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THE REGULARITY OF WEAK AND VERY
WEAK SOLUTIONS OF THE POISSON EQUATION
ON POLYGONAL DOMAINS WITH MIXED
BOUNDARY CONDITIONS (PART II)

Abstract. We examine the regularity of weak and very weak solutions of
the Poisson equation on polygonal domains with data in L?. We consider
mixed Dirichlet, Neumann and Robin boundary conditions. We also describe
the singular part of weak and very weak solutions.

1. Introduction. In this paper we continue the investigation of the
regularity of weak and very weak solutions of the Poisson equation, which
were started in [5]. Our main goal is to complete the proofs of Theorems 1
and 2 formulated in [5]. Moreover, we examine the regularity of solutions of
the Poisson equation with nonhomogeneous boundary conditions.

Let us recall that we consider the following problem for f € L?({2):

Au=f in {2,
vju =0 on [ for j € D,
ou .
(1.1) 'yja—yj:() on I for j € N,
ou .
Vi m— +a;vu=0 onljforjcR.
8Vj

The relevant assumptions were formulated in Section 2 of [5]. We will also
use the notation introduced there.

This paper is organized as follows. Sections 2 and 3 are devoted to the
space M of very weak solutions of the homogeneous problem. In Section 2
we prove some smoothness results for elements of M. In Section 3, we find
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18 A. Kubica

a basis of M. In the next two sections we apply the results of [5] to deduce
Theorems 1 and 2 stated in [5]. In the last section we consider the mixed
boundary value problem with nonhomogeneous boundary conditions. The
most general result of the two papers is Corollary 7.

2. Smoothness of very weak solutions of the homogeneous prob-
lem. In the next section we will find an expansion of v € M. To justify it
we have to establish some smoothness properties of v € M. We will need
the following lemma.

LEMMA 1. (a) If v € M and U C R? is a neighbourhood of the vertices
Sj for j =1,...,N, then v is smooth up to the boundary on 2\ U, i.e.
vE COO( U)

(b) If p() =
ve M.

Proof. Every function v € M is smooth in {2, because it is harmonic
in £2. To prove (a), it is enough to show that v is smooth up to the boundary
away from the vertices Sj, j = 1,...,N.If j € D (resp. j € N), then we
continue v across the I'; by odd (resp. even) reflection to get a function ©
which is harmonic and square integrable (see proof of Lemma 2.3.4 in [3]).
Thus v|; = v is smooth up to the boundary. The proof of (a) will be finished
if we show that for j € R every v € M can be continued harmonically
across Ij. This will be deduced from the proof of (b). For the latter we
have to introduce the following notation. For § > 0 such that 26 + w; < 2,

- — Dt
j=1,...,N, we define D, ; := DMJUDQ&J7 where

=) =)
D;t,é,j = {(rj cosb;,rjsinf;) € R?; r; €(0,0), 0 € <T’wj + T) }

The proof of (b) consists of two steps. First, we prove

= dist(-,{Sj; 7 = 1,...,N}), then p|Vv| € L*(2) for all

PROPOSITION 1. Assume that v € M and there exist numbers 0,6 > 0
and a function v such that © € L*(Days4) for j = 1,...,N and ¥ is a
harmonic continuation of v. Then 7;|Vv| € L*(D,;) forj =1,...,N.

Proof of Proposition 1. We fix a vertex Sj, let K be an integer with
K > 16sin(w;/2)/sind and set §; := w; /K. Define

Ty = (1 o > o, R,:= s r, forn €N,

2 2

and consider the balls B; 1, Bing2,; fori=0,...,K, n € N, with center
(rn,161) (in polar coordinates attached to the vertex S;) and radius R,
and 2R, respectively. It can be easily verified that the family {B; .1 ;;
i=0,...,K, n €N} covers D, ; and its order is less than 5K . Furthermore,



Regularity of solutions of the Poisson equation 19

we have
K K
(2.1) D0 € |J U Bin1s € U U Bin2j € Dagsj-
neN =0 neN =0

Applying Theorem 8.2 of [1] we obtain a constant C, independent of i, j, n,
such that

C
(2.2) |V6(x,y)\2§ﬁ \ [®Pdedy for (z,y) € Bina,.
™ Bin,2,j

Hence, we have the following estimate of the L?(D, 0 j) norm of 7;|Vol:

23) | ImVe@yPdedy< Y| PV, y)P dedy.
DQ,O,j ZZO,I\I,K Bi,n,l,j
ne

Thus, applying the Holder inequality and the estimate (2.2), we conclude
that (2.3) is less than or equal to

4CT (1 + sind 2
B L
i=0,...,K Bin,2,j

neN

20K Crr(1 + 89)?

sin? &

2
HUHL2(DZQ,5,]~)~

Hence the proof of Proposition 1 is finished.

Now we shall verify the assumptions of Proposition 1, i.e. we will prove
the following:

PROPOSITION 2. If v € M, then there exist 9,0 > 0 and a function T
such that U € LQ(DW;J-) forj=1,...,N and U is a harmonic continuation
of v.

