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THE REGULARITY OF WEAK AND VERY
WEAK SOLUTIONS OF THE POISSON EQUATION

ON POLYGONAL DOMAINS WITH MIXED
BOUNDARY CONDITIONS (PART II)

Abstract. We examine the regularity of weak and very weak solutions of
the Poisson equation on polygonal domains with data in L2. We consider
mixed Dirichlet, Neumann and Robin boundary conditions. We also describe
the singular part of weak and very weak solutions.

1. Introduction. In this paper we continue the investigation of the
regularity of weak and very weak solutions of the Poisson equation, which
were started in [5]. Our main goal is to complete the proofs of Theorems 1
and 2 formulated in [5]. Moreover, we examine the regularity of solutions of
the Poisson equation with nonhomogeneous boundary conditions.

Let us recall that we consider the following problem for f ∈ L2(Ω):




∆u = f in Ω,

γju = 0 on Γj for j ∈ D,

γj
∂u

∂νj
= 0 on Γj for j ∈ N,

γj
∂u

∂νj
+ αjγju = 0 on Γj for j ∈ R.

(1.1)

The relevant assumptions were formulated in Section 2 of [5]. We will also
use the notation introduced there.

This paper is organized as follows. Sections 2 and 3 are devoted to the
space M of very weak solutions of the homogeneous problem. In Section 2
we prove some smoothness results for elements of M. In Section 3, we find
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18 A. Kubica

a basis of M. In the next two sections we apply the results of [5] to deduce
Theorems 1 and 2 stated in [5]. In the last section we consider the mixed
boundary value problem with nonhomogeneous boundary conditions. The
most general result of the two papers is Corollary 7.

2. Smoothness of very weak solutions of the homogeneous prob-
lem. In the next section we will find an expansion of v ∈ M. To justify it
we have to establish some smoothness properties of v ∈ M. We will need
the following lemma.

Lemma 1. (a) If v ∈M and U ⊆ R2 is a neighbourhood of the vertices
Sj for j = 1, . . . , N , then v is smooth up to the boundary on Ω \ U , i.e.
v ∈ C∞(Ω \ U).

(b) If ρ(·) := dist(·, {Sj ; j = 1, . . . , N}), then ρ|∇v| ∈ L2(Ω) for all
v ∈ M.

Proof. Every function v ∈ M is smooth in Ω, because it is harmonic
in Ω. To prove (a), it is enough to show that v is smooth up to the boundary
away from the vertices Sj , j = 1, . . . , N . If j ∈ D (resp. j ∈ N), then we
continue v across the Γj by odd (resp. even) reflection to get a function v
which is harmonic and square integrable (see proof of Lemma 2.3.4 in [3]).
Thus v|Ω = v is smooth up to the boundary. The proof of (a) will be finished
if we show that for j ∈ R every v ∈ M can be continued harmonically
across Γj . This will be deduced from the proof of (b). For the latter we
have to introduce the following notation. For δ ≥ 0 such that 2δ+ ωj < 2π,
j = 1, . . . , N , we define D%,δ,j := D+

%,δ,j ∪D−%,δ,j , where

D±%,δ,j :=
{

(rj cos θj , rj sin θj) ∈ R2; rj ∈ (0, %), θj ∈
(−δ±δ

2
, ωj +

δ±δ
2

)}
.

The proof of (b) consists of two steps. First, we prove

Proposition 1. Assume that v ∈ M and there exist numbers %, δ > 0
and a function v such that v ∈ L2(D2%,δ,j) for j = 1, . . . , N and v is a
harmonic continuation of v. Then rj |∇v| ∈ L2(D%,0,j) for j = 1, . . . , N .

Proof of Proposition 1. We fix a vertex Sj , let K be an integer with
K ≥ 16 sin(ωj/2)/sin δ and set δ1 := ωj/K. Define

rn :=
(

1− sin δ
2

)n
%, Rn :=

sin δ
2

rn for n ∈ N,

and consider the balls Bi,n,1,j , Bi,n,2,j for i = 0, . . . ,K, n ∈ N, with center
(rn, iδ1) (in polar coordinates attached to the vertex Sj) and radius Rn
and 2Rn, respectively. It can be easily verified that the family {Bi,n,1,j ;
i = 0, . . . ,K, n ∈ N} coversD%,0,j and its order is less than 5K. Furthermore,
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we have

D%,0,j ⊆
⋃

n∈N

K⋃

i=0

Bi,n,1,j ⊆
⋃

n∈N

K⋃

i=0

Bi,n,2,j ⊆ D2%,δ,j .(2.1)

Applying Theorem 8.2 of [1] we obtain a constant C, independent of i, j, n,
such that

|∇v(x, y)|2 ≤ C

R4
n

�

Bi,n,2,j

|v|2 dx dy for (x, y) ∈ Bi,n,1,j .(2.2)

Hence, we have the following estimate of the L2(D%,0,j) norm of rj |∇v|:
�

D%,0,j

|rj∇v(x, y)|2 dx dy ≤
∑

i=0,...,K
n∈N

�

Bi,n,1,j

|rj |2|∇v(x, y)|2 dx dy.(2.3)

Thus, applying the Hölder inequality and the estimate (2.2), we conclude
that (2.3) is less than or equal to

∑

i=0,...,K
n∈N

4Cπ
(
1 + sin δ

2

)2

sin2 δ

�

Bi,n,2,j

|v|2 dx dy ≤ 20KCπ
(
1 + sin δ

2

)2

sin2 δ
‖v‖2L2(D2%,δ,j)

.

Hence the proof of Proposition 1 is finished.

Now we shall verify the assumptions of Proposition 1, i.e. we will prove
the following:

Proposition 2. If v ∈ M, then there exist %, δ > 0 and a function v
such that v ∈ L2(D%,δ,j) for j = 1, . . . , N and v is a harmonic continuation
of v.

