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ON THE PRINCIPAL EIGENCURVE OF THE p-LAPLACIAN
RELATED TO THE SOBOLEV TRACE EMBEDDING

Abstract. We prove that for any λ ∈ R, there is an increasing sequence
of eigenvalues µn(λ) for the nonlinear boundary value problem

{
∆pu = |u|p−2u in Ω,

|∇u|p−2∂u/∂ν = λ%(x)|u|p−2u+ µ|u|p−2u on ∂Ω,

and we show that the first one µ1(λ) is simple and isolated; we also prove
some results about variations of the density % and the continuity with respect
to the parameter λ.

1. Introduction and notations. Let Ω be a smooth bounded domain
in RN ; N ≥ 1; 1 < p <∞ and % ∈ L∞(∂Ω) with % 6≡ 0 which can change the
sign; λ, µ ∈ R. We consider the following nonlinear boundary value problem:

∆pu = |u|p−2u in Ω,(1.1)

|∇u|p−2 ∂u

∂ν
= λ%(x)|u|p−2u+ µ|u|p−2u on ∂Ω.(1.2)

The p-Laplacian ∆pu = ∇·(|∇u|p−2∇u) occurs in many mathematical mod-
els of physical topics including glaciology, nonlinear diffusion and filtration
problem (see [4, 17]), power-low materials [14], non-Newtonian fluids [3]. For
a discussion of some physical background, see [10]. The nonlinear boundary
condition (1.2) describes a flux through the boundary ∂Ω which depends
on the solution itself. For physical motivation of such conditions see for
example [16].

Observe that in the particular case µ = 0 and p = 2, (1.1)–(1.2) becomes
linear and it is known as the Steklov problem [7].
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Classical Dirichlet problems involving the p-Laplacian have been exten-
sively studied by various authors in the cases λ = 0 or µ = 0 (cf. e.g.
[1, 2, 5, 10, 13, 18, 19]). For nonlinear boundary conditions such as (1.2),
recently the authors of [8] studied the case of µ = 0 and % belonging to some
Ls(∂Ω), not necessarily essentially bounded, with a restrictive condition on
its sign.

We set

(1.3) µ1(λ) = inf
{
‖v‖p1,p − λ

�

∂Ω

%(x)|v|p dσ :

v ∈W 1,p(Ω),
�

∂Ω

|u|p dσ = 1
}
,

where ‖ · ‖1,p denotes the W 1,p(Ω)-norm, i.e.,

‖v‖1,p = (‖∇v‖pp + ‖v‖pp)1/p

and ‖ · ‖p is the Lp-norm, with σ being the (N − 1)-dimensional Lebesgue
measure. By the principal (or first) eigencurve of the p-Laplacian related
to the Sobolev trace embedding, we understand the graph of the map µ1 :
λ 7→ µ1(λ) from R into R. In [12] the simplicity and isolation of the first
eigencurve of the Dirichlet p-Laplacian was proved by extending a similar
result shown by Binding and Huang in [6].

Our purpose is to obtain some results (known for the ordinary Dirichlet
p-Laplacian) for nonlinear eigenvalue problems where two-parameter eigen-
values appear in the nonlinear boundary condition. We show that µ1(λ)
is simple and isolated for any λ ∈ R. Note that to show the simplicity
(uniqueness) result, we use a simple convexity argument by remarking that
the energy functional associated to problem (1.1)–(1.2) is convex in up for
nonnegative u, without using in any way C1(Ω) and L∞(Ω) regularity of
the eigenfunctions associated to (1.1)–(1.2). In this respect our procedure is
new.

Observe that µ1(0) = λ1 is the optimal reciprocal constant of the Sobolev
embedding W 1,p(Ω) ↪→ Lp(∂Ω). For the particular case µ = 0 and % ∈
Ls(∂Ω) (for a suitable s), the isolation and simplicity of the first eigenvalue
of (1.1)–(1.2) were studied in [8]. The main objective of our work is to extend
this result to any λ ∈ R, by using new technical methods.

The rest of the paper is organized as follows. In Section 2, we estab-
lish some definitions and preliminaries. In Section 3, we use a variational
method to prove the existence of a sequence of eigencurves of (1.1)–(1.2). In
Section 4, we prove the simplicity and isolation results for each point of the
first eigencurve. Finally, in Section 5, we show some results about variations
of the weight as a direct application of the simplicity result.
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2. Definitions. In this paper, all solutions are weak ones, i.e., u ∈
W 1,p(Ω) is a solution of (1.1)–(1.2) if for all v ∈W 1,p(Ω),

�

Ω

|∇u|p−2∇u∇v dx+
�

Ω

|u|p−2uv dx =
�

∂Ω

(λ%(x) + µ)|u|p−2uv dσ.(2.1)

If u ∈W 1,p(Ω) \ {0}, then u is called an eigenfunction of (1.1)–(1.2) associ-
ated to the eigenpair (λ, µ).

