m2a3 < a1m2m3 = m1a2a3 <
m1a2m3 = m1m2a3 < m1m2m3

(15), (17), (19), (21)

(vi) a1a2a3 < a1a2m3 = a1m2a3 < m1a2a3 < a1m2m3 <
m1a2m3 = m1m2a3 < m1m2m3

(15), (17), (22),
(19), (21)

(vii) a1a2a3 < a1m2a3 < a1a2m3 < a1m2m3 < m1a2a3 <
m1m2a3 < m1a2m3 < m1m2m3

(15), (23), (17),
(18), (19), (24), (21)

(viii) a1a2a3 < a1m2a3 < a1a2m3 < a1m2m3 = m1a2a3 <
m1m2a3 < m1a2m3 < m1m2m3

(15), (23), (17),
(19), (24), (21)

(ix) a1a2a3 < a1m2a3 < a1a2m3 < m1a2a3 < a1m2m3 <
m1m2a3 < m1a2m3 < m1m2m3

(15), (23), (17),
(22), (19), (24), (21)

(x) a1a2a3 < a1a2m3 < a1m2a3 < a1m2m3 < m1m2a3 <
m1m2m3

(15), (16), (22),
(20), (21)

(xi) a1a2a3 < a1a2m3 < a1m2a3 < a1m2m3 = m1m2a3 <
m1m2m3

(15), (16), (22), (21)

(xii) a1a2a3 < a1a2m3 < a1m2a3 < m1m2a3 < a1m2m3 <
m1m2m3

(15), (16), (22),
(25), (21)

(xiii) a1a2a3 < a1a2m3 = a1m2a3 < a1m2m3 < m1m2a3 <
m1m2m3

(15), (22), (20), (21)

(xiv) a1a2a3 < a1a2m3 = a1m2a3 < a1m2m3 = m1m2a3 <
m1m2m3

(15), (22), (21)

(xv) a1a2a3 < a1a2m3 = a1m2a3 < m1m2a3 < a1m2m3 <
m1m2m3

(15), (22), (25), (21)

(xvi) a1a2a3 < a1m2a3 < a1a2m3 < a1m2m3 < m1m2a3 <
m1m2m3

(15), (26), (22),
(20), (21)

(xvii) a1a2a3 < a1m2a3 < a1a2m3 < a1m2m3 = m1m2a3 <
m1m2m3

(15), (26), (22), (21)

(xviii) a1a2a3 < a1m2a3 < a1a2m3 < m1m2a3 < a1m2m3 <
m1m2m3

(15), (26), (22),
(25), (21)

(xix) a1a2a3 < a1a2m3 < m1a2a3 < m1a2m3 < a1m2a3 <
a1m2m3 < m1m2a3 < m1m2m3

(15), (16), (27),
(28), (29), (20), (21)

(xx) a1a2a3 < a1a2m3 < m1a2a3 < m1a2m3 = a1m2a3 <
a1m2m3 < m1m2a3 < m1m2m3

(15), (16), (27),
(29), (20), (21)

(xxi) a1a2a3 < a1a2m3 < m1a2a3 < a1m2a3 < m1a2m3 <
a1m2m3 < m1m2a3 < m1m2m3

(15), (16), (27),
(22), (29), (20), (21)

(xxii) a1a2a3 < a1a2m3 = m1a2a3 < m1a2m3 < a1m2a3 <
a1m2m3 = m1m2a3 < m1m2m3

(15), (27), (28),
(29), (21)

(xxiii) a1a2a3 < a1a2m3 = m1a2a3 < m1a2m3 = a1m2a3 <
a1m2m3 = m1m2a3 < m1m2m3

(15), (27), (29), (21)

(xxiv) a1a2a3 < a1a2m3 = m1a2a3 < a1m2a3 < m1a2m3 <
a1m2m3 = m1m2a3 < m1m2m3

(15), (27), (22),
(29), (21)
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(xxv) a1a2a3 < m1a2a3 < a1a2m3 < m1a2m3 < a1m2a3 <
m1m2a3 < a1m2m3 < m1m2m3

(15), (30), (27),
(28), (29), (31), (21)

(xxvi) a1a2a3 < m1a2a3 < a1a2m3 < m1a2m3 = a1m2a3 <
m1m2a3 < a1m2m3 < m1m2m3

(15), (30), (27),
(29), (31), (21)

(xxvii) a1a2a3 < m1a2a3 < a1a2m3 < a1m2a3 < m1a2m3 <
m1m2a3 < a1m2m3 < m1m2m3

(15), (30), (27),
(22), (29), (31), (21)

Table 1 shows the sequence of points determining intervals for w and pdf
for corresponding intervals for all the subcases of Case I. This completes the
discussion of Case I. It is easy to observe that Cases II to VIII can be handled
by making the changes in Case I as indicated in Table 2, where

K1 =
8∏3

i=1(bi − ai)
∏3
j=1(mj − aj)

,

K2 =
m3 − a3

b3 −m3
K1,

K3 =
m2 − a2

b2 −m2
K1,

K4 =
∏
j=2,3

mj − aj
bj −mj

K1,

K5 =
m1 − a1

b1 −m1
K1,

K6 =
∏
j=1,3

mj − aj
bj −mj

K1,

K7 =
∏
j=1,2

mj − aj
bj −mj

K1,

K8 =
8∏3

i=1(bi − ai)
∏3
j=1(bj −mj)

.

