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LONG TIME EXISTENCE OF SOLUTIONS
TO 2D NAVIER–STOKES EQUATIONS

WITH HEAT CONVECTION

Abstract. Global existence of regular solutions to the Navier–Stokes
equations for (v, p) coupled with the heat convection equation for θ is proved
in the two-dimensional case in a bounded domain. We assume the slip bound-
ary conditions for velocity and the Neumann condition for temperature. First
an appropriate estimate is shown and next the existence is proved by the
Leray–Schauder fixed point theorem. We prove the existence of solutions
such that v, θ ∈W 2,1

s (ΩT ), ∇p ∈ Ls(ΩT ), s > 2.

1. Introduction. We consider the problem

(1.1)

vt + v · ∇v − div T (v, p) = α(θ)g in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

θt + v · ∇θ − κ∆θ = 0 in ΩT ,

n̄ ·D(v) · τ̄ = 0 on ST = S × (0, T ),

v · n̄ = 0 on ST ,

n̄ · ∇θ = 0 on ST ,

v|t=0 = v0 in Ω,

θ|t=0 = θ0 in Ω,

where Ω ⊂ R2 is a bounded domain, ΩT satisfies the weak horn condition
(see [2, Sect. 8]) and is not axially symmetric, S = ∂Ω ∈ C2, x = (x1, x2)
∈ R2 are the Cartesian coordinates, v = v(x, t) = (v1(x, t), v2(x, t)) ∈ R2 the
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velocity of the fluid, θ = θ(x, t) ∈ R the temperature, ν > 0 the constant
viscosity coefficient, κ > 0 the constant heat coefficient, n̄ the unit outward
vector normal to S, and τ̄ the unit tangent vector to S. By a dot we denote
the scalar product in R2.

By D(v) we denote the dilatation tensor of the form

(1.2) D(v) = {vi,xj + vj,xi}i,j=1,2,

and by g = g(x, t) the external force. Finally, T (v, p) denotes the stress
tensor of the form

(1.3) T (v, p) = νD(v)− pI ,
where I is the unit matrix.

Theorem 1.1. Assume that α ∈ C1(R), there exist constants c2 < c3
< ∞ such that c2 ≤ θ0 ≤ c3, vt(0) ∈ L2(Ω), θt(0) ∈ L2(Ω), div v0 = 0,
θ0 ∈ L2(Ω), 2 < s < η < ∞, 2 < η, 4/s − 2/η < 1, v0 ∈ W

2−2/s
s (Ω),

g ∈ Ls(ΩT ). Moreover assume that gt ∈ L2(0, T ;Ll(Ω)), where l > 1 is
arbitrarily close to 1, and g ∈ L2(0, T ;Lr(Ω)), where r > 2 is arbitrarily
close to 2. Then there exists a solution (v, p, θ) of problem (1.1) such v, θ ∈
W 2,1
s (ΩT ), ∇p ∈ Ls(ΩT ), and a constant C∗ such that

(1.4) ‖v‖
W 2,1
s (ΩT )

+ ‖∇p‖Ls(ΩT ) + ‖θ‖
W 2,1
s (ΩT )

≤ C∗,

and
c2 ≤ θ ≤ c3.

2. Notation. Let us consider the Stokes problem

(2.1)

vt − div T (v, p) = f in ΩT ,

div v = 0 in ΩT ,

n̄ ·D(v) · τ̄ = 0 on ST ,

v · n̄ = 0 on ST ,

v|t=0 = v0 in Ω.

Theorem 2.1 (proof similar to one in [1]). Let f ∈ Lq(ΩT ), v0 ∈
W

2−2/q
q (Ω), div v0 = 0, S ∈ C2, q ∈ (1,∞). Then there exists a unique

solution to problem (2.1) such that v ∈W 2,1
q (ΩT ), ∇p ∈ Lq(ΩT ) and

(2.2) ‖v‖
W 2,1
q (ΩT )

+ ‖∇p‖Lq(ΩT ) ≤ c(‖f‖Lq(ΩT ) + ‖v0‖W 2−2/q
q (Ω)

).