Set
M =

{
u ∈W 1,p(Ω) :

�

∂Ω

|u|p dσ = 1
}
.(2.2)

A principal eigenfunction of (1.1)–(1.2) is any eigenfunction u ∈ M, u ≥ 0
a.e. on Ω, associated to the pair (λ, µ1(λ)).

Define the following energy functionals on W 1,p(Ω):

Φλ(u) =
1
p
‖u‖p1,p −

λ

p

�

∂Ω

%(x)|u|p dσ =
1
p
‖u‖p1,p + Φ(u), λ ∈ R,

Ψ(u) =
1
p

�

∂Ω

|u|p dσ.

It is clear that for any λ ∈ R, the solutions of (1.1)–(1.2) are the critical
points of Φλ restricted to M. We shall deal with operators T acting from
W 1,p(Ω) into (W 1,p(Ω))′. T is said to belong to the class (S+) if for any
sequence vn weakly convergent to v inW 1,p(Ω) with lim supn→∞〈Tvn, vn−v〉
≤ 0, it follows that vn → v strongly in W 1,p(Ω), where (W 1,p(Ω))′ is the
dual of W 1,p(Ω) with respect to the pairing 〈·, ·〉.

3. Existence results. We will use Lyusternik–Schnirelmann theory on
C1-manifolds (see [19]). It is clear that for any λ ∈ R, the functional Φλ is
even and bounded from below on M. Indeed, if u ∈M, then

Φλ(u) ≥ 1
p

(‖u‖p1,p − |λ| ‖%‖∞,∂Ω).

So

Φλ(u) ≥ 1
p

(λ1 − |λ| ‖%‖∞,∂Ω) > −∞,(3.1)

where λ1 = µ1(0) is the reciprocal of the optimal constant in the Sobolev
trace embedding W 1,p(Ω) ↪→ Lp(∂Ω).

By employing the Sobolev trace embedding, we deduce that:

• Ψ and Φ are weakly continuous,
• Ψ ′ and Φ′ are compact.

The following lemma is the key to showing the existence.



4 A. El Khalil and M. Ouanan

Lemma 3.1. For any λ ∈ R, we have:

(i) (Φλ)′ maps bounded sets to bounded sets;
(ii) if un ⇀ u (weakly) in W 1,p(Ω) and (Φλ)′(un) converges strongly in

(W 1,p(Ω))′, then un → u (strongly) in W 1,p(Ω);
(iii) the functional Φλ satisfies the Palais–Smale condition on M, i.e.,

for (un)n ⊂M, if Φλ(un) is bounded and

(Φλ)′(un)− cnΨ ′(un)→ 0(3.2)

with cn = 〈(Φλ)′(un), un〉/〈Ψ ′(un), un〉, then (un)n has a subse-
quence convergent in W 1,p(Ω).

Proof. (i) Let u, v ∈W 1,p(Ω). Then

〈(Φλ)′(u), v〉 =
�

Ω

|∇u|p−2∇u∇v dx+
�

Ω

|u|p−2uv dx+
�

∂Ω

%(x)|u|p−2uv dσ.

By Hölder’s inequality, we obtain

|〈(Φλ)′(u), v〉| ≤
( �

Ω

|∇u|(p−1)p′ dx
)1/p′

‖∇v‖p +
( �

Ω

|u|(p−1)p′ dx
)1/p′

‖v‖p

+ |λ| ‖%‖∞,∂Ω
( �

∂Ω

|u|(p−1)p′ dσ
)1/p′

‖v‖p,∂Ω

= ‖∇u‖p−1
p ‖∇v‖p+‖u‖p−1

p ‖v‖p+|λ| ‖%‖∞,∂Ω‖u‖p−1
p,∂Ω‖v‖p,∂Ω .

Now, the Sobolev trace embedding W 1,p(Ω) ↪→ Lp(∂Ω) ensures the exis-
tence of a constant c > 0 such that

‖w‖p,∂Ω ≤ c‖w‖1,p for any w ∈W 1,p(Ω).

Hence we deduce that

|〈(Φλ)′(u), v〉| ≤ ‖∇u‖p−1
p ‖∇v‖p + ‖u‖p−1

p ‖v‖p + cp|λ| ‖%‖∞,∂Ω‖u‖p−1
1,p ‖v‖1,p.