Proof of Proposition 2. We already know that if j ∈ D (resp. j ∈ N),
then the odd (resp. even) continuation of v ∈ M across Γj has the desired
properties. Hence we only have to show that if we have the Robin boundary
condition on Γj , then there exists a harmonic and square integrable con-
tinuation of v across Γj (the idea of harmonic continuation across Γj for
j ∈ R comes from [6]). To see this, assume that v ∈ M, j − 1 ∈ R and
w := − ∂

∂yj
v + αj−1v. The function w is harmonic in Ω and satisfies the ho-

mogeneous Dirichlet boundary condition on Γj−1. Thus the odd reflection of
w across Γj−1 gives a function W which is defined in D−%,δ,j for some positive
numbers %, δ and is a harmonic continuation of w. Next, we will consider
the equation

− ∂

∂yj
h+ αj−1h = W in D−%,δ,j .(2.4)

The solutions of (2.4) are of the form h(xj , yj) = exp(αj−1yj)[c+ f(xj, yj)],
where f(xj , yj) satisfies ∂

∂yj
f(xj, yj) = − exp(−αj−1yj)W (xj, yj). The func-
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tion W is harmonic in D−%,δ,j , hence it is real analytic. Thus we can choose
a real analytic f which satisfies the last equation. Then the function h is
real analytic in D−%,δ,j . Set g := v − h in D%,0,j . Clearly, g is real analytic in
D%,0,j and is the solution of the homogeneous equation (2.4), hence it is of
the form g(xj, yj) = q(xj) exp(αj−1yj), where q(xj) is real analytic in D%,0,j .
Define

G(xj, yj) := q(xj) exp(αj−1yj), v := G+ h in D−%,δ,j .(2.5)

It is clear that G is real analytic in D−%,δ,j , hence so is v. Furthermore, v is
a continuation of v. The Laplacian of v is a real analytic function in D−%,δ,j
and vanishes in D%,0,j , so from the uniqueness principle for real analytic
functions we obtain ∆v = 0 in D−%,δ,j .

The above means that we have defined a function v which is a harmonic
continuation of v ∈ M across Γj for j ∈ R. To sum up, we have defined
a harmonic continuation across Γj in each case of boundary conditions.
Hence v ∈ M is smooth up to the boundary away from the vertices Sj ,
j = 1, . . . , N . Thus the proof of (a) is complete.

To finish the proof of Proposition 2 we only have to show that v is square
integrable in D−%,δ,j . From the definition, in D−%,δ,j the function v is equal to

(2.6) q(xj) exp(αj−1yj)

+ exp(αj−1yj)
[
c+ f(xj, 0)−

yj�

0

exp(−αj−1t)W (xj, t) dt
]
,

for some constant c. Clearly, we have v(xj, 0) = v(xj, 0) for xj ∈ (0, %),
hence from (2.6) after straightforward calculations we obtain the following
equality in D−%,δ,j \D%,0,j:

v(xj, yj) = 2 exp(αj−1yj)v(xj, 0)− v(xj,−yj).(2.7)

This gives an explicit formula for harmonic continuation across Γj for j ∈ R.
Obviously, v ∈ L2(D−%,δ,j) if and only if

%�

0

|v(rj, 0)|2rj drj <∞.(2.8)

Now we shall verify (2.8). Since on Γj−1 the function v satisfies the Robin
boundary condition and the Laplace equation, we get

1
r2
j

∂2

∂θj
2 v = α2

j−1v on Γj−1,

thus
∂2

∂r2
j

v +
1
rj

∂

∂rj
v + α2

j−1v = 0 on Γj−1.(2.9)
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The solutions of (2.9) are of the form p(rj) := AJ0(αj−1rj) + BY0(αj−1rj),
where A,B are some constants and J0, Y0 are Bessel functions, of the first
and second kind, respectively. It can be easily verified that for every % > 0
the integral � %0 |p(rj)|2rj drj is finite, thus v satisfies (2.8). This shows that
v ∈ L2(D−%,δ,j) and finishes the proof of Proposition 2.

Lemma 1 is an immediate consequence of Propositions 1 and 2.

3. A basis ofM. In this section we will find a family of functions which
span the space M. To this end, we introduce the following notation:

χ̃j :=





ψ−1
j for j − 1, j ∈ N ∪R,

exp(−Ajxj) for j − 1 ∈ D, j ∈ R,

exp(−Bjyj) for j − 1 ∈ R, j ∈ D,

1 in the other cases,

χj := ηjχ̃j ,(3.1)

where the functions ψj , ηj and numbers Aj , Bj were defined in [5, (4.2)]. It
is clear that each function χj for j = 1, . . . , N satisfies the boundary con-
ditions of (1.1), where the constant αj in the Robin boundary condition is
replaced by −αj . Hence, if v ∈ M, then for each j = 1, . . . , N the function
wj := χjv satisfies

γkwj = 0 for k ∈ D, γk
∂

∂νk
wj = 0 for k ∈ N ∪R.

Instead of looking for an expansion of v ∈ M, we will find an expansion
of wj and then we will use the following property:

v = χ̃−1
j wj on B(Sj , ε).(3.2)

Remark 1. Before we apply Grisvard’s method (see [3, Proposition
2.3.5]) we have to get rid of the Robin boundary condition, because we
have been unable to solve the equation

∂2

∂r2h+
1
r

∂

∂r
h− λ2(r)

r2 h = f,

where λ = λ(r) satisfies λ tan(λωj) = αjr. In this way we get a function wj
which is not harmonic and what is worse, it may not be square integrable
on Ω. However applying Lemma 1 we get ρ∆wj ∈ L2(Ω).

Similarly to [2], we define for j = 1, . . . , N an unbounded operator Λj in
Hj := L2((0, ωj)) defined on a domain D(Λj) by Λjϕ = −ϕ′′. Here D(Λj) is
the subspace of H2((0, ωj)) given by conditions: ϕ′|θ=0 = 0 for j−1 ∈ N∪R,
ϕ|θ=0 = 0 for j−1 ∈ D, ϕ′|θ=ωj = 0 for j ∈ N∪R and ϕ|θ=ωj = 0 for j ∈ D.
The operator Λj is unbounded, selfadjoint and has a discrete spectrum. We
denote by ϕj,m the normalized eigenfunctions and by λ2

j,m the corresponding
eigenvalues in increasing order. We are looking for an expansion of wj of the
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form

wj(rj, θj) =
∑

m∈N
wj,m(rj)ϕj,m(θj),(3.3)

where wj,m(rj) = � ωj0 wj(rj, θj)ϕj,m(θj) dθj . Thus the function wj,m satisfies
the equation