Proof of Proposition 2. We already know that if j € D (resp. j € N),
then the odd (resp. even) continuation of v € M across I'; has the desired
properties. Hence we only have to show that if we have the Robin boundary
condition on I}, then there exists a harmonic and square integrable con-
tinuation of v across I'; (the idea of harmonic continuation across I'; for
j € R comes from [6]). To see this, assume that v € M, j —1 € R and
w = —aiij + aj_1v. The function w is harmonic in {2 and satisfies the ho-
mogeneous Dirichlet boundary condition on I';_1. Thus the odd reflection of
w across [j_1 gives a function W which is defined in D; 54 for some positive
numbers o,  and is a harmonic continuation of w. Next, we will consider
the equation

0
(24) — 6—%h + Oéjflh =W in D;J,j'
The solutions of (2.4) are of the form h(xj,y;) = exp(aj—1y;)[c+ f(xj,y;)],
where f(x;,y;) satisfies %f(xj,yj) = —exp(—oj_1y;)W(zj,y;). The func-
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tion W is harmonic in Dg 5,57 hence it is real analytic. Thus we can choose
a real analytic f which satisfies the last equation. Then the function h is
real analytic in D;&j. Set g :=v —hin D, ;. Clearly, g is real analytic in
D, ,; and is the solution of the homogeneous equation (2.4), hence it is of
the form g(z;,y;) = q(x;) exp(a;—1y;), where g(z;) is real analytic in D, ;.
Define

(2.5) G(zj,y;) == q(zj) exp(aj-1y;), V:=G+h inD,;..

00,5

a continuation of v. The Laplacian of ¥ is a real analytic function in Dg 54

and vanishes in D, ;, so from the uniqueness principle for real analytic
functions we obtain Av = 0 in Dg 55"

It is clear that G is real analytic in D hence so is v. Furthermore, v is

The above means that we have defined a function v which is a harmonic
continuation of v € M across I; for j € R. To sum up, we have defined
a harmonic continuation across I; in each case of boundary conditions.
Hence v € M is smooth up to the boundary away from the vertices Sj,
j=1,...,N. Thus the proof of (a) is complete.

To finish the proof of Proposition 2 we only have to show that T is square
integrable in D, ; I From the definition, in D, s j the function v is equal to
(2.6)  qlz;)exp(a;-1y;) y

J
+ exp(aj—1yj)|c+ f(z;,0) — S exp(—a;_1t)W(xj,t) dt],
0
for some constant c. Clearly, we have v(z;,0) = v(z;,0) for z; € (0, ),
hence from (2.6) after straightforward calculations we obtain the following
equality in D s . \ Dy0,j:

(2.7) (x5,y;) = 2exp(aj_1y;)v(x;,0) — v(xj, —y;).
This gives an explicit formula for harmonic continuation across I'; for j € R.
Obviously, v € L? (D, ;) if and only if

(2.8) |v(rj,0)\2rj drj < o0.

O ey IO

Now we shall verify (2.8). Since on I'j_; the function v satisfies the Robin
boundary condition and the Laplace equation, we get

1 92

— A2 )
— U =0a;_v onlj g,
r; 00;

thus
02 1

9 2
2.9 — — — . =0 I 4.
( ) 87“]2-1} + r; 8lev + Ol]_lv on fj 1
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The solutions of (2.9) are of the form p(r;) := AJy(aj—17;) + BYo(a,—17),
where A, B are some constants and Jy, Yy are Bessel functions, of the first
and second kind, respectively. It can be easily verified that for every o > 0
the integral {2 [p(r;)|*r; dr; is finite, thus v satisfies (2.8). This shows that

v E LQ(D;M) and finishes the proof of Proposition 2.

Lemma 1 is an immediate consequence of Propositions 1 and 2. =

3. A basis of M. In this section we will find a family of functions which
span the space M. To this end, we introduce the following notation:

! for j—1,7 € NUR,
~ exp(—A;x;) forj—1€D,j€eR, ~
(31) Xj:= (=dyzg) for ] ’ Xj = MjX;»
exp(—Bjy;) forj—1€R, jeD,
1 in the other cases,

where the functions ¢, n; and numbers A;, B; were defined in [5, (4.2)]. It
is clear that each function y; for j = 1,..., N satisfies the boundary con-
ditions of (1.1), where the constant «; in the Robin boundary condition is
replaced by —a;. Hence, if v € M, then for each j = 1,..., N the function
wj := X;v satisfies

0
ywj =0 for k€ D, ’ykaTUJj:O for k e NUR.
k

Instead of looking for an expansion of v € M, we will find an expansion
of w; and then we will use the following property:

(3.2) v= Xj_le on B(Sj,¢).

REMARK 1. Before we apply Grisvard’s method (see [3, Proposition
2.3.5]) we have to get rid of the Robin boundary condition, because we
have been unable to solve the equation

0? 10 A2(7)
8T2h+rarh r2 h=1
where A = \(r) satisfies Atan(Aw;) = o;r. In this way we get a function w;
which is not harmonic and what is worse, it may not be square integrable
on §2. However applying Lemma 1 we get pAw; € L*({2).