It is clear that

‖∇u‖p−1
p ‖∇v‖p + ‖u‖p−1

p ‖v‖p ≤ ‖u‖p−1
1,p ‖v‖1,p.

Combining the above inequalities, we conclude that

|〈(Φλ)′(u), v| ≤ (1 + cp|λ| ‖%‖∞,∂Ω)‖u‖p−1
1,p ‖v‖1,p

for any u, v ∈W 1,p(Ω). It follows that

‖(Φλ)′(u)‖ ≤ (1 + cp|λ| ‖%‖∞,∂Ω)‖u‖p−1
1,p ,

where ‖ · ‖ denotes the norm of (W 1,p(Ω))′. This implies (i).
(ii) We use condition (S+) as follows. (Φλ)′(un) being strongly convergent

to some f ∈ (W 1,p(Ω))′, by a calculation we have

〈Aun, v〉 = 〈−∆pun, v〉+
�

Ω

|un|p−2unv dx+
�

∂Ω

|∇un|p−2∇unνv dσ(3.3)
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for any v ∈W 1,p(Ω), where A is the operator from W 1,p(Ω) into (W 1,p(Ω))′

defined by
〈Au, v〉 =

�

Ω

|∇u|p−2∇u∇v dx+
�

Ω

|u|p−2uv dx.

This operator satisfies condition (S+) because −∆p does (cf. [12]).
If we take v = un − u in (3.3) we obtain

〈Aun, un − v〉 = 〈−∆pun, un − v〉+
�

Ω

|un|p−2un(un − u) dx

+
�

∂Ω

|∇un|p−2∇unν(un − u) dσ.

Introducing (Φλ)′(un), we deduce that

〈Aun, un − u〉 = 〈(Φλ)′(un)− f, un − u〉+ 〈f, un − u〉 − 〈(Φλ)′(un), un − u〉.
Using the compactness of Φ′, we find that as n→∞,

lim sup
n→∞

〈Aun, un − u〉 ≥ 0.

Hence un → u strongly in W 1,p(Ω), by condition (S+).
(iii) From (3.1) we deduce that (un)n is bounded in W 1,p(Ω). Thus,

without loss of generality, we can assume that un ⇀ u (weakly) in W 1,p(Ω)
for some u ∈ W 1,p(Ω). It follows that Ψ ′(un) → Ψ ′(u) in (W 1,p(Ω))′ and
pΨ(u) = 1, because pΨ(un) = 1 for all n ∈ N∗. Hence u ∈ M. Since (un)n
is bounded, (i) ensures that {(Φλ)′(un)} is bounded. By a calculation we
deduce via (3.2) that {(Φλ)′(un)} converges strongly in (W 1,p(Ω))′. Conse-
quently, from (ii) we conclude that un → u (strongly) in W 1,p(Ω).

Set Γk = {K ⊂ M : K symmetric, compact and γ(K) = k}, where
γ(K) = k is the genus of K, i.e., the smallest integer k such that there is an
odd continuous map from K to Rk \ {0}.

Next, we establish our existence result.

Theorem 3.1. For any λ ∈ R and any integer k ∈ N∗,
µk(λ) := inf

K∈Γk
max
u∈K

Φλ(u)

is a critical value of Φλ restricted to M. More precisely , there exists uk(λ)
∈ M such that

µk(λ) = pΦλ(uk(λ)) = max
u∈K

pΦλ(u)

and (uk(λ), µk(λ)) is a solution of (1.1)–(1.2). Moreover ,

µk(λ)→∞ as k →∞.
Proof. In view of [19], we need only prove that Γk 6= ∅ for any k ∈ N∗,

and the last assertion.
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Indeed, since W 1,p(Ω) is separable, there exist (ei)i≥1 linearly dense in
W 1,p(Ω) such that supp ei ∩ supp ej = ∅ if i 6= j, where supp ei denotes the
support of ei. We can suppose that ei ∈ M (if not we take e′i = ei/pΨ(ei)).
For k ∈ N∗, define Fk = span{e1, . . . , ek}. Then Fk is a vector subspace
and dimFk = k. If v ∈ Fk, then there exist α1, . . . , αk in R such that
v =

∑k
i=1 αiei. Thus Ψ(v) =

∑k
i=1 |αi|pΨ(ei) = p−1∑k

i=1 |αi|p, because
Ψ(ei) = 1 for i = 1, . . . , k. It follows that the map v 7→ (pΨ(v))1/p is a norm
on Fk. Hence, there is a constant c > 0 so that

c‖v‖1,p ≤ (pΨ(v))1/p ≤ 1
c
‖v‖1,p, ∀v ∈ Fk.