∂2

∂r2
j

wj,m +
1
rj

∂

∂rj
wj,m −

λ2
j,m

r2
j

wj,m = fj,m,(3.4)

where fj,m = � ωj0 ∆wjϕj,m dθj . The solutions of (3.4) are of the form

(3.5) cj,m,1r
λj,m
j + cj,m,2r

−λj,m
j − 1

2λj,m
r
−λj,m
j

rj�

0

s1+λj,mfj,m(s) ds

− 1
2λj,m

r
λj,m
j

∞�

rj

s1−λj,mfj,m(s) ds

when λj,m 6= 0, and

cj,m,1 + cj,m,2 ln rj +
∞�

rj

s−1
∞�

s

tfj,m(t) dt ds(3.6)

when λj,m = 0, and cj,m,1, cj,m,2 are arbitrary constants. We will find the
basis of M in two steps. First, we choose the coefficients in (3.5) and (3.6)
in such a way that the functions wj,m are of the form (3.5) for λj,m 6= 0
and (3.6) for λj,m = 0 and then we indicate the expressions in the series
(3.3), which are in H1. This allows us to estimate the dimension of M.
Subsequently, we will define a linearly independent family in M.

3.1. Estimate of the dimension of M . First we establish some proper-
ties of the expressions (3.5) and (3.6).

Proposition 3. There exists a constant C such that for all j=1, . . . , N ,
m ∈ N the L2((0,∞)) norms of r1/2

j wj,m and r
3/2
j fj,m are bounded by C.

Proof. In view of Remark 1 we can write
∞�

0

r3
j |fj,m|2 drj ≤

∞�

0

r3
j

ωj�

0

|∆wj |2 dθj drj =
�

Ω

|rj∆wj|2 dx dy <∞.

Applying the Schwarz inequality we get
∞�

0

rj |wj,m|2 drj ≤
∞�

0

|wj |2rj drj dθj ≤ c‖v‖2L2(Ω) <∞.

Remark 2. The expressions in (3.5) and (3.6) are well defined. Indeed,
the supports of fj,m are bounded and applying the Schwarz inequality and
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Proposition 3 we get
∣∣∣
rj�

0

s1+λj,mfj,m(s) ds
∣∣∣ ≤

rj�

0

sλj,m−1/2 · s3/2|fj,m(s)| ds

≤
r
λj,m
j√
2λj,m

‖r3/2
j fj,m‖L2((0,∞)).

Lemma 2. For j = 1, . . . , N and for some % > 0 we have

(a)
∑

λj,m 6=0

1
2λj,m

r
−λj,m
j

rj�

0

s1+λj,mfj,m(s) dsϕj,m(θj) ∈ H1(D%,0,j),

(b)
∑

λj,m 6=0

1
2λj,m

r
λj,m
j

∞�

rj

s1−λj,mfj,m(s) dsϕj,m(θj) ∈ H1(D%,0,j).

Proof. It is clear that we will get (a) once we show that there exists a
constant C such that

∥∥∥r−(λj,m+1/2)+k
j

rj�

0

s1+λj,mfj,m(s) ds
∥∥∥
L2((0,%))

≤ C

λj,m
for k = 0, 1.(3.7)

We will only examine the case of k = 0, because using the Hölder inequality,
the case of k = 1 can be reduced to the former. To show (3.7) we apply the
Hardy inequality ([4, Theorem 330]) to obtain

%�

0

r
−(2λj,m+1)
j

∣∣∣
rj�

0

s1+λj,mfj,m(s) ds
∣∣∣
2
drj

≤ 1
λ2
j,m

∞�

0

r3
j |fj,m|2 drj =

1
λ2
j,m

‖r3/2
j fj,m‖2L2((0,∞)).

Hence from Proposition 3 we get (3.7), proving (a). For (b) we proceed
similarly.

The functions wj,m are solutions of (3.4) for rj > 0, thus for each j =
1, . . . , N there exist unique constants cj,m,1 and cj,m,2 such that wj,m is of
the form (3.5) for λj,m 6= 0 and of the form (3.6) for λj,m = 0. Hence the
constants cj,m,2 defined in this way have the following properties.

Proposition 4. For each j = 1, . . . , N and m ∈ N, if λj,m ≥ 1, then
cj,m,2 = 0.

Proof. As in the proof of Lemma 2 we can show that for j = 1, . . . , N
and m ∈ N the functions

r
−λj,m+1/2
j

rj�

0

s1+λj,mfj,m(s) ds and r
λj,m+1/2
j

∞�

rj

s1−λj,mfj,m(s) ds
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are square integrable on D%,0,j for some % > 0. Hence from Proposition 3 and

expansion of wj,m in the form (3.5) we get cj,m,2r
−λj,m+1/2
j ∈ L2(D%,0,j). But

if λj,m ≥ 1, then r
−λj,m+1/2
j is not square integrable on any neighbourhood

of Sj , and so cj,m,2 = 0.

Proposition 5. If % < 1/2, then for each j = 1, . . . , N we have
∑

m∈N
cj,m,1r

λj,m
j ϕj,m ∈ H1(D%,0,j).

Proof. First we find an estimate for the coefficients cj,m,1. If m ≥ 3 and
% < 1, then applying the expansion of wj,m in the form (3.5), next the
estimate (3.7) and Propositions 3 and 4 we get

‖cj,m,1r1/2+λj,m
j ‖L2((0,%)) ≤ C1 +

C2

λj,m
,(3.8)

where C1 and C2 are some constants independent of j and m. By the defi-
nition of λj,m the right hand side of (3.8) is bounded by C1 + C2 if m ≥ 3.
As the left hand side of (3.8) equals |cj,m,1|%λj,m+1/

√
2(λj,m+1), we get

|cj,m,1| ≤
C3
√
λj,m

%λj,m
for m ≥ 3,(3.9)

where the constant C3 is independent of j and m. This leads to the following
bound on ‖cj,m,1rλj,mj ϕj,m‖2H1(D%/2,0,j)

:

|cj,m,1|2
( %/2�

0

r
2λj,m+1
j drj + (1 + λ2

j,m)
%/2�

0

r
2λj,m−1
j drj

)

= |cj,m,1|2
(
%

2

)2λj,m[ %2

8(λj,m + 1)
+

1 + λ2
j,m

2λj,m

]

≤ C2
3λj,m

(
1
2

)2λj,m[ %2

8(λj,m + 1)
+

1 + λ2
j,m

2λj,m

]
.