Similarly to [2], we define for j = 1,..., N an unbounded operator A; in
H; := L*((0,w;)) defined on a domain D(A;) by Ajp = —¢". Here D(A;) is
the subspace of H?((0,w;)) given by conditions: 4,0"9:0 =0for j—1 € NUR,
¢lo—0 = 0 for j—1 € D, gp"e:wj =0 for j € NUR and ¢, = 0 for j € D.
The operator A; is unbounded, selfadjoint and has a discrete spectrum. We
denote by ¢; , the normalized eigenfunctions and by )\?’m the corresponding
eigenvalues in increasing order. We are looking for an expansion of w; of the
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form
(3.3) w;(rj,05) = Y wim(r;)eim(0;),
meN

where wjm(r;) = §57 w;(rj, 0;)¢jm(0;) df;. Thus the function wj,, satisfies
the equation

2 2
8—w]~m l iwjm _ >\j—’mwjm — fjm7
orz " rj orj ry ’

(3.4)

where fjm = {57 Aw;@jm df;. The solutions of (3.4) are of the form

Tj
Nim “Aim 1 . ,

(3.5) Cimar;"" + Cmar; T — o i » S 51+’\J’mfj7m(s) ds

J,m 0

L Mm T 1-Xj
oy S o) s

when A;,, # 0, and

oo (o)
(3.6) Cjm,1 T Cjm,2 In ri+ S s S tfjvm(t) dtds

7']' S

when A;,, = 0, and ¢jm,1, ¢jm,2 are arbitrary constants. We will find the
basis of M in two steps. First, we choose the coefficients in (3.5) and (3.6)
in such a way that the functions wj,, are of the form (3.5) for X\j,, # 0
and (3.6) for \j,, = 0 and then we indicate the expressions in the series
(3.3), which are in H'. This allows us to estimate the dimension of M.
Subsequently, we will define a linearly independent family in M.

3.1. Estimate of the dimension of M . First we establish some proper-
ties of the expressions (3.5) and (3.6).

PRrROPOSITION 3. There exists a constant C such that for all j=1,..., N,
m € N the L*((0,00)) norms of T;/Zw%m and r?/ijjm are bounded by C.

Proof. In view of Remark 1 we can write

o0 [e’e) wj
S r?\fj,mIerj < S r? S | Aw;|? db; dr; = S |r; Aw;|? da dy < oo.
0 0 0 Q

Applying the Schwarz inequality we get

o0 (o)
S rj]wj,m|2d7“j < S |wj|2rj drjdf; < c||v|\%2(9) < 00. =
0 0

REMARK 2. The expressions in (3.5) and (3.6) are well defined. Indeed,
the supports of f;,, are bounded and applying the Schwarz inequality and
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Proposition 3 we get

T T
s 0 () ds| < § s 12 52 () ds
0 0
pm
< J 7“3/2 . X
= \/m ” j f]:m”LQ((O,oo))
LEMMA 2. For j=1,...,N and for some o > 0 we have
.
1 “Aim 4 .
(2) o7 VSN () ds @jn(07) € H (Do),
Ajm#0 "M 0
1 A T
0 > o i Vs fim(s) ds @jm(0;) € H' (Dy)-
)‘j,m7£0 Jm Tj

Proof. 1t is clear that we will get (a) once we show that there exists a
constant C' such that
T
(37) "r;()‘j,m+1/2)+k S 81+>\j,m f%m(S) dS‘
0
We will only examine the case of k = 0, because using the Holder inequality,
the case of k = 1 can be reduced to the former. To show (3.7) we apply the
Hardy inequality ([4, Theorem 330]) to obtain

< i for k=0, 1.
L2((0,0) ~ Ajm

0 T
2
—=(2Xj,m+1) 14 Ajm
Srj am Ss im fim(s)ds| dr;

(e}

1
A-?’m

1 3/
§ 31 Fiml? drj = 55— 175 Fim 20,000
0 J,m

<

Hence from Proposition 3 we get (3.7), proving (a). For (b) we proceed
similarly. =

The functions wj,, are solutions of (3.4) for r; > 0, thus for each j =
1,..., N there exist unique constants c;,1 and cj,,2 such that w;,, is of
the form (3.5) for A;,, # 0 and of the form (3.6) for \;,, = 0. Hence the
constants c; 2 defined in this way have the following properties.

PROPOSITION 4. For each j = 1,...,N and m € N, if X;,,, > 1, then
Cj7m72 = 0'

Proof. As in the proof of Lemma 2 we can show that for j =1,..., N
and m € N the functions
’I”j oo

7’~_>\j’m+1/2 S 51+)\j’mfj,m(5) ds and r;\j,m-‘rl/Q S Sl_kj’mfj,m(s) ds
0 T

J
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are square integrable on D, ; for some o > 0. Hence from Proposition 3 and
expansion of wj ,, in the form (3.5) we get ¢jm2r; Amtl/2 L*(D,yo ;). But

if A\j,n > 1, then rj Aim+1/2
of Sj, and so ¢j;m2 =0. =

is not square integrable on any neighbourhood

PROPOSITION 5. If 0 < 1/2, then for each j =1,..., N we have

chmlr SOJmEH(D,,J)-
meN
Proof. First we find an estimate for the coefficients ¢; 1. If m > 3 and
o < 1, then applying the expansion of wj,, in the form (3.5), next the
estimate (3.7) and Propositions 3 and 4 we get

1/24A Co

JmH £2((0,0)) <01+)\]—m
where C7 and Cs are some constants independent of j and m. By the defi-
nition of A;,, the right hand side of (3.8) is bounded by Cy + Cy if m > 3.