That is,

c‖v‖1,p ≤
( �

∂Ω

|v|p dσ
)1/p

≤ 1
c
‖v‖1,p, ∀v ∈ Fk.

This implies that the set

V = Fk ∩ {v ∈W 1,p(Ω) : ‖v‖p,∂Ω ≤ 1}
is bounded, because V ⊂ B(0, 1/c) = {v ∈ W 1,p : ‖v‖1,p ≤ 1/c}. Moreover
V is a symmetric bounded neighborhood of the origin 0. Consequently, from
Proposition 2.3 of [19], we deduce that γ(Fk ∩M) = k. Then Fk ∩M ∈ Γk
(because Fk ∩M is compact, since it equals the boundary of V).

To complete the proof, it suffices to show that for any λ ∈ R, µk(λ)→∞
as k → ∞. Indeed, let (en, e∗j )n,j be a biorthogonal system such that en ∈
W 1,p(Ω), e∗j ∈ (W 1,p(Ω))′, the (en)n are linearly dense in W 1,p(Ω), and the
(e∗j)j are total in (W 1,p(Ω))′. For any k ∈ N∗ set

F⊥k−1 = span(ek+1, ek+2, . . .).

Observe that K ∩ F⊥k−1 6= ∅ for any K ∈ Γk (by Proposition 2.3(g) of [19]).
Now, we claim that

tk := inf
K∈Γk

sup
K∩F⊥k−1

pΦλ(u)→∞ as k →∞.

Indeed, to obtain a contradiction, assume that for k large enough there is
uk ∈ F⊥k−1 with � ∂Ω |uk|p dσ = 1 such that

tk ≤ pΦλ(uk) ≤M
for some M > 0 independent of k. Then

‖uk‖p1,p − λ
�

∂Ω

%(x)|uk|p dσ ≤M.

Hence
‖uk‖p1,p ≤M + λ‖%‖∞,∂Ω <∞.
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This implies that (uk)k is bounded in W 1,p(Ω). Taking a subsequence if nec-
essary, we can suppose that (uk) converges weakly in W 1,p(Ω) and strongly
in Lp(∂Ω). By our choice of F⊥k−1, we have uk ⇀ 0 in W 1,p(Ω) because
〈e∗n, ek〉 = 0 for all k ≥ n. This contradicts the fact that � ∂Ω |uk|pdσ = 1 for
all k, and the claim is proved.

Finally, since µk(λ) ≥ tk we conclude that µk(λ) → ∞ as k → ∞, and
the proof is complete.

4. Simplicity and isolation of µ1(λ)

4.1. Simplicity. First, observe that solutions of (1.1)–(1.2), by the well-
known advanced regularity, belong to C1,α(Ω) (see [20]).

Lemma 4.1. Eigenfunctions u associated to µ1(λ) are either positive or
negative in Ω. Moreover if u ∈ C1,α(Ω) then u 6= 0 in Ω.

Proof. Let u be an eigenfunction associated to µ1(λ). Since Φλ(|u|) ≤
Φλ(u) and Ψ(|u|) = Ψ(u), it follows from (1.3) that |u| is also an eigenfunc-
tion associated to µ1(λ). Using Harnack’s inequality (cf. [14]), we deduce
that |u| > 0 in Ω. By regularity u is defined in the whole of Ω. In fact
|u| > 0 in Ω because (∂u/∂ν)(x0) < 0 for any x0 ∈ ∂Ω with u(x0) = 0, by
Hopf’s Lemma (see [21]).

Theorem 4.1 (Uniqueness). For any λ ∈ R, µ1(λ) defined by (1.3) is a
simple eigenvalue, i.e., the set of eigenfunctions associated to (λ, µ1(λ)) is
{tu1(λ) : t ∈ R}, where u1(λ) denotes the principal eigenfunction associated
to (λ, µ1(λ)).

Proof. By Theorem 3.1 it is clear that µ1(λ) is an eigenvalue of the
problem (1.1)–(1.2) for any λ ∈ R. Let u and v be two eigenfunctions as-
sociated to (λ, µ1(λ)) such that u, v ∈ M. Thus in virtue of Lemma 4.1 we
can assume that u and v are positive.