Thus the series
∑

λj,m 6=0 cj,m,1r
λj,m
j ϕj,m converges in H1(D%/2,0,j).

Corollary 1. For each j = 1, . . . , N there exists % > 0 such that the
function wj has the following expansion in D%,0,j:

(3.10)
∑

λj,m∈(0,1)

cj,m,2r
−λj,m
j ϕj,m

+
∑

λj,m=0

(
cj,m,2 ln rj +

∞�

rj

s−1
∞�

s

tfj,m(t) dt ds
)
ϕj,m + hj,

where hj ∈ H1(D%,0,j).
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Proof. Using (3.3), then applying the expansion of wj,m in the form (3.5)
and (3.6) we get the assertion from Lemma 2 and Propositions 4, 5.

Unfortunately, the expansion of wj in the form (3.10) does not allow
us to deduce the desired property, because we cannot prove that the func-
tion � ∞rj s−1 � ∞s tfj,m(t) dt ds is in H1. To overcome this difficulty we have to
modify the expansion of wj,m for λj,m = 0. Let p ∈ (1, 2) be such that

p <
2

1 + λj,m
whenever λj,m ∈ (0, 1).(3.11)

Proposition 6. For each j = 1, . . . , N we have wj ∈W 1,p(Ω).

Proof. In view of the definition of wj , Lemma 1 and Corollary 1, it
is enough to show that the function (3.10) is in W 1,p(D%,0,j) for some

% > 0. It can be easily verified that the functions r−λj,mj ϕj,m and ln rjϕj,m
are in W 1,p(D%,0,j). We will prove that � ∞rj s−1 � ∞s tfj,m(t) dt dsϕj,m is in

W 1,p(D%,0,j), that is,

r
1/p
j

∞�

rj

s−1
∞�

s

tfj,m(t) dt ds, r1/p−1
j

∞�

rj

tfj,m(t) dt ∈ Lp((0, %)).(3.12)

To justify (3.12), we shall check that tfj,m ∈ Lp,1/p(R+). The function fj,m
vanishes outside B(Sj , δ) for some δ > 0, hence after applying the Hölder
inequality with exponents 2/p and 2/(2− p) we get

∞�

0

|tfj,m(t) · t1/p|p dt =
δ�

0

t1−p/2 · |t3/2fj,m(t)|p dt

≤ δ2−p‖t3/2fj,m‖pL2((0,∞)) <∞.

Applying twice the Hardy inequality ([4, Theorem 330]), and then the Hölder
inequality, we obtain
∞�

0

rj

[∞�

rj

s−1
∞�

s

tfj,m(t) dt ds
]p
drj ≤

(
p

2

)p∞�

0

rj

[∞�

rj

tfj,m(t) dt
]p
drj

≤
(
p

2

)2p∞�

0

r2p+1
j |fj,m(rj)|p drj =

(
p

2

)2p δ�

0

tp|t1+1/pfj,m(t)|p dt

≤
(
p

2

)2p

δp‖tfj,m‖Lp,1/p(R+) <∞.

Using again the Hardy inequality we get
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∞�

0

r1−p
j

[∞�

rj

tfj,m(t) dt
]p
drj ≤

(
2

2− p

)p∞�

0

t1+p|fj,m(t)|p dt

=
(

2
2− p

)p
‖tfj,m‖Lp,1/p(R+) <∞.

Hence we have (3.12), and the proof is finished.

Corollary 2. If p ∈ (1, 2) satisfies (3.11), then M⊆W 1,p(Ω).

Proof. From Lemma 1 we have the smoothness of v ∈ M away from
the vertices Sj , j = 1, . . . , N . Proposition 6 and (3.2) give us the desired
smoothness in a neighbourhood of the vertices Sj , j = 1, . . . , N .

Now we are able to define another solution of (3.4) for λj,m = 0.

Proposition 7. The function � rj0 s−1 � s0 tfj,m(t) dt ds is in H1(D%,0,j)
for some % > 0 and satisfies (3.4) for λj,m = 0.

Proof. It is clear that � rj0 s−1 � s0 tfj,m(t) dt ds satisfies (3.4). We will show
that

r
1/2
j

rj�

0

s−1
s�

0

tfj,m(t) dt ds, r−1/2
j

rj�

0

tfj,m(t) dt ∈ L2((0, %)),(3.13)

for some % > 0. First we prove that t1/pfj,m ∈ Lp((0,∞)). From Corollary 2
and the definition of wj we have ∆wj ∈ Lp(Ω), hence

∞�

0

|t1/pfj,m(t)|p dt ≤
∞�

0

ωj�

0

|∆wjϕj,m|pt dt dθj ≤ C‖∆wj‖pLp(Ω) <∞.

Applying the Hölder inequality with exponents p and p∗, where 1/p+ 1/p∗

= 1, we get
∣∣∣
s�

0

tfj,m(t) dt
∣∣∣ ≤ 1

2
s2/p∗‖t1/pfj,m‖Lp((0,∞)).(3.14)

Thus we have
%�

0

rj

[ rj�

0

s−1
s�

0

tfj,m(t) dt ds
]2
drj ≤

1
4
‖t1/pfj,m‖2Lp((0,∞))

%�

0

rj

[rj�

0

s2/p∗−1 ds
]2
drj

=
p3‖t1/pfj,m‖2Lp((0,∞))

64(p− 1)2(3p− 2)
%6−4/p <∞.

As above, using the estimate (3.14) we get
%�

0

r−1
j

[ rj�

0

tfj,m(t) dt
]2
drj ≤

%4p/(p−1)

16(p− 1)
‖t1/pfj,m‖2Lp((0,∞)) <∞.