As the left hand side of (3.8) equals |c;m.1]|0% ™ /\/2(N\jm +1), we get

C3/ N
(3.9) Icjm] < M for m > 3,
him

(3.8) ll¢jm, 17}

where the constant C'5 is independent of j and m. This leads to the following

by
bound on [|¢jm,17;"™ ¢j, mHH1 Dy/an,)’

o/2 2 1 o/2 2 1
m+ j,m
|cj,m71|2< X r; 7 drj + (1+)\32‘,m) X r; 7 drj)
0 0

teama (&) [ + ]
L 2 8(Njm +1) 2Xjm

1 2>\j,m QQ 1+A2
< CiAjm | 5 olp
- <2> [S(Aj,erl)Jr 2Xjm ]

. )\j,m 3 1
Thus the series Z/\j’m?éo Cjm,175"" Pjm converges in H (Dgs2,0,5) =

COROLLARY 1. For each j =1,...,N there exists o > 0 such that the
function w; has the following expansion in D, j:

“Nim
(3.10) Z Cj,m,27; 7 Pim

Ajm€(0,1) o o

+ Y (cj,m,g nrj+ {578 | tfjm(t) dt ds)goj,m + hy,

] m=0 T S

where h; € HY (D, ;).
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Proof. Using (3.3), then applying the expansion of wj,, in the form (3.5)
and (3.6) we get the assertion from Lemma 2 and Propositions 4, 5. =

Unfortunately, the expansion of w; in the form (3.10) does not allow
us to deduce the desired property, because we cannot prove that the func-
tion S S5l S tfim(t)dtdsisin H". 1. To overcome this difficulty we have to

modify the expansion of w; , for \j,, = 0. Let p € (1,2) be such that

2
3.11 < — h Ajim € (0,1).
(3.11) P 5 whenever ;. € (0,1)
PROPOSITION 6. For each j =1,...,N we have wj € W1P(2).

Proof. In view of the definition of w;, Lemma 1 and Corollary 1, it
is enough to show that the function (3.10) is in WP(D, ;) for some

o0 > 0. It can be easily verified that the functions rj_/\j’mcpj,m and In7;p; m
are in WP?(D, ;). We will prove that SOO STt fjm(t) dtds ), is in
WLP(D,o.;), that is,

(312) /P s tfym(t) dtds,ri7 7 tfim(t) dt € LP((0, 0)).
7']' S 7’]’

To justify (3.12), we shall check that tf; ., € L,;/,(R;). The function f;
vanishes outside B(S},0) for some § > 0, hence after applying the Holder
inequality with exponents 2/p and 2/(2 — p) we get

oo 19
V1Efim(E) - £7PP dt =\ e 22 32 f ()P d
0 0

<6 p||t3/2fj m”L2( (0,00)) < 00

Applying twice the Hardy inequality ([4, Theorem 330]), and then the Holder
inequality, we obtain

[e.9] [e.9]

fr] §s7 OSotfj,m(t) dtds|" dr; < (g)

0 Tj s

p [e.9]

S r [ S tfim(t) dtr dr;j

0 T

p T 2p+1 p 2?2 141
<(5) Dtismtpar = (5) (oo ar

0 0

p
s<§) PltFimll, s < o

Using again the Hardy inequality we get
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oo _ o p
| r; p{ | tfjm(®) dt} drj < ( ) V£ fm (B)[P dt
0 rj 0
2 p
AT 1tfimllL, 1@y ) < 00

Hence we have (3.12), and the proof is finished. m
COROLLARY 2. If p € (1,2) satisfies (3.11), then M C W1P(£2).

Proof. From Lemma 1 we have the smoothness of v € M away from
the vertices Sj, j = 1,..., N. Proposition 6 and (3.2) give us the desired
smoothness in a neighbourhood of the vertices Sj, 7 =1,...,N. =

Now we are able to define another solution of (3.4) for A;,, = 0.

PROPOSITION 7. The function § s~ tfjm(t)dtds is in H'(D,o;)
for some ¢ > 0 and satisfies (3.4) for \j,m =

Proof. 1t is clear that {7 s71 {7 ¢ fjm (t) dt ds satisfies (3.4). We will show
that

(3.13) r}/? fs—litfj,m( t)dtds,r; "/? S tfjm(t)dt € L*((0,0)),

0 0 0

for some ¢ > 0. First we prove that t'/?f; ,, € LP((0, 00)). From Corollary 2
and the definition of w; we have Aw; € LP({2), hence

00 00 Wj

VIEPfm@)Pdt < | | | Awjjm[Ptdtdo; < CllAw; |, o) < o

0 00
Applying the Holder inequality with exponents p and p*, where 1/p + 1/p*
=1, we get

: 1 gys

(3.14) | §t im0 dt| < S8 077 fim o0 001
0

Thus we have

4 Ty S o Ty

I { Vs Ve m(t) dt ds] 2drj < i”tl/pfj,mH%P((D,oo)) S?“j“ s ds] 2de
5 0 0 0 0

B pgutl/pfj,mH%p((o,oo))
64(p — 1)*(3p — 2)
As above, using the estimate (3.14) we get

05P < 0.