Note that the mappings W 1,p(Ω) 3 w 7→ ‖∇w‖pp, w 7→ � ∂Ω |w|p dσ and
w 7→ � ∂Ω %(x)|w|p dσ are linear functionals in wp, for wp ≥ 0. Hence if we
consider

w =
(
up + vp

2

)1/p

,

then it belongs toW 1,p(Ω) and � ∂Ω |w|p dσ=1. Consequently,w is admissible
in the definition of µ1(λ). On the other hand, by the convexity of χ 7→ |χ|p
we have the inequalities

�

Ω

|∇w|p dx =
1
2

�

Ω

(|up−1∇u+ vp−1∇v|p(up + vp)1−p) dx(4.1)

=
1
2

�

Ω

∣∣∣∣
up

up + vp
∇u
u

+
vp

vp + up
∇v
v

∣∣∣∣
p

(up + vp)1−p dx
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≤ 1
2

�

Ω

(
up

up + vp

∣∣∣∣
∇u
u

∣∣∣∣
p

+
vp

vp + up

∣∣∣∣
∇v
v

∣∣∣∣
p)

dx

≤ 1
2

�

Ω

(|∇u|p + |∇v|p) dx.

By the choice of u and v, we deduce that
∣∣∣∣t
∇u
u

+ (1− t) ∇v
v

∣∣∣∣
p

= t

∣∣∣∣
∇u
u

∣∣∣∣
p

+ (1− t)
∣∣∣∣
∇v
v

∣∣∣∣
p

(4.2)

with t = up/(up + vp).
Now, we claim that u = v a.e. on Ω. Indeed, consider the auxiliary

function

F (χ1, χ2) = |tχ1 + (1− t)χ2|p − t|χ1|p + (1− t)|χ2|p.
Since t 6= 0, the critical points of F are the solutions of the system

∂F (χ1, χ2)
∂χ1

= pt(|tχ1 + (1− t)χ2|p−2(tχ1 − |χ1|p−2χ1) = 0,(4.3)

∂F (χ1, χ2)
∂χ2

= p(t− 1)(|tχ1 + (1− t)χ2|p−2(tχ1 − |χ2|p−2χ2) = 0.(4.4)

Thus (4.2)–(4.4) imply that (χ1 = ∇u/u, χ2 = ∇v/v) is a solution of the
above system. Therefore

∣∣∣∣
∇u
u

∣∣∣∣
p−2∇u

u
=

∣∣∣∣
∇v
v

∣∣∣∣
p−2∇v

v
.

Hence
∇u
u

=
∇v
v

a.e. in Ω.

This implies easily that u = cv for some positive constant c. By normaliza-
tion we conclude that c = 1.

Remark 4.1. Various proofs of the uniqueness result were given in the
Dirichlet p-Laplacian case by using C1,α-regularity and L∞-estimation of
the first eigenfunctions and by applying either Picone’s identity (cf. [1]) or
Dı́az–Saá’s inequality (cf. [2, 9, 11]) or an abstract inequality (cf. [15]).

4.2. Isolation

Proposition 4.1. For any λ ∈ R, µ1(λ) is the unique eigenvalue asso-
ciated to λ, having an eigenfunction not changing its sign on the boundary
∂Ω.

Proof. Fix λ ∈ R and let u1(λ) be the principal eigenfunction associated
to (λ, µ1(λ)). Suppose that there exists an eigenfunction v corresponding to
a pair (λ, µ) with v ≥ 0 on ∂Ω and v ∈ M. By the Maximum Principle,
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v > 0 on Ω. To simplify the notation, set u = u1(λ). For ε > 0 small enough,
write

uε = u+ ε, vε = v + ε,(4.5)

φ(uε, vε) =
upε − vpε
up−1
ε

.(4.6)

It is clear that φ(uε, vε) ∈ W 1,p(Ω) and it is an admissible test function in
(1.1)–(1.2). Thus we obtain

(4.7)
�

Ω

|∇u|p−2∇u∇φ(uε, vε) dx+
�

Ω

up−1φ(uε, vε) dx

=
�

∂Ω

(λ%(x) + µ1(λ))up−1φ(uε, vε) dσ

and

(4.8)
�

Ω

|∇v|p−2∇v∇φ(uε, vε) dx+
�

Ω

vp−1φ(uε, vε) dx

=
�

∂Ω

(λ%(x) + µ))vp−1φ(uε, vε) dσ.

From (4.7) and (4.8), we deduce by calculation that

(4.9)
�

Ω

|∇u|p−2∇u∇φ(uε, vε) dx+
�

Ω

|∇v|p−2∇v∇φ(uε, vε) dx

+
�

Ω

|v|p−2vφ(uε, vε) dx

=
�

∂Ω

λ%(x)
((

u

uε

)p−1

−
(
v

vε

)p−1)
(upε − vpε) dσ

+ µ1(λ)
�

∂Ω

up−1
[
uε −

(
vε
uε

)p−1

vε

]
dσ + µ

�

∂Ω

up−1
[
vε −

(
uε
vε

)p−1

uε

]
dσ.