Hence we have shown (3.13), and the proof is finished.
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In view of Proposition 7 we can find unique constants c̃j,m,1 and c̃j,m,2
such that if λj,m = 0 then

wj,m = c̃j,m,1 + c̃j,m,2 ln rj +
rj�

0

s−1
s�

0

tfj,m(t) dt ds.(3.15)

Now we are in a position to describe the singular part of wj :

Corollary 3. For each j = 1, . . . , N there exists % > 0 such that in
D%,0,j ,

wj =
∑

λj,m∈(0,1)

cj,m,2r
−λj,m
j ϕj,m +

∑

λj,m=0

c̃j,m,2 ln rjϕj,m + hj ,(3.16)

where hj ∈ H1(D%,0,j).

Proof. This is an immediate consequence of Corollary 1, Proposition 7
and (3.15).

Let us introduce the following notation: for j = 1, . . . , N we write

Nj := {m; λj,m ∈ (0, 1)}, Mj := {m; λj,m = 0},
nj := |Nj |, mj := |Mj |.

(3.17)

We define an operator P by

P: M→
N∏

j=1

Rnj×Rmj , P(v) = ((cj,m,2)m∈Nj , (c̃j,m,2)m∈Mj )
N
j=1,(3.18)

where cj,m,2 and c̃j,m,2 are the unique coefficients from the expansion of wj
of the form (3.16). It is clear that P is well defined and is a linear operator.

Theorem 1. The operator P is an injection.

Proof. Suppose that P(v) = 0. Then the coefficients cj,m,2 and c̃j,m,2
in (3.16) vanish. Hence wj ∈ H1(D%,0,j) for each j = 1, . . . , N and some
% > 0, and from (3.2) we obtain v ∈ H1(U), where U is some neighbourhood
of the vertices Sj , j = 1, . . . , N . From Lemma 1 we conclude that v ∈ H1(Ω),
i.e. v ∈ E(∆,L2(Ω)). Applying Lemmas 1.5.4 and 2.1.2 of [3] we infer that
v is a variational solution of the homogeneous problem (1.1), i.e. v satisfies
the equality (3.3) of [5] with right hand side zero. Thus, from Proposition 1
of [5] we conclude that v = 0.

Finally, from the definition of nj , mj and Theorem 1 we get the following
estimate on the dimension on M.

Corollary 4. The dimension of M does not exceed
∑N

j=1(mj + nj).

Now we will find a basis of M.
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3.2. A linearly independent family. We are going to prove the following
theorem.

Theorem 2. The dimension ofM is equal to the number of eigenvalues
lying in [0, 1), i.e.

dimM = |{λj,m; λj,m ∈ [0, 1)}|.(3.19)

Proof. In view of Corollary 4 it is enough to find a linearly independent
family {σj,m}λj,m∈[0,1) in M. Define

uj,m :=

{
ηjχ̃
−1
j r
−λj,m
j ϕj,m if λj,m ∈ (0, 1),

ηjχ̃
−1
j ln rjϕj,m if λj,m = 0.

(3.20)

The functions χ̃j were defined in (3.1). We will prove the following proposi-
tion.

Proposition 8. For any δ > 0 and λj,m ∈ [0, 1) there exists a constant
C > 0 such that

∣∣∣
δ�

0

r
−λj,m
j ϕdrj

∣∣∣ ≤ C‖ϕ‖H1/2((0,δ)) for ϕ ∈ H1/2((0, δ)).

Proof of Proposition 8. Let s0 ∈ (1/2, 1) satisfy 3/2− λj,m > s0. Then
by Theorem 1.2.18 of [3] we conclude that r1−λj,m

j ∈ Hs0+1/2(Ω ∩ B(0, δ)).
Hence there exists a constant C1 such that

‖r1−λj,m
j ‖Hs0 ((0,δ)) ≤ C1‖r1−λj,m

j ‖Hs0+1/2(Ω∩B(0,δ)).

From the continuity of the differentiation operator ([2, Theorem 1.4.4.6]) we
get a constant C2 such that

‖r−λj,mj ‖Hs0−1((0,δ)) ≤ C2‖r1−λj,m
j ‖Hs0 ((0,δ)).

We have Hs0−1((0, δ)) = H1−s0
0 ((0, δ))∗ = H1−s0((0, δ))∗, because 1 − s0 ∈

(0, 1/2). Hence

∣∣∣
δ�

0

r
−λj,m
j ϕdrj

∣∣∣ ≤ ‖r−λj,mj ‖Hs0−1((0,δ)) · ‖ϕ‖H1−s0((0,δ)).

Combining the above inequalities and applying the continuity of the imbed-
ding H1/2((0, δ)) ↪→ H1−s0((0, δ)) we obtain the desired conclusion.

Proposition 9. Under the notations of [5, (3.1) and (3.2)], the Lapla-
cian of uj,m is an element of the dual of V , i.e. there exists a constant C
such that ∣∣∣

�

Ω

∆uj,mv dx dy
∣∣∣ ≤ C‖v‖H1(Ω) for all v ∈ V.(3.21)
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Proof of Proposition 9. It is easy to calculate that∆uj,m = pj,mr
−(1+λj,m)
j

+ hj,m, where pj,m is a smooth function and hj,m ∈ L2(Ω). Hence the proof

will be finished if we show that r−(1+λj,m)
j ∈ V ∗.

Remark 3. The last statement may look obvious, but it is not quite so.
It is well known that if λj,m ∈ (0, 1), then r−(1+λj,m)

j is in H1
0 (Ω)∗. However,

it is not clear whether it is in the smaller space V ∗.

We will show that there exists a constant C such that for some δ > 0,∣∣∣
�

Ω∩B(Sj ,δ)

r
−(1+λj,m)
j v dx dy

∣∣∣ ≤ C‖v‖H1(Ω) for v ∈ V ∩ D(Ω).(3.22)

From Proposition 8 and the trace theorem we get the estimate
∣∣∣

�

Ω∩B(Sj ,δ)

r
−(1+λj,m)
j v dx dy

∣∣∣ =
∣∣∣
ωj�

0

δ�

0

r
−λj,m
j v(rj, θj) drj dθj

∣∣∣

≤ C
ωj�

0

‖v(·, θj)‖H1/2((0,δ)) dθj ≤ C‖v‖H1(Ω).

Applying the Hahn–Banach Theorem we conclude that r−(1+λj,m)
j is in V ∗.