1 T 9 4p/(p—1)

_ Y
{ri [ § @] s < 350 =5 10 oy < o0
0 0

Hence we have shown (3.13), and the proof is finished. =
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In view of Proposition 7 we can find unique constants ¢;,,,1 and ¢ m 2
such that if A;,, = 0 then

rj s
(3.15) Wi = Cim1 + Gmalnry + | 57 tfjm(t) dt ds.
0 0

Now we are in a position to describe the singular part of w;:

COROLLARY 3. For each j = 1,..., N there exists o > 0 such that in
Dy,0.5,
—Xim ~
(3.16) wj; = Z Cjm,27; 7 Pim + Z Cjm,2 In riPim + hj,
Aj,m€(0,1) Aj,m=0

where h; € HY (D, ;).

Proof. This is an immediate consequence of Corollary 1, Proposition 7
and (3.15). m

Let us introduce the following notation: for j =1,..., N we write
Nj:={m; \jm €(0,1)}, M;:={m; \j;,m =0},

n; = ‘Nj|, mj 1= |MJ|

We define an operator P by

(3.17)

N

(318) P M— [[RYXR™,  P(v) = ((cjm2)men;s (m2)mens;) 11,
j=1

where ¢;j 2 and ¢; 2 are the unique coeflicients from the expansion of w;

of the form (3.16). It is clear that P is well defined and is a linear operator.

THEOREM 1. The operator P is an injection.

Proof. Suppose that P(v) = 0. Then the coefficients ¢;, 2 and ¢jm2
in (3.16) vanish. Hence w; € H' (D, ;) for each j = 1,..., N and some
0 > 0, and from (3.2) we obtain v € H'(U), where U is some neighbourhood
of the vertices Sj, 7 = 1,..., N. From Lemma 1 we conclude that v € H!(£2),
i.e. v € E(A,L?(2)). Applying Lemmas 1.5.4 and 2.1.2 of [3] we infer that
v is a variational solution of the homogeneous problem (1.1), i.e. v satisfies
the equality (3.3) of [5] with right hand side zero. Thus, from Proposition 1
of [5] we conclude that v = 0. m

Finally, from the definition of n;, m; and Theorem 1 we get the following
estimate on the dimension on M.

COROLLARY 4. The dimension of M does not exceed Zj-vzl(mj +nj). =
Now we will find a basis of M.
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3.2. A linearly independent family. We are going to prove the following
theorem.

THEOREM 2. The dimension of M is equal to the number of eigenvalues
lying in [0,1), i.e.
(3.19) dim M = [{Xjm; Ajm € [0,1)}].

Proof. In view of Corollary 4 it is enough to find a linearly independent
family {ojm}5;,.e0,1) in M. Define

= _)"m .
(3.20) Wi o= 4 X T gim i Ajm € (0,1),
' Jime ~—1 . B
X Inrjp;m  if Ajm=0.

The functions x; were defined in (3.1). We will prove the following proposi-
tion.

PROPOSITION 8. For any 6 > 0 and \j,, € [0,1) there exists a constant
C > 0 such that

0
‘Srj " svdrj‘ < Cllelurnosy for v € HY((0,6).
0

Proof of Proposition 8. Let s € (1/2,1) satisfy 3/2 — X, > so. Then
by Theorem 1.2.18 of [3] we conclude that rjl._)‘j’m € H*2(2 N B(0,9)).
Hence there exists a constant Cp such that
I3~ larso oy < Crllr; ™ | geo+ir2(an0.)-
From the continuity of the differentiation operator ([2, Theorem 1.4.4.6]) we
get a constant Cy such that

_/\.’
Hrj .

We have H*0~1((0,6)) = Hy~*((0,8))* = H'7%0((0,6))*, because 1 — s €
(0,1/2). Hence

1-Xjm
lrs0-1((0,8)) < Callry ™" [lmso (0,6

< Al ™ [ Eso-1((0,8)) * 11l =50 ((0,5))-

6
7o
0

Combining the above inequalities and applying the continuity of the imbed-
ding H'/2((0,6)) — H'=*0((0,4)) we obtain the desired conclusion.

PROPOSITION 9. Under the notations of [5, (3.1) and (3.2)], the Lapla-
cian of uj;, s an element of the dual of V, i.e. there exists a constant C
such that

(3.21) } S Aujpmudrdy| < Cllv||grg) forallveV.
9]
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Proof of Proposition 9. It is easy to calculate that Au; ., = pj7mrj_(1+>\j’m)

+ hjm, where p; ., is a smooth function and h;,, € L?(£2). Hence the proof
will be finished if we show that 7"]-_(1+Aj’m) eV
REMARK 3. The last statement may look obvious, but it is not quite so.

It is well known that if A; ,,, € (0,1), then r;(H)‘j’m) is in H}(£2)". However,
it is not clear whether it is in the smaller space V*.

We will show that there exists a constant C' such that for some § > 0,

(3.22)

S r;(H/\j’m)v dx dy‘ < Clvllgiey forve VND(2).

QﬂB(Sj,d)

From Proposition 8 and the trace theorem we get the estimate
wj )
—(14+A; m - j,m
S rj( > )vda:dy‘ = S Srj " o(rs, 05) dry do;

QNB(S;,5) 00

wj

< C (092 (0.5 265 < Clivlli (-
0

—(14+Xim) . .
(1423,m) is in V*.