On the other hand, by a long calculation again, we obtain

∇φ(uε, vε) =
{

1 + (p− 1)
(
vε
uε

)p}
∇uε − p

(
vε
uε

)p−1

∇vε(4.10)

and

(4.11)
�

Ω

[up−1φ(uε, vε) + vp−1φ(uε, vε)] dx

=
�

Ω

[(
u

uε

)p−1

−
(
v

vε

)p−1]
(upε − vpε) dx.
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Therefore (4.9), (4.10) and (4.11) yield

(4.12)
�

Ω

[{
1 + (p− 1)

(
vε
uε

)p}
|∇uε|p +

{
1 + (p− 1)

(
uε
vε

)p}
|∇vε|p

]
dx

+
�

Ω

[
−p
(
vε
uε

)p−1

|∇vε|p−2∇uε∇vε + p

(
uε
vε

)p−1

|∇uε|p−2∇uε∇vε
]
dx

= Jε +Kε − Iε
with

Iε =
�

Ω

((
u

uε

)p−1

−
(
v

vε

)p−1)
(upε − vpε) dx,(4.13)

Jε = λ
�

∂Ω

%(x)
((

u

u+ ε

)p−1

−
(

v

v + ε

)p−1)
(upε − vpε) dσ,(4.14)

Kε = µ1(λ)
�

∂Ω

up−1
[
uε −

(
vε
uε

)p−1

vε

]
dσ(4.15)

+µ
�

∂Ω

up−1
[
vε −

(
uε
vε

)p−1

uε

]
dσ.

It is clear that Iε ≥ 0. Now, thanks to the inequalities of Lindqvist [15], we
can distinguish two cases according to the value of p.

Case 1: p ≥ 2. From (4.12) we have

Jε +Kε ≥
1

2p−2 − 1

�

Ω

(
1

(u+ 1)p
+

1
(v + 1)p

)
|u∇v− v∇u|p dx ≥ 0.(4.16)

Case 2: 1 < p < 2. Then

Jε +Kε ≥ c(p)
�

Ω

uv(up + vp)
(v|∇u|+ u|∇v|+ 1)2−p |u∇v − v∇u|

2 dx ≥ 0,(4.17)

where the constant c(p) > 0 is independent of u, v, λ and µ1(λ).
The Dominated Convergence Theorem implies that

lim
ε→0+

Jε = lim
ε→0+

Kε = (µ1(λ)− µ)
�

∂Ω

(up − vp) dσ = 0,

because �

∂Ω

updσ =
�

∂Ω

vpdσ = 1.(4.18)

Now, letting ε→ 0+ in (4.16) and (4.17), we arrive at

u∇v = v∇u a.e. on Ω.
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Thus

∇
(
u

v

)
= 0 a.e. on Ω.

Hence, there exists t > 0 such that u = tv a.e. on Ω. By continuity u = v
a.e. in Ω; and by the normalization (4.18) we deduce that t = 1 and u = v
a.e. on ∂Ω. This implies that u = v a.e. on Ω. Finally, we conclude that
µ = µ1(λ).

Remark 4.2. We can also show Proposition 4.1 by using Picone’s iden-
tity. A similar result was given in [8] in the particular case λ = 0.

Corollary 4.1. For any λ ∈ R, if u is an eigenfunction associated to
a pair (λ, µ) with µ 6= µ1(λ), then u changes its sign on the boundary ∂Ω.
Moreover ,

min(|∂Ω−|, |∂Ω+|) ≥ c−Np∗ (|λ| ‖%‖∞,∂Ω + |µ|)−η,(4.19)

where η = N/p if 1 < p < N and η = 2 if p > N , cp∗ is the best constant
in the Sobolev trace embedding W 1,p(Ω) ↪→ Lp

∗
(∂Ω), and |∂Ω±| denotes the

(N − 1)-dimensional measure of ∂Ω±. Here p∗ = p(N − 1)/(N − p) is the
critical Sobolev exponent and ∂Ω± = {x ∈ Ω : u(x) ≷ 0}.

Proof. Set u+ = max(u, 0) and u− = max(−u, 0). It follows from (2.1),
where we put v = u−, that

�

Ω

|∇u−|p dx+
�

Ω

|u−|p dx =
�

∂Ω

(λ%(x) + µ)|u−|p dσ.

Thus

‖u−‖1,p ≤ (|λ| ‖%‖∞,∂Ω + |µ|)
�

∂Ω−

|u−|p dσ

≤ (|λ| ‖%‖∞,∂Ω + |µ|)|∂Ω−|p/N
( �

∂Ω

|u−|p∗
)p/p∗

.