Theorem 2.2 (see [2, Sect. 10]). Let Ω ⊂ Rn be a bounded domain such
that ΩT satisfies the weak horn condition, and let u ∈W 2,1

s (ΩT )∩L2(ΩT ).
Then the following interpolation inequality holds:

(2.3) ‖∇u‖Lq(ΩT ) ≤ ε‖u‖W 2,1
s (ΩT )

+ c(1/ε)‖∇u‖L2(ΩT ),
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for s, q ∈ (1,∞) satisfying (n+ 2)/s − (n+ 2)/q < 1, s ≤ q, where c(a)
denotes an increasing positive function of a. Moreover , ε does not depend
on s, n, q but c does.

Lemma 2.3 (Korn inequality, see [6]). Assume that Ω is not invariant
with respect to any rotation. Assume that

(2.4) ‖D(v)‖L2(Ω) <∞, v · n̄|S = 0, div v = 0.

Then there exists a constant c0 such that

(2.5) ‖v‖H1(Ω) ≤ c0‖D(v)‖L2(Ω),

where c0 is independent of v.

3. Estimates. We show estimates for the temperature.

Lemma 3.1. Assume θ(0) ≥ c2. Then for θ sufficiently regular we have

(3.1) θ(t) ≥ c2 for t ≥ 0.

Proof. Let (θ − c2)− = min{0, θ − c2}. Multiplying (1.3)3 by (θ − c2)−
integrating over Ω and using the boundary conditions we obtain

1
2
d

dt

�

Ω

(θ − c2)2− dx+ κ
�

Ω

|∇(θ − c2)−|2 dx = 0.

Integrating with respect to time we have
1
2
‖(θ − c2)−(t)‖2L2(Ω) + κ‖∇(θ − c2)−‖2L2(Ωt) =

1
2
‖(θ − c2)−(0)‖2L2(Ω).

Since (θ − c2)−(0) = 0 we conclude the proof.

Remark 3.1. If θ(0) ≥ 0, then θ(t) ≥ 0 for t ≥ 0.

Lemma 3.2. Assume θ(0) ≤ c3. Then for θ sufficiently regular we have

(3.2) θ(t) ≤ c3 for t ≥ 0.

Proof. Let (θ − c3)+ = max{0, θ − c3}. Multiplying (1.1)3 by (θ − c3)+,
integrating over Ω, integrating by parts and using the boundary conditions
yields

(3.3)
1
2
d

dt

�

Ω

(θ − c3)2+ dx+ κ
�

Ω

|∇(θ − c3)+|2 dx = 0.

Integrating with respect to time we obtain

(3.4)
1
2
‖(θ − c3)+(t)‖2L2(Ω) + κ

�

Ωt

|∇(θ − c3)+|2 dx dt′

=
1
2
‖(θ0 − c3)+(0)‖2L2(Ω).

Since (θ0 − c3)+(0) = 0 we conclude the proof.
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Lemma 3.3. Assume that α ∈ C1(R) and there exist constants c2 <
c3 <∞ such that c2 ≤ θ0 ≤ c3. Moreover assume that gt ∈ L2(0, T ;Ll(Ω)),
l > 1, g ∈ L2(0, T ;Lr(Ω)), r > 2, vt(0) ∈ L2(Ω), θt(0) ∈ L2(Ω), v0 ∈ L2(Ω),
θ0 ∈ L2(Ω). Then

(3.5) ‖v(t)‖2L2(Ω) + ν

t�

0

‖v(t′)‖2H1(Ω) dt
′

≤ c1‖g‖2L2(0,t;Lr(Ω)) + ‖v(0)‖2L2(Ω) ≡ c4,

and

(3.6) ‖vt(t)‖2L2(Ω) + ‖θt(t)‖2L2(Ω) +
t�

0

(‖vt′‖2H1(Ω) + ‖θt′‖2H1(Ω)) dt
′

≤ cect exp[c(‖v0‖2L2(Ω) + ‖θ0‖2L2(Ω) + c1‖g‖2L2(0,t;Lr(Ω)))]

· (‖vt(0)‖2L2(Ω) + ‖θt(0)‖2L2(Ω) + ‖gt‖2L2(0,t;Ll(Ω))) ≡ c5.

Proof. Multiply (1.1)1 by v and integrate over Ω. Using the boundary
conditions and the Korn inequality we obtain

(3.7)
1
2
d

dt
‖v‖2L2(Ω) +

ν

2
‖v‖2H1(Ω) ≤ c‖α(θ)‖L∞(Ω)

�

Ω

|gv| dx.