Hence the proof of Proposition 9 is finished.

From the Riesz Theorem and Proposition 9 we get the following corollary.

Corollary 5. For each λj,m ∈ [0, 1) there exists a unique vj,m ∈ V
such that

(vj,m, w)V = 〈w,∆uj,m〉 for w ∈ V.(3.23)

Assume that λj,m ∈ [0, 1) and let vj,m be provided by Corollary 5. Set

σj,m := uj,m − vj,m.(3.24)

We show that σj,m ∈ M. It is clear that σj,m ∈ L2(Ω) and ∆σj,m = 0 in the
sense of distributions, hence σj,m ∈ D(∆,L2(Ω)). Clearly, uj,m satisfies the
boundary condition (1.1). We need to check that so does vj,m. By straight-
forward calculations we get ∆uj,m = ∆vj,m ∈ Lp(Ω) for some p ∈ (1, 2)
with p < 2/(1 + λj,m). Hence vj,m ∈ E(∆,Lp(Ω)) and applying the Green
formula ([2, Theorem 1.5.3.11]) to (3.23) we obtain

(3.25) −
∑

k∈R
αk

�

Γk

γkvj,mγkw dσ =
∑

k∈N∪R

〈
γk

∂

∂νk
vj,m, γkw

〉

for w ∈ Vs ∩ D(Ω).

From (3.25) and the trace theorem [2, 1.5.2.3] we conclude that vj,m
satisfies the desired boundary conditions. Thus, we have proved that

σj,m ∈ M for λj,m ∈ [0, 1).(3.26)



30 A. Kubica

The family {σj,m}λj,m∈[0,1) is linearly independent, because for different j’s
the supports of σj,m are disjoint, and for the same j the functions σj,m belong
to different Sobolev spaces W 1,p(Ω). Hence from Corollary 4 we have

M = span {σj,m; λj,m ∈ [0, 1)}.(3.27)

Thus the proof of Theorem 2 is finished.

Now we are going to describe the space N of [5, (4.1)].

4. A basis of N . Theorem 4 of [5] and Theorem 2 yield

Corollary 6. The annihilator N is described by

σj,m ∈ N ⇔
�

Ω

σj,m∆ψj dx dy = 0.(4.1)

In view of Corollary 6, after integrating by parts and applying (3.23)
and (3.24) we get

σj,m ∈ N ⇔
�

Ω

uj,m∆ψj dx dy = 〈ψj ,∆uj,m〉.(4.2)

To verify the right hand side of (4.2) we need some more notation. For
h ∈ D(Ω) we define

Pε,j,m(h) :=
�

Ωε

uj,m∆hdxdy, Pj,m(h) := lim
ε→0+

Pε,j,m(h).

Remark 4. Using Lebesgue’s theorem it can be shown that Pj,m(h) is
well defined for all h ∈ D(Ω), because uj,m ∈ L1(Ω).

From the proof of Lemma 2.1.2 of [3] we know that there exists a sequence
{fn}n∈N ⊆ DS and δ > 0 such that

1− fn
H1(Ω)
−−−→
n→∞

0, 1− fn = 0 outside
N⋃

j=1

B(Sj , δ),

fn = fn(rj) on B(Sj , δ).

Hence, fnψj ∈ DS and fnψj
H1(Ω)
−−−→
n→∞

ψj . Thus (4.2) may be rewritten as

σj,m ∈ N ⇔
�

Ω

uj,m∆ψj dx dy = lim
n→∞

�

Ω

fnψj∆uj,m dx dy.(4.3)

The supports of fnψj∆uj,m do not contain the vertex Sj , hence we can apply
the Green formula. Thus (4.3) can be reduced to the identity

σj,m ∈ N ⇔ lim
n→∞

Pj,m((1− fn)ψj) = 0.(4.4)

Now we are able to prove the key result of this section.
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Theorem 3. Each function v ∈ N is a linear combination of the func-
tions σj,m for λj,m ∈ (0, 1), i.e.

N = span {σj,m; λj,m ∈ (0, 1)}.(4.5)

Proof. By Theorem 4 of [5] and (3.27), (4.4) we only need to check that

lim
n→∞

Pj,m((1− fn)ψj) = 0 for λj,m ∈ (0, 1),(4.6)

lim
n→∞

Pj,m((1− fn)ψj) 6= 0 for λj,m = 0.(4.7)

First, we deal with the case λj,m∈(0, 1), and calculate Pε,j,m(h) for h∈D(Ω).
Without loss of generality we may assume that supph ⊆ ⋃N

j=1{(x, y);
ηj = 1} ⊆ ⋃N

j=1B(Sj , δ) for some δ > 0. Then after integrating by parts,
twice with respect to rj and twice with respect to θj we get

Pε,j,m(h)

= − ε1−λj,m
ωj�

0

ϕj,m
∂

∂θj
h(ε, θj)θj −

1
λj,m

ε−λj,m
ωj�

0

ϕj,m
∂2

∂θj
2h(ε, θj) dθj

+
δ�

ε

1
λj,m

r
−λj,m
j

[
ϕj,m

∂

∂rj

∂

∂θj
h

∣∣∣∣
ωj

0
− ∂

∂θj
ϕj,m

∂

∂rj
h

∣∣∣∣
ωj

0

]
drj .

Thus, [5, (4.6)] implies that limn→∞ Pj,m((1− fn)ψj) is equal to

(4.8) lim
n→∞

lim
ε→0+

δ�

ε

1
λj,m

r
−λj,m
j

[
ϕj,m

∂

∂rj

∂

∂θj
((1− fn)χ̃j)

− ∂

∂θj
ϕj,m

∂

∂rj
(1− fn)χ̃j

∣∣∣∣
ωj

0

]
drj .

If j − 1, j ∈ N ∪ R and j − 1, j 6∈ N, then ϕj,m satisfies the Neumann
boundary condition, hence (4.8) reduces to

lim
n→∞

lim
ε→0+

δ�

ε

1
λj,m

r
−λj,m
j

[
ϕj,m

∂

∂rj

∂

∂θj
((1− fn)χ̃j)

∣∣∣∣
ωj

0

]
drj .

Applying [5, (4.6)], after a straightforward calculation we get

lim
n→∞

lim
ε→0+

Pε,j,m((1− f)ψj) = 0.