By the Sobolev embedding W 1,p(∂Ω) ↪→ Lp
∗
(∂Ω), we deduce that

|∂Ω−| ≥ c−Np∗ (|λ| ‖%‖∞,∂Ω + |µ|)−η.
The same holds for ∂Ω+ by taking v = u+ in (2.1). Hence the estimate
(4.19) follows.

Remarks 4.1. (i) The right-hand side of (4.19) is positive because % 6≡ 0
and if λ = 0 then µ is an eigenvalue of the p-Laplacian related to
the trace embedding, so µ− λ1 > 0, where λ1 is the first eigenvalue
of (1.1)–(1.2) in the case λ = 0.

(ii) An easy consequence of Corollary 4.1 is that the number of nodal
components of each eigenfunction of (1.1)–(1.2) is finite.
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Using Proposition 4.1 and Corollary 4.1, we can state the following im-
portant result.

Theorem 4.2. For any λ ∈ R, µ1(λ) is isolated.

5. Variations of the weight. Let µ1(λ) = µ1(%) and u1(λ) = u1(%)
(to indicate the dependence on the weight %).

Theorem 5.1. For any λ ∈ R, if (%k)k is a sequence in L∞(∂Ω) such
that %k converges to % in L∞(∂Ω) with % 6≡ 0, then

lim
k→∞

µ1(%k) = µ1(%),(5.1)

lim
k→∞

‖u1(%k)− u1(%)‖p1,p = 0.(5.2)

Proof. If λ = 0, the result is evident because µ1(%k) = µ1(%) for all
k ∈ N∗. If λ 6= 0, then for v ∈ M,

∣∣∣λ
�

∂Ω

(%k − %)|v|p dσ
∣∣∣ ≤ |λ| ‖%k − %‖∞,∂Ω.

By the convergence of %k to % in L∞(∂Ω), for every ε > 0 there exists kε ∈ N
such that for all k ≥ kε,∣∣∣λ

�

∂Ω

(%k − %)|v|p dσ
∣∣∣ ≤ |λ| ε|λ| = ε.

This implies that

λ
�

∂Ω

%|v|p dσ ≤ ε+ λ
�

∂Ω

%k|v|p dσ,(5.3)

λ
�

∂Ω

%k|v|p dσ ≤ ε+ λ
�

∂Ω

%|v|p dσ,(5.4)

for any v ∈ M, ε > 0 and k ≥ kε.
On the other hand, we have % 6≡ 0. We take kε large enough so that

%k 6≡ 0. Thus

µ1(%k) ≤ ‖v‖p1,p − λ
�

∂Ω

%k|v|p dσ.

Combining with (5.3) and (5.4), we obtain

µ1(%k) ≤ ‖v‖p1,p − λ
�

∂Ω

%|v|p dσ + ε.

Passing to the infimum over v ∈ M, we find

µ1(%k) ≤ µ1(%) + ε, µ1(%) ≤ µ1(%k) + ε, ∀ε > 0 ∀k > kε.

Hence, we obtain the convergence (5.1).
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For the strong convergence (5.2) we argue as follows. For k large enough,
we have %k 6≡ 0 and

µ1(%k) = ‖u1(%k)‖p1,p − λ
�

∂Ω

%k(u1(%k))p dσ.(5.5)

Thus
‖u1(%k)‖p1,p ≤ |µ1(%k)|+ |λ| ‖%k‖∞,∂Ω .

From (5.1) and the convergence of %k to % in L∞(∂Ω), we deduce that
(u1(%k))k is a bounded sequence in W 1,p(Ω). Since W 1,p(Ω) is reflexive and
compactly embedded in Lp(∂Ω) we can extract a subsequence of (u1(%k))k,
again labelled by k, such that u1(%k) ⇀ u (weakly) in W 1,p(Ω) and u1(%k)→
u (strongly) in Lp(∂Ω) as k →∞. We can also suppose that u1(%k)→ u in
Lp(Ω). Passing to a subsequence if necessary, we can assume that u1(%k)→ u
a.e. in Ω. Thus u ≥ 0 a.e. in Ω. We will prove that u ≡ u1(%). To do this,
using the Dominated Convergence Theorem in ∂Ω, we deduce that

�

∂Ω

%k(u1(%k))pdσ →
�

∂Ω

%up dσ

as k → ∞. By (5.5), (5.1) and the lower weak semicontinuity of the norm
we obtain

‖u‖p1,p ≤ µ1(%) + λ
�

∂Ω

%up dσ.(5.6)

The normalization � ∂Ω updσ = 1 is proved. Moreover, u ≥ 0 a.e. in Ω,
because u1(%k) > 0 in Ω. Thus u is an admissible function in the variational
definition of µ1(λ). So

µ1(λ) ≤ ‖u‖p1,p − λ
�

∂Ω

%updσ.