Since α ∈ C1(R) Lemmas 3.1 and 3.2 imply that there exists a positive
function ϕ : {(x, y) ∈ R2 : x ≤ y} → R+ such that

(3.8) sup
t
‖α(θ)‖L∞(Ω) ≤ ϕ(c2, c3).

By the Hölder and Young inequalities, (3.7) and (3.8) imply

(3.9)
d

dt
‖v‖2L2(Ω) + ν‖v‖2H1(Ω) ≤ c1‖g‖

2
Lr(Ω),

where
c1 = cϕ2(c2, c3)

and r > 1. Integrating (3.9) with respect to time we have (3.5).
Multiplying (1.1)3 by θ, integrating over ΩT and using the boundary

conditions we obtain

(3.10) ‖θ‖2L2(Ω) + 2κ‖∇θ‖2L2(Ωt) = ‖θ0‖2L2(Ω).

Differentiating (1.1)1 with respect to t, multiplying by vt, integrating over
Ω and then applying the Hölder inequality, an interpolation inequality and
the fact that

|αθ(θ)| ≤ ϕ1(c2, c3) ≡ c4
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we obtain

(3.11)
1
2
d

dt
‖vt‖2L2(Ω) +

ν

2
‖vt‖2H1(Ω)

≤ c[‖∇vt‖L2(Ω) · ‖vt‖L2(Ω) + ‖vt‖2L2(Ω)]‖∇v‖L2(Ω)

+ c‖gt‖2Ll(Ω) + c‖g‖2Lr(Ω)‖θt‖
2
Ls(Ω),

where 1/r + 1/s = 1/l̄ and l̄ > 1.
Differentiating (1.1)3 with respect to t, multiplying by θt, integrating over

Ω and then applying the Hölder inequality and interpolation inequality we
have

(3.12)
1
2
d

dt

�

Ω

θ2
t dx+ κ‖θt‖2H1(Ω) ≤

�

Ω

|vt| |θt| |∇θ|dx+ c‖θt‖2L2(Ω)

≤ ‖vt‖L4(Ω)‖θt‖L4(Ω)‖∇θ‖L2(Ω) + c‖θt‖2L2(Ω)

≤ c(‖∇vt‖1/2L2(Ω)‖vt‖
1/2
L2(Ω)‖∇θt‖

1/2
L2(Ω)‖θt‖

1/2
L2(Ω)

+ ‖∇vt‖1/2L2(Ω)‖vt‖
1/2
L2(Ω)‖θt‖L2(Ω)

+ ‖vt‖L2(Ω)‖∇θt‖
1/2
L2(Ω)‖θt‖

1/2
L2(Ω)

+ ‖vt‖L2(Ω)‖θt‖L2(Ω))‖∇θ‖L2(Ω) + c‖θt‖2L2(Ω).

Let
y(t) = ‖vt‖2L2(Ω) + ‖θt‖2L2(Ω),

Y (t) = ‖vt‖2H1(Ω) + ‖θt‖2H1(Ω),

Z(t) = ‖∇v‖2L2(Ω) + ‖∇θ‖2L2(Ω).

Then (3.11) and (3.12) imply

d

dt
y + Y ≤ cY 1/2y1/2Z1/2(3.13)

+ c(‖θt‖2L2(Ω) + ‖gt‖2Ll(Ω) + ‖g‖2Lr(Ω)‖θt‖
2
Ls(Ω)).

By the Young inequality we get

(3.14)
d

dt
y + Y ≤ cyZ + c(‖θt‖2L2(Ω) + ‖gt‖2Ll(Ω) + ‖g‖2Lr(Ω)‖θt‖

2
Ls(Ω)).

Setting s = 2 in (3.14) yields

(3.15)
d

dt
y + Y ≤ cy(Z + 1 + ‖g‖2Lr(Ω)) + c‖gt‖2Ll(Ω)

Integrating (3.15) with respect to time and employing (3.5) and (3.10) we
obtain (3.6).
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Lemma 3.4. Let the assumptions of Lemma 3.3 be satisfied. Moreover ,
assume v0 ∈W 2−2/s

s (Ω) and g ∈ Ls(ΩT ) for some s, 1 < s <∞. Then

(3.16) ‖v‖
W 2,1
s (ΩT )

+ ‖∇p‖Ls(ΩT ) + ‖θ‖
W 2,1
s (ΩT )

≤ c(‖g‖Ls(ΩT ) + ‖v0‖W 2−2/s
s (Ω)

+ ‖θ0‖W 2−2/s
s (Ω)

) + c(c4, c5).