If ωj = 3π/2 and j − 1 ∈ D, j ∈ N ∪ R or j − 1 ∈ N ∪ R, j ∈ D, then
the integrand in (4.8) is equal to c0r

−λj,m
j [(1 − fn)rjχ̃j ] on the side where

we have the Robin condition and zero elsewhere. Hence, as previously, the
limit is zero. In the remaining cases we have

ϕj,m
∂

∂θj
χ̃j

∣∣∣∣
ωj

0
= 0 and

∂

∂θj
ϕj,mχ̃j

∣∣∣∣
ωj

0
= 0,

hence (4.8) is also zero. Thus, we have proved (4.6).
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Now, we show (4.7). First, we calculate Pε,j,m(h) for h ∈ D(Ω) such
that supph ⊆ ⋃N

j=1{(x, y); ηj = 1} ⊆ ⋃N
j=1B(Sj , δ) for some δ > 0. After

integrating by parts we have

Pε,j,m(h) =
1
√
ωj

ωj�

0

h(ε, θj) dθj +
1
√
ωj

ε ln ε
ωj�

0

∂

∂rj
h(ε, θj) dθj(4.9)

+
1
√
ωj

δ�

ε

r−1
j ln rj

∂

∂θj
h drj

∣∣∣∣
ωj

0
.

If we replace h by (1 − fn)ψj , the last two terms in (4.9) converge to zero
as n→∞ and ε→ 0+. Hence

lim
n→∞

Pj,m((1− fn)ψj) = lim
n→∞

lim
ε→0+

1
√
ωj

ωj�

0

(1− fn)ψj(ε, θj) dθj

= lim
ε→0+

1
√
ωj

ωj�

0

ψj(ε, θj) dθj 6= 0,

because there exist constants c > 0 and δ > 0 such that ψj(ε, θj) ≥ c for all
ε ∈ (0, δ) and θj ∈ [0, ωj]. Thus we have shown (4.7) and finished the proof
of Theorem 3.

5. Proofs of the main results

Proof of Theorem 1 of [5]. Let K denote the dimension of N , i.e. K =∑N
j=1 nj (see Theorem 3 and the definition of nj in (3.17)). Let Sk for

k = 1, . . . ,K enumerate the elements of the family {ηjχ−1
j r

λj,m
j ϕj,m;

λj,m ∈ (0, 1)} (by Theorem 3 the dimension of N equals the number of
eigenvalues λj,m ∈ (0, 1)). It is clear that the family {Sk}Kk=1 is linearly in-
dependent. The Laplacian of Sk is not orthogonal to N , because from the
definition of N and Proposition 1 of [5] we have

if w ∈ E(∆,L2(Ω)) satisfies (1.1), then ∆w ⊥ N ⇔ w ∈ H2(Ω).(5.1)

Let Fk be the projection of ∆Sk onto N . The family {Fk}Kk=1 is linearly
independent, because span {Sk; k = 1, . . . ,K} ∩ H2(Ω) = {0}. We denote
by Sk the variational solution of (1.1) for f = Fk. From the definition of Sk
and (5.1) we have Sk ∈ H1(Ω) \H2(Ω) for k = 1, . . . ,K and the Laplacians
of Sk for k = 1, . . . ,K are a basis of N . From Theorem 3 of [5] we know that
each h ∈ L2(Ω) has a unique decomposition h = hr+hs, where hr ∈ ∆T 2(Ω)
and hs ∈ N . Thus, there exist unique ur ∈ T 2(Ω) and ak ∈ R such that
ur is the solution of (1.1) with f = hr and hs =

∑K
k=1 ak∆Sk. To sum up,

the function u: = ur +
∑K

k=1 akSk is a variational solution of (1.1), hence we
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have [5, (2.2)]. The estimate [5, (2.3)] is a simple consequence of [5, (3.4)].
Thus, we have finished the proof of Theorem 1 of [5].

Remark 5. The integer K which appears in Theorem 1 of [5] is equal
to
∑N

j=1 nj . The numbers nj can be easily calculated from (3.17) because
for m ≥ 1 we have

λj,m =





mπ

ωj
for j − 1, j ∈ D,

(m− 1)π
ωj

for j − 1, j ∈ N ∪R,

(m− 1/2)π
ωj

for j − 1 ∈ D, j ∈ N ∪R,

and j − 1 ∈ N ∪R, j ∈ D.

(5.2)

Furthermore, the singular part of the solutions in a neighbourhood of the
vertex Sj has the form

∑
m∈Nj djχ

−1
j r

λj,m
j ϕj,m, where the dj are constants

which depend only on the data.

Now we prove a regularity result for the mixed boundary value pro-
blem (1.1) in the maximal domain of the Laplace operator in L2(Ω), i.e. in
D(∆,L2(Ω)).

Proof of Theorem 2 of [5]. Assume that v ∈ D(∆,L2(Ω)) satisfies (1.1).
We denote by u a variational solution of problem (1.1) with f = ∆v (see
[5, Proposition 1]). Then u ∈ H1(Ω) and v−u∈M. Set K =

∑N
j=1(nj +mj)

(the numbers nj and mj were defined in (3.17) and can be computed
from (5.2)). Let Fk for k = 1, . . . ,K be the basis {σj,m; λj,m ∈ [0, 1)} of M
(see (3.27)). Hence v − u =

∑K
k=1 ckFk for some numbers ck, i.e. [5, (2.4)]

holds.

Remark 6. The numbers nj , mj may be computed from (3.17) and
(5.2). Applying the definition of σj,m (see (3.24)) we can describe the singular
part (i.e. the components which are not in H1) of a very weak solution of
(1.1). Hence in a neighbourhood of the vertex Sj the singular part of the
solution v ∈ D(∆,L2(Ω)) of (1.1) has the form

∑
m∈Nj djχ

−1
j r
−λj,m
j ϕj,m,

where dj are some constants. In particular (see Corollary 2), each very weak
solution of problem (1.1) is in W 1,p(Ω), where p ∈ (1, 2) satisfies (3.11).