Table 2. Changes involved in the discussion of Cases II to VIII

Case Pdf Eqs. (7) to (14) Subcases (i) to (xxvii)

II h2(w) a3 → b3, K1 → K2 a3 → m3, m3 → b3

III h3(w) a2 → b2, K1 → K3 a2 → m2, m2 → b2

IV h4(w) a2 → b2, a3 → b3, K1 → K4 a2 → m2, a3 → m3, m2 → b2, m3 → b3

V h5(w) a1 → b1, K1 → K5 a1 → m1, m1 → b1

VI h6(w) a1 → b1, a3 → b3, K1 → K6 a1 → m1, a3 → m3, m1 → b1, m3 → b3

VII h7(w) a1 → b1, a2 → b2, K1 → K7 a1 → m1, a2 → m2, m1 → b1, m2 → b2

VIII h8(w) a1 → b1, a2 → b2, a3 → b3,
K1 → K8

a1 → m1, a2 → m2, a3 → m3,
m1 → b1, m2 → b2, m3 → b3

3. Application. Here, we return to the example discussed in Section 1
motivated by Murphy [11]. Suppose that the functioning of an electronic
system is determined independently by n chips it has. Suppose too that the
number of defects in each of the n chips has the triangular distribution with
a = 0, b = 4 and m = 2, the values used in Murphy [11]. The total number of
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Fig. 1. Pdf of the total number of possible failures of the electronic system for n = 2 and
n = 3

possible failures of the system is then a product of n independent triangular
random variables. The pdf of this total number is shown in Figure 1 for
n = 2 and n = 3. Figures of this kind can be used to obtain summary
measures and for quality control purposes.

4. Generalization for n variables. Now, we give the total number
of cases and their subcases to be considered when the number of random
variables is n.

For cases: We see that the number of cases to be considered for the
product of two triangular random variables is 22 and for three 23. So it is
easy to see that in the case of n variables there will be 2n cases. We observe
that equation (7) plays a major role in the discussion of Case I; we give
below its general form when the number of random variables is n ≥ 2:

h(w) = − (A1 + n−2C1A2 + n−2C2A3 + · · ·+An−1)(32)

+
[{

(A1 + n−2C1A2 + n−2C2A3 + · · ·+An−1)

− (A1 + n−3C1A2 + · · ·+An−2) ln
w

A
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+
1
2!

(A1 + n−4C1A2 + · · ·+An−3)
(

ln
w

A

)2

− · · ·

+ (−1)n
1

(n− 2)!
A1

(
ln
w

A

)n−2}
+ (−1)n−1 1

(n− 1)!
A

(
ln
w

A

)n−1]w
A

−
[
(A2 + n−3C1A3 + n−3C2A4 + · · ·+An−1)

(
ln
w

A

)
+

1
2!

(A3 + n−4C1A4 + · · ·+An−1)
(

ln
w

A

)2

+ · · ·

+
1

(n− 2)!
An−1

(
ln
w

A

)n−2

+
1

(n− 1)!
An

(
ln
w

A

)n−1]
(w < A)

where A = m1 . . .mn and Ak (k = 1, . . . , n) is the sum of all terms obtained
on replacing in A the quantities mi1 , . . . ,mikby ai1 , . . . , aik , respectively, for
i1, . . . , ik ∈ {1, . . . , n} with i1 < · · · < ik. The other 2n− 1 equations, which
correspond to equations (8) to (14) of Case I, can be obtained on generalizing
Remark 1 to n variables.

For subcases: When the number of r.v. is two, we have the three subcases
(a1m2 < m1a2, a1m2 = m1a2, a1m2 > m1a2) for each case. When the
number of r.v. is three we find that each subcase gives rise to 32 cases. Thus
the total number of subcases becomes 31∗32 = 33 = 27. If we further observe
the pattern we find that in the case of four variables each subcase will give
rise to 33 cases. So the total number of subcases is 31 ∗32 ∗33 = 36. Similarly
for n random variables the number of subcases is

31 ∗ · · · ∗ 3n−1 = 3(n−1)n/2.

Figure 2 shows the enumeration of subcases in Case I for four variables X,
Y , Z and U with the supports a1 ≤ x ≤ b1, a2 ≤ y ≤ b2, a3 ≤ z ≤ b3,
a4 ≤ u ≤ b4 and modes m1, m2, m3 and m4, respectively. The following is
a generalization of (A) for four variables:

a1a2a3a4< w < a1a2a3m4

a1a2m3a4< w < a1a2m3m4

a1m2a3a4< w < a1m2a3m4

a1m2m3a4< w < a1m2m3m4

m1a2a3a4< w < m1a2a3m4

m1a2m3a4< w < m1a2m3m4

m1m2a3a4< w < m1m2a3m4

m1m2m3a4< w < m1m2m3m4



(A′)
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Fig. 2. Enumeration of subcases in Case I for four variables
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