Proof. From (3.5) and (3.6) we have

(3.17) ‖vt‖L∞(0,t;L2(Ω))+‖∇v‖L2(Ωt)+‖v‖L∞(0,t;L2(Ω))≤ c(c4, c5), t≤ T.

Hence v ∈ H1(ΩT ). Since Ω ⊂ R2 we also have

(3.18) ‖v‖L6(ΩT ) ≤ c(c4, c5).

Now we want to increase regularity described by (3.17). For this purpose we
consider the problem

(3.19)

vt − ν∆v +∇p = −v · ∇v + αg,

div v = 0,
n̄ ·D(v) · τ̄ |ST = 0,
v · n̄|ST = 0,
v|t=0 = v0.

To apply Theorem 2.1 we examine

‖v · ∇v‖Ls(ΩT ) ≤ ‖v‖Lsλ1
(ΩT )‖∇v‖Lsλ2

(ΩT ) ≡ I1,

where 1/λ1 + 1/λ2 = 1. Assuming sλ1 = 6 we apply (2.3) with 4
s −

4
sλ2

< 1,
i.e. 4

sλ1
< 1, which is satisfied. Hence in view of (3.18) and (2.3) we have

I1 ≤ c(c4, c5)‖∇v‖Lsλ2
(ΩT ) ≤ ε‖v‖W 2,1

s (ΩT )
+ c(1/ε, c4, c5)‖∇v‖L2(ΩT ).

Assuming that g ∈ Ls(ΩT ) we apply Theorem 2.1. Then we have

‖v‖
W 2,1
s (ΩT )

+ ‖∇p‖Ls(ΩT ) ≤ ε‖v‖W 2,1
s (ΩT )

+ c(1/ε, c4, c5)‖∇v‖L2(ΩT )

+ c(‖θ‖L∞(ΩT ))‖g‖Ls(ΩT ) + c‖v0‖W 2−2/s
s (Ω)

.

Assuming that ε is sufficiently small in view of (3.1) and (3.2) we obtain
v ∈W 2,1

s (ΩT ) for 1 < s < 6. Since

‖u‖L∞(ΩT ) ≤ ‖u‖W 2,1
s (ΩT )

for 2 < s,

we have ‖v‖L∞(ΩT ) ≤ c(c4, c5). Assume 1 < s < ∞. To apply Theorem 2.1
we examine

‖v · ∇v‖Ls(ΩT ) ≤ ‖v‖L∞(ΩT )‖∇v‖Ls(ΩT ) ≡ I2.
Hence in view of (2.3) we have

I2 ≤ c(c4, c5)‖∇v‖Ls(ΩT ) ≤ ε‖v‖W 2,1
s (ΩT )

+ c(1/ε, c4, c5)‖∇v‖L2(ΩT ).
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Applying Theorem 2.1, assuming that ε is sufficiently small and using the
estimate for θ we get

‖v‖
W 2,1
s (ΩT )

+ ‖∇p‖Ls(ΩT ) ≤ c(‖g‖Ls(ΩT ) + ‖v0‖W 2−2/s
s (Ω)

) + c(c4, c5).

Similarly we obtain estimates for θ (see [3, Ch. 4, Sect. 9, Th. 9.1],
[5, Theorem 17]).

4. Existence. For η > 2 define

M(ΩT ) = {(v, θ) ∈ [L∞(0, T ;W 1
η (Ω))]2}.

Let us consider the problems

(4.1)

vt − div T (v, p) = −λ[ṽ · ∇ṽ + α(θ̃)g],
div v = 0,
v · n̄|S = 0, n̄ ·D(v) · τ̄ |S = 0,
v|t=0 = v0

and

(4.2)
θt − κ∆θ = −λṽ · ∇θ̃,
n̄ · ∇θ|S = 0,
θ|t=0 = θ0,

where λ ∈ [0, 1] is a parameter and ṽ, θ̃ are treated as given functions.