Applying the Hahn—Banach Theorem we conclude that r;

Hence the proof of Proposition 9 is finished.
From the Riesz Theorem and Proposition 9 we get the following corollary.
COROLLARY 5. For each \jp, € [0,1) there exists a unique vjm, € V
such that
(3.23) (Vjm, w)v = (W, Aujm) forweV. =
Assume that A;,, € [0,1) and let v;,, be provided by Corollary 5. Set
(3.24) Tjm = Wjm — Vjm-

We show that o, € M. It is clear that o}, € L?(£2) and Ao jm = 0in the
sense of distributions, hence oj,,, € D(A, L?(£2)). Clearly, u;p, satisfies the
boundary condition (1.1). We need to check that so does v; . By straight-
forward calculations we get Auj,, = Avj,, € LP(£2) for some p € (1,2)
with p < 2/(1+ Aj ). Hence vj,,, € E(A,LP(£2)) and applying the Green
formula ([2, Theorem 1.5.3.11]) to (3.23) we obtain

0
(3.25) — g oy S VEVjm YeWw do = E <’>’k 87Uj’m’%w>
keR I} keNUR K

for w € Vs N D(£2).
From (3.25) and the trace theorem [2, 1.5.2.3] we conclude that v;p,
satisfies the desired boundary conditions. Thus, we have proved that

(3.26) ojm €M for A\j,, €[0,1).
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The family {ojm} \jmef0,1) 18 linearly independent, because for different j’s
the supports of o}, are disjoint, and for the same j the functions o ,,, belong
to different Sobolev spaces W1P(£2). Hence from Corollary 4 we have

(3.27) M =span{o;m; A\jm € [0,1)}.
Thus the proof of Theorem 2 is finished. =
Now we are going to describe the space N of [5, (4.1)].

4. A basis of N. Theorem 4 of [5] and Theorem 2 yield
COROLLARY 6. The annihilator N is described by
(4.1) Ojm € N & S O'j7mA1/Jj drdy=20.n
2

In view of Corollary 6, after integrating by parts and applying (3.23)
and (3.24) we get

(4.2) Tjm €N & | wjmAg; dedy = (1, Aujm).
0
To verify the right hand side of (4.2) we need some more notation. For

h € D(£2) we define
Pejm(h) = \ ujmAhdzdy,  Pjm(h):= lim P.jmn(h).

0. e—0t

REMARK 4. Using Lebesgue’s theorem it can be shown that P, (h) is
well defined for all h € D(£2), because uj, € L(£2).

From the proof of Lemma 2.1.2 of [3] we know that there exists a sequence
{fu}nen € Dg and § > 0 such that

H1 N

(2)

1—-f,——0, 1—/f,=0 outside | |B(5j,5)7
n—00 j=1

fn:fN(rj) on B(Sjvé)'
H'(%2)
Hence, f,1; € Dg and fp1; —— 1p;. Thus (4.2) may be rewritten as
43)  ojm €N & | umAv;dedy = lim | fr); Aujp do dy.
Q Q

The supports of f,,1); Au; n, do not contain the vertex S;, hence we can apply
the Green formula. Thus (4.3) can be reduced to the identity

(4.4) Ojm € N & nlg{.lo Pj,m(<1 — fn)w]) =0.

Now we are able to prove the key result of this section.
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THEOREM 3. Fach function v € N is a linear combination of the func-
tions ojm for Xjm € (0,1), i.e

(4.5) N =span{o;m; A\jm € (0,1)}.

Proof. By Theorem 4 of [5] and (3.27), (4.4) we only need to check that
(4.6) nh_)rrgo Pj (1= fo);) =0 for \j, € (0,1),
(4.7) nh_)n;o Pj (1= fo)j) #0  for Aj,, =0.

First, we deal with the case \j ,,, € (0, 1), and calculate P j ,,(h) for h€ D(£2).
Without loss of generality we may assume that supph C UJ Az, y);
nj =1} C U 1 B(S;,96) for some § > 0. Then after integrating by parts,
twice with respect to r; and twice with respect to 0; we get

P jm(h)

wj 9 1 @i 2
1-A; Y
= —c N\ Qim=—h(e,0;)0; — —— e ™\ @im ——h(e, 0;)do;
§ J ae] VA )\],m § J 89_]2 J J
g w wi
L a9 o0 |9 o 9 |7
R [P Ty . — | R
i [%’ ar; 00;"'|, ~ 96,9 ar, ", |

Ajm
Thus, [5, (4.6)] implies that limy, oo Pjm((1 — fn)¥;) is equal to
é
. . 1 ~Njm |, o 0 ~
0 3} |
— i —(1 = )X N
89j ¥, 87"j( f )X] 0 :| dr]

Ifj—1,7 e NUR and j — 1,5 € N, then ¢;,, satisfies the Neumann
boundary condition, hence (4.8) reduces to
3
. . ~Ajm o 0 ~
lim lim S T |:90j,m a_qa_ej((l = fn)X;j)

n—oo g—0+
€

wj

:| d?“j.