This and (5.6) yield

µ1(%) = ‖u‖p1,p − λ
�

∂Ω

%updσ.(5.7)

By the uniqueness of the principal eigenfunction associated to µ1(λ), we
must have u ≡ u1(%). Consequently, the limit function u1(%) is independent
of the choice of the (sub)sequence. Hence, u1(%k) converges to u1(%) at least
in Lp(∂Ω) and in Lp(Ω). To complete the proof of (5.2), it suffices to use
Clarkson’s inequalities related to uniform convexity of W 1,p(Ω). For this we
distinguish two cases.

Case 1: p ≥ 2. We have
�

Ω

∣∣∣∣
∇u1(%k)−∇u1(%)

2

∣∣∣∣
p

dx+
�

Ω

∣∣∣∣
∇u1(%k) +∇u1(%)

2

∣∣∣∣
p

dx

≤ 1
2

�

Ω

|∇u1(%k)|p dx+
1
2

�

Ω

|∇u1(%)|p dx
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and

µ1(%k)
�

∂Ω

(
u1(%k) + u1(%)

2

)p
dσ ≤

�

Ω

∣∣∣∣
∇u1(%k) +∇u1(%)

2

∣∣∣∣
p

dx

−λ
�

∂Ω

%k

(
u1(%k) + u1(%)

2

)p
dσ.

Moreover
�

Ω

∣∣∣∣
u1(%k)− u1(%)

2

∣∣∣∣
p

dx ≤
�

Ω

∣∣∣∣
u1(%k) + u1(%)

2

∣∣∣∣
p

dx+
1
2
‖u1(%k)‖pp +

1
2
‖u1(%)‖pp.

Hence

‖u1(%k)− u1(%)‖p1,p

≤ − µ1(%k)
�

∂Ω

(
u1(%k) + u1(%)

2

)p
dσ − λ

�

∂Ω

%k

(
u1(%k) + u1(%)

2

)p
dσ

+
1
2

(
µ1(%k)− λ

�

∂Ω

%k(x)u1(%k) dσ
)

+
1
2

(
µ1(%)− λ

�

∂Ω

%up1 dσ

)
.

Then, by using the Dominated Convergence Theorem we deduce that

lim sup
k→∞

‖u1(%k)− u1(%)‖p1,p = 0.

Case 2: 1 < p < 2. In this case, we have
{ �

Ω

∣∣∣∣
∇u1(%k)−∇u1(%)

2

∣∣∣∣
p

dx

}1/(p−1)

+
{ �

Ω

∣∣∣∣
∇u1(%k) +∇u1(%)

2

∣∣∣∣
p

dx

}1/(p−1)

≤
{

1
2

�

Ω

|∇u1(%k)|p dx+
1
2

�

Ω

|∇u1(%)|p dx
}1/(p−1)

and

µ1(%k)
�

∂Ω

(
u1(%k) + u1(%)

2

)p
dσ ≤

�

Ω

∣∣∣∣
∇u1(%k) +∇u1(%)

2

∣∣∣∣
p

−λ
�

∂Ω

%k

(
u1(%k) + u1(%)

2

)p
dσ.

Hence, by definitions of µ1(%k) and µ1(%), and the second Clarkson inequality
we obtain the convergence (5.2).

Corollary 5.1. For any bounded domain Ω, the function λ 7→ µ1(λ)
is differentiable on R and the function λ 7→ u(λ) is continuous from R into
W 1,p(Ω). More precisely

µ′1(λ0) = −
�

∂Ω

%(x)(u1(λ0))p dσ, ∀λ0 ∈ R.
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Proof. Denote by µ1(λ, %) the principal eigenvalue associated with λ and
the weight % and by u1(λ, %) the corresponding principal eigenfunction. Sup-
pose that λk → λ0 in R; then hk = λk% → λ0% = h in L∞(∂Ω). From
Theorem 5.1 we deduce that

µ1(λk) = µ1(1, hk)→ µ1(1, h) = µ1(λ0)

and
u1(λk) = u1(1, hk)→ u1(1, h) = u1(λ0) in W 1,p(Ω).

For the differentiability, it suffices to use the variational characterization of
µ1(λ) and of µ1(λ0), so that we have

(λ− λ0)
�

∂Ω

%(x)(u1(λ))p dσ ≤ µ1(λ)− µ1(λ0) ≤ (λ0 − λ)
�

∂Ω

(u1(λ0))p dσ

for any λ, λ0 ∈ R.
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