Lemma 4.1. Let α ∈ C1(R). Let

(ṽ, θ̃) ∈M(ΩT ), η > 2,

g ∈ Ls(ΩT ),

v0 ∈W 2−2/s
s (Ω), 2 < s < η,

S ∈ C2,
4
s
− 2
η
< 1.

Then there exists a unique solution to problem (4.1) such that

v ∈W 2,1
s (ΩT ) ⊂ L∞(0, T ;W 1

η (Ω))

and

‖v‖L∞(0,T ;W 1
η (Ω)) ≤ c‖v‖W 2,1

s (ΩT )
≤ c(λ‖(ṽ, θ̃)‖2M(ΩT )

+ λψ(c‖(ṽ, θ̃)‖M(ΩT ))‖g‖Ls(ΩT ) + ‖v0‖W 2−2/s
s (Ω)

).

Moreover the imbedding W 2,1
s (ΩT ) ⊂ L∞(0, T ;W 1

η (Ω)) is compact for
4/s− 2/η < 1, so for η > 2 we have s > 2.
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Proof. We have

‖ṽ · ∇ṽ‖Ls(ΩT ) ≤ c‖ṽ‖L∞(ΩT )‖∇ṽ‖Lη(ΩT ) ≤ c‖ṽ‖2L∞(0,T ;W 1
η (Ω))

≤ c‖(ṽ, θ̃)‖2M(ΩT ).

Define ψ : [0,∞)→ [0,∞) by

ψ(a) = sup{|α(x)| : −a ≤ x ≤ a} for a ≥ 0.

Then
‖α(θ̃)g‖Ls(ΩT ) ≤ ψ(c‖θ̃‖L∞(0,T ;W 1

η (Ω)))‖g‖Ls(ΩT )

≤ ψ(c‖(ṽ, θ̃)‖M(ΩT ))‖g‖Ls(ΩT ).

By Theorem 2.1 the proof is complete.

Lemma 4.2. Assume that

(ṽ, θ̃) ∈M(ΩT ), η > 2, η > s > 1, θ0 ∈W 2−2/s
s (Ω).

Then there exists a unique solution to problem (4.2) such that

θ ∈W 2,1
s (ΩT ) ⊂ L∞(0, T ;W 1

η (Ω))

and

‖θ‖L∞(0,T ;W 1
η (Ω)) ≤ c‖θ‖W 2,1

s (ΩT )
≤ c(λ‖(ṽ, θ̃)‖2M(ΩT ) + ‖θ0‖W 2−2/s

s (Ω)
).

Proof. We have

‖ṽ · ∇θ̃‖Ls(ΩT ) ≤ ‖ṽ‖L∞(ΩT )‖∇θ̃‖Lη(ΩT )

≤ c‖ṽ‖L∞(0,T ;W 1
η (Ω))‖θ̃‖L∞(0,T ;W 1

η (Ω)) ≤ c‖(ṽ, θ̃)‖2M(ΩT ).

Then the proof is similar to that of Theorem 9.1 from [3, Ch. 4, Sect. 9] (see
also [5, Th. 17]).

To prove the existence of solutions to problem (1.1) we apply the Leray–
Schauder fixed point theorem (see [4]). Therefore we introduce the mapping
φ : [0, 1] ×M(ΩT ) → M(ΩT ), (λ, ṽ, θ̃) 7→ φ(λ, ṽ, θ̃) = (v, θ), where (v, θ)
is a solution to problems (4.1)–(4.2). For λ = 0 we have the existence of a
unique solution. For λ = 1 every fixed point is a solution to problem (1.1).

Lemma 4.3. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied.
Then the mappings φ(λ, ·) : M(ΩT ) → M(ΩT ), λ ∈ [0, 1], are completely
continuous.

Proof. By Lemmas 4.1 and 4.2 the mappings φ(λ, ·), λ ∈ [0, 1], are com-
pact. From this it follows that bounded sets in M(ΩT ) are transformed
into bounded sets in M(ΩT ). Let (ṽi, θ̃i) ∈ M(ΩT ), i = 1, 2, be two given
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elements. Then (vi, θi), i = 1, 2, are solutions to the problems

(4.3)

vit − div T (vi, pi) = −λ(ṽi · ∇ṽi + α(θ̃i)g),
div vi = 0,
n̄ ·D(vi) · τ̄ |S = 0, n̄ · vi|S = 0,
vi|t=0 = v0, i = 1, 2,

and

(4.4)
θit − κ∆θi = −λṽi · ∇θ̃i,
n̄ · ∇θi|S = 0,
θi|t=0 = θ0, i = 1, 2.