Applying [5, (4.6)], after a straightforward calculation we get
lim hm P.jm((1—= f)y) =0.

n—0o0 g—s
Ifwj:37r/2andj—1€D,] eNURorj—1e€ NUR, je€ D, then
the integrand in (4.8) is equal to corj_/\j’m[(l — fn)7jX; ] on the side where
we have the Robin condition and zero elsewhere. Hence, as previously, the
limit is zero. In the remaining cases we have

j7m 0

I I
Yim—=——%Xi| =0 an 0imX;| =0,
00,7, 6; T
hence (4.8) is also zero. Thus, we have proved (4.6).
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Now, we show (4.7). First, we calculate P: j,(h) for h € D(£2) such
that supp h C Uévzl{(x,y); n; =1} C U;V:1 B(S;,0) for some § > 0. After
integrating by parts we have
(4.9) Pojo(h) = —— uijh( 6,)db; + ——c1 ng 9 hie,0:)do
. ; = e,0;)db; elne \ —h(e,0;)db;
1
+ —wj §rj Inr; %h dr;
If we replace h by (1 — f,)1;, the last two terms in (4.9) converge to zero
asn — oo and € — 0T. Hence

wj

0

Wy

lim Py ((1— fu)¢;) = lim lim L V(1= f)vs(e, 0;) do;

n—oo g—0t+ /Wi

1Y
= lim, N §) ¥j(e, 0;) b # 0,
because there exist constants ¢ > 0 and § > 0 such that 1;(e,6;) > c for all
e € (0,6) and 0; € [0,w;]. Thus we have shown (4.7) and finished the proof

of Theorem 3. =

5. Proofs of the main results

Proof of Theorem 1 of [5]. Let K denote the dimension of N, i.e. K =
Zé\;l n; (see Theorem 3 and the definition of n; in (3.17)). Let Sy for

k = 1,...,K enumerate the elements of the family {njxj_lr;j’mcpjm;
Ajm € (0,1)} (by Theorem 3 the dimension of A equals the number of
eigenvalues A, € (0,1)). It is clear that the family {Sj}X | is linearly in-
dependent. The Laplacian of S, is not orthogonal to N, because from the
definition of A and Proposition 1 of [5] we have

(5.1) if w € E(A, L*(2)) satisfies (1.1), then Aw L N < w € H*(12).

Let I be the projection of ASy onto N. The family {Fj}X | is linearly
independent, because span {Sy; k=1,..., K} N H?(2) = {0}. We denote
by S the variational solution of (1.1) for f = Fj. From the definition of Sy
and (5.1) we have S, € H'(£2)\ H?(02) for k = 1,..., K and the Laplacians
of Sy for k =1,..., K are a basis of V. From Theorem 3 of [5] we know that
each h € L?(2) has a unique decomposition h = h,+hs, where h, € AT?(2)
and hs; € N. Thus, there exist unique u, € T%(£2) and a; € R such that
u, is the solution of (1.1) with f = h, and hs = Zszl apASy. To sum up,
the function u: = u, + 25:1 ar Sy is a variational solution of (1.1), hence we
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have [5, (2.2)]. The estimate [5, (2.3)] is a simple consequence of [5, (3.4)].
Thus, we have finished the proof of Theorem 1 of [5]. =

REMARK 5. The integer K which appears in Theorem 1 of [5] is equal
to Z;V: 1 7j. The numbers n; can be easily calculated from (3.17) because
for m > 1 we have

(T for j— 1,5 € D,
wj
(m— 1) ) )
—_— forj—1,7 e NUR,
(5.2) Ajm = W I
—1/2
m—1/2)x for j—1€D,jeNUR,
Wy
\ and j—1 e NUR, j €D.
Furthermore, the singular part of the solutions in a neighbourhood of the
vertex S; has the form ZmeNj djxj_lr;‘j‘mgojm, where the d; are constants

which depend only on the data.

Now we prove a regularity result for the mixed boundary value pro-
blem (1.1) in the maximal domain of the Laplace operator in L%(£2), i.e. in
D(A, L*(12)).

Proof of Theorem 2 of [5]. Assume that v € D(A, L%(§2)) satisfies (1.1).
We denote by u a variational solution of problem (1.1) with f = Av (see
[5, Proposition 1]). Then u € H(£2) and v—u € M. Set K = Z;V:l(nj +m;)
(the numbers n; and m; were defined in (3.17) and can be computed
from (5.2)). Let Fy for k =1,..., K be the basis {0 m; A\jm € [0,1)} of M
(see (3.27)). Hence v — u = Zszl e Fy, for some numbers ¢y, i.e. [5, (2.4)]
holds. =

REMARK 6. The numbers nj, m; may be computed from (3.17) and
(5.2). Applying the definition of o, (see (3.24)) we can describe the singular
part (i.e. the components which are not in H') of a very weak solution of
(1.1). Hence in a neighbourhood of the vertex S; the singular part of the

solution v € D(A, L*(£2)) of (1.1) has the form ZmGNJ_ djxj_lrj_)‘j’mnpmm,
where d; are some constants. In particular (see Corollary 2), each very weak

solution of problem (1.1) is in W1P(£2), where p € (1,2) satisfies (3.11).