To show continuity we introduce the differences

(4.5) V = v1 − v2, P = p1 − p2, T = θ1 − θ2
which are solutions to the problems

(4.6)

Vt − div T (V, P ) = −λ[Ṽ · ∇ṽ1 + ṽ2 · ∇Ṽ + (α(θ̃1)− α(θ̃2))g]
div V = 0
V · n̄|S = 0 n̄ ·D(V ) · τ̄ |S = 0,
V |t=0 = 0

and

(4.7)
Tt − κ∆T = −λ[Ṽ · ∇θ̃1 + ṽ2 · ∇T̃ ]
n̄ · ∇T |S = 0,
T |t=0 = 0,

where Ṽ = ṽ1 − ṽ2, T̃ = θ̃1 − θ̃2. Define ψ1 : [0,∞) → [0,∞) by ψ1(a) =
sup{|α′(x)| : |x| ≤ a} for a ≥ 0. In view of [2] and [1, 3] we have

(4.8) ‖V ‖
W 2,1
s (ΩT )

+ ‖T ‖
W 2,1
s (ΩT )

≤ c[‖Ṽ ‖L∞(ΩT )‖∇ṽ1‖Ls(ΩT )

+ ‖ṽ2‖L∞(ΩT )‖∇Ṽ ‖Ls(ΩT ) + cψ1(max{‖θ̃1‖, ‖θ̃2‖})‖T̃ ‖L∞(ΩT )‖g‖Ls(ΩT )

+ ‖ṽ2‖L∞(ΩT )‖∇T̃ ‖Ls(ΩT ) + ‖Ṽ ‖L∞(ΩT )‖∇θ1‖Ls(ΩT )]

≤ c(‖Ṽ ‖M(ΩT ) + ‖T̃ ‖M(ΩT )),

so continuity of φ follows.

Lemma 4.4. Let the assumptions of Lemmas 4.1 and 4.2 be satisfied.
Then for every bounded subset M0 of M(ΩT ), the family of maps

φ(·, ṽ, θ̃) : [0, 1]→M(ΩT ), (ṽ, θ̃) ∈M0,

is uniformly equicontinuous.
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Proof. Let (ṽ, θ̃) ∈ M0, λi ∈ [0, 1], i = 1, 2, λ1 ≥ λ2, and vi, θi be
solutions to the problems

vit − div T (vi, pi) = −λi(ṽ · ∇ṽ + α(θ̃)g),
div vi = 0,
n̄ ·D(vi) · τ̄ |S = 0, n̄ · vi|S = 0,
vi|t=0 = v0, i = 1, 2,

and
θit − κ∆θi = −λiṽ · ∇θ̃,
n̄ · ∇θi|S = 0,
θi|t=0 = θ0, i = 1, 2.

To show uniform equicontinuity we introduce the differences

V = v1 − v2, P = p1 − p2, T = θ1 − θ2
which are solutions to the problems

Vt − div T (V, P ) = −(λ1 − λ2)(ṽ · ∇ṽ + α(θ̃)g),
div V = 0,
n̄ ·D(V ) · τ̄ |S = 0, n̄ · V |S = 0,
V |t=0 = 0

and
T − κ∆T = −(λ1 − λ2)ṽ · ∇θ̃,
n̄ · ∇T |S = 0,
T |t=0 = 0.

In view of Lemmas 4.1 and 4.2,

‖(V, T )‖M(ΩT ) ≤ c((λ1 − λ2)‖(ṽ, θ̃)‖2M(ΩT )

+ (λ1 − λ2)ψ(c‖(ṽ, θ̃)‖M(ΩT ))‖g‖Ls(ΩT )),

so uniform equicontinuity of φ(·, ṽ, θ̃) follows.

Proof of Theorem 1.1. In view of the above considerations the assump-
tions of the Leray–Schauder fixed point theorem are satisfied. Hence the
main theorem is proved.
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