6. The nonhomogeneous boundary conditions. Finally, we shall
consider the mixed boundary value problem (1.1) with nonhomogeneous
boundary conditions. First, we have to describe the space of data on the
boundary. For this we introduce the following notations. Let H; denote the

space H32(I;) for j € D and HY2(I}) for j € NUR, and H := vazl H;.
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We define an operator yr: H?(£2) — H by

ViU for j € D,
ou
¥i = for j € N,
('ypu)j = J 8Vj Bp = ’yp(H2(Q)).
ou .
Vj 8—1@ +ajyu for j € R,

We let @; be o for j € R and zero otherwise. Set M; := {j; j — 1 € D,
j € NURand wj = 7/2,37/2}, My := {j;j—1 € NUR, j € D and
w; = m/2,37/2}. Applying Theorem 1.6.3 of [3] we can characterize the
set Br in the following way (see [5, (3.11)] for the definition of the rela-
tion =g, ):

Br = {(h])évzl € H; hj_l(Sj) = hj(Sj) for j — 1,j S D,

. 0 .
h; =g, sinw F-lhj_l +ajhj_1 for j € My,
i

0
hj-1 =s; @j—1hj — sinw ghj for j € MQ}.
J

It can be easily verified that Br is a Banach space with the norm (see
[5, (3.11)] for the definition of (-, -)n;)

Oh;—
61 1l = {Z (R (LSS
JEM1 - Rs
_ ) Oh; 1/2
+ Z <hj_1,ozj_1hj — slnwj 8—7']>m } .
JjEM1 S
Here § is a positive number such that 6 < min; |I}|.
REMARK 7. The expressions (-,)m, in the norm || - ||p, are essential,

because By is not a closed subspace of H if My U My # (). The topology of
the norm (6.1) is strictly stronger than the subspace topology. However, the
operator yr is continuous with respect to the norm || - || p,..

Thus, the operator vr is linear and continuous from H?(£2) onto the
Banach space (Br,| - ||B;), hence v is an open mapping. We define a
relation o C Br x H?(£2) by

(h,w) € or < there exists u € H*(£2) such that yru="h, (I — Mu=w

where [ is the identity mapping and II denotes a linear and continuous
projection of H?2(§2) onto its closed subspace ker . By a straightforward
calculation it can be shown that or is a linear operator defined on Bp
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with values in H?({2). Furthermore, or is a right inverse of 7r and
or (U) = vr((I — I)~YU)) for each U C H2(). Thus or is continu-
ous. Now we can formulate our result on the regularity of weak solutions of
the mixed boundary value problem (1.1) with nonhomogeneous boundary
conditions.

THEOREM 4. There exist a constant C, an integer K and a family of
functions {Sk}E_| C HY(2)\ H%() such that for each f € L*(£2) and
h € Br there exists a unique u € E(A, L?(£2)) which satisfies

Au = f in §2,
yju = h; on I for j € D,
N O T
ou .
,yja_ljj+aj7ju:hj on I for j € R.

Furthermore, there exists unique u, € H*(§2) and a sequence {ak}le such

that K
u=u, + Z apSk,

k=1
K

lurll sy + 3 lal < OOl + 1lls -
k=1

Proof. Set w = pr(h). Applying Theorem 1 of [5] to problem (1.1) with
f replaced by f — Aw € L?(f2), we get an integer K and a family {Sy; k =
1,...,K} C H'(2)\ H?(£2) such that the solution v € E(A, L?(§2)) has the
form v = v, + Zle apSk. Here v, € H?(£2) and a; are some numbers (see
[5, (2.2)]). Thus u := v + w satisfies (6.2) and belongs to E(A, L%(£2)).
Clearly u, = v, +w € H?(2) and we have a unique expansion u =
Up + Zszl axSk, because the family {Sy}X | C HY(£2)\ H?(£2) is linearly
independent. The uniqueness of u follows from Proposition 1 of [5]. Applying
inequality [5, (2.3)] and the continuity of o we obtain the estimate

urlg2(2) < CllfllL2e) + (C+ DCilh] B,
where C' is the constant from [5, (2.3)] and C} is a Lipschitz constant of or.
Hence the proof of Theorem 4 is finished. =

From Theorems 1 and 2 of [5] and Theorem 4 we can deduce the following
corollary.

COROLLARY 7. There exist a constant C, integers K, K, a family of
harmonic functions {Fi Y | C L?(2)\ HY(2) and a family {Sp}<, C
HY(02)\ H?(2) with the following property. If h € Br and u € D(A, L*(£2))
satisfies (6.2), then there exist unique numbers ag, k = 1,..., K, ¢, k =
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1,...,K, and w € H?(2) such that

K K
u = w—i—ZakSk +ZCka,
k=1 k=1
K
lwll 22y + Y larl < C{llAullz2(0) + 1218, }-
k=1
The integers K, K and the asymptotic behaviour of the functions Sy, F, are
described in Remarks 5 and 6. m

The last result answers the following question: how regular are the func-
tions from the space L?(§2) which satisfy the Poisson equation on a polygonal
domain with regular data on the boundary? Regular data on the boundary
means here that the data is the value of a boundary operator on an H?(2)
function. A similar problem in the case of a smooth domain was examined
in [2, Section 2.5.2]. Our Corollary 7 may be treated as a generalization of
Propositions 2.5.2.3 and 2.5.2.4 of [2] to the mixed boundary value problem
on a polygonal domain.
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