6. The nonhomogeneous boundary conditions. Finally, we shall
consider the mixed boundary value problem (1.1) with nonhomogeneous
boundary conditions. First, we have to describe the space of data on the
boundary. For this we introduce the following notations. Let Hj denote the
space H3/2(Γj) for j ∈ D and H1/2(Γj) for j ∈ N ∪R, and H :=

∏N
j=1Hj .
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We define an operator γΓ : H2(Ω)→ H by

(γΓu)j :=





γju for j ∈ D,

γj
∂u

∂νj
for j ∈ N,

γj
∂u

∂νj
+ αjγju for j ∈ R,

BΓ := γΓ (H2(Ω)).

We let αj be αj for j ∈ R and zero otherwise. Set M1 := {j; j − 1 ∈ D,
j ∈ N ∪ R and ωj = π/2, 3π/2}, M2 := {j; j − 1 ∈ N ∪ R, j ∈ D and
ωj = π/2, 3π/2}. Applying Theorem 1.6.3 of [3] we can characterize the
set BΓ in the following way (see [5, (3.11)] for the definition of the rela-
tion ≡Sj ):

BΓ =
{

(hj)Nj=1 ∈ H; hj−1(Sj) = hj(Sj) for j − 1, j ∈ D,

hj ≡Sj sinωj
∂

∂τj−1
hj−1 + αjhj−1 for j ∈M1,

hj−1 ≡Sj αj−1hj − sinωj
∂

∂τj
hj for j ∈M2

}
.

It can be easily verified that BΓ is a Banach space with the norm (see
[5, (3.11)] for the definition of (·, ·)Rδ

)

(6.1) ‖ · ‖BΓ =
{ N∑

j=1

‖hj‖2Hj +
∑

j∈M1

(
hj , sinωj

∂hj−1

∂τj−1
+ αjhj−1

)

Rδ

+
∑

j∈M1

(
hj−1, αj−1hj − sinωj

∂hj
∂τj

)

Rδ

}1/2

.

Here δ is a positive number such that δ < minj |Γj|.
Remark 7. The expressions (·, ·)Rδ

in the norm ‖ · ‖BΓ are essential,
because BΓ is not a closed subspace of H if M1 ∪M2 6= ∅. The topology of
the norm (6.1) is strictly stronger than the subspace topology. However, the
operator γΓ is continuous with respect to the norm ‖ · ‖BΓ .

Thus, the operator γΓ is linear and continuous from H2(Ω) onto the
Banach space (BΓ , ‖ · ‖BΓ ), hence γΓ is an open mapping. We define a
relation %Γ ⊆ BΓ ×H2(Ω) by

(h,w) ∈ %Γ ⇔ there exists u∈H2(Ω) such that γΓu= h, (I −Π)u=w,

where I is the identity mapping and Π denotes a linear and continuous
projection of H2(Ω) onto its closed subspace ker γΓ . By a straightforward
calculation it can be shown that %Γ is a linear operator defined on BΓ
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with values in H2(Ω). Furthermore, %Γ is a right inverse of γΓ and
%−1
Γ (U) = γΓ ((I − Π)−1(U)) for each U ⊆ H2(Ω). Thus %Γ is continu-

ous. Now we can formulate our result on the regularity of weak solutions of
the mixed boundary value problem (1.1) with nonhomogeneous boundary
conditions.

Theorem 4. There exist a constant C, an integer K and a family of
functions {Sk}Kk=1 ⊆ H1(Ω) \ H2(Ω) such that for each f ∈ L2(Ω) and
h ∈ BΓ there exists a unique u ∈ E(∆,L2(Ω)) which satisfies





∆u = f in Ω,

γju = hj on Γj for j ∈ D,

γj
∂u

∂νj
= hj on Γj for j ∈ N,

γj
∂u

∂νj
+ αjγju = hj on Γj for j ∈ R.

(6.2)

Furthermore, there exists unique ur ∈ H2(Ω) and a sequence {ak}Kk=1 such
that

u = ur +
K∑

k=1

akSk,

‖ur‖H2(Ω) +
K∑

k=1

|ak| ≤ C{‖f‖L2(Ω) + ‖h‖BΓ }.

Proof. Set w = %Γ (h). Applying Theorem 1 of [5] to problem (1.1) with
f replaced by f −∆w ∈ L2(Ω), we get an integer K and a family {Sk; k =
1, . . . ,K} ⊆ H1(Ω)\H2(Ω) such that the solution v ∈E(∆,L2(Ω)) has the
form v = vr +

∑K
k=1 akSk. Here vr ∈ H2(Ω) and ak are some numbers (see

[5, (2.2)]). Thus u := v + w satisfies (6.2) and belongs to E(∆,L2(Ω)).
Clearly ur := vr + w ∈ H2(Ω) and we have a unique expansion u =
ur +

∑K
k=1 akSk, because the family {Sk}Kk=1 ⊆ H1(Ω) \H2(Ω) is linearly

independent. The uniqueness of u follows from Proposition 1 of [5]. Applying
inequality [5, (2.3)] and the continuity of %Γ we obtain the estimate

‖ur‖H2(Ω) ≤ C‖f‖L2(Ω) + (C + 1)C1‖h‖BΓ ,
where C is the constant from [5, (2.3)] and C1 is a Lipschitz constant of %Γ .
Hence the proof of Theorem 4 is finished.

From Theorems 1 and 2 of [5] and Theorem 4 we can deduce the following
corollary.

Corollary 7. There exist a constant C, integers K, K, a family of
harmonic functions {Fk}Kk=1 ⊆ L2(Ω) \ H1(Ω) and a family {Sk}Kk=1 ⊆
H1(Ω)\H2(Ω) with the following property. If h ∈ BΓ and u ∈ D(∆,L2(Ω))
satisfies (6.2), then there exist unique numbers ak, k = 1, . . . ,K, ck, k =
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1, . . . ,K, and w ∈ H2(Ω) such that

u = w +
K∑

k=1

akSk +
K∑

k=1

ckFk,

‖w‖H2(Ω) +
K∑

k=1

|ak| ≤ C{‖∆u‖L2(Ω) + ‖h‖BΓ }.

The integers K, K and the asymptotic behaviour of the functions Sk, Fk are
described in Remarks 5 and 6.

The last result answers the following question: how regular are the func-
tions from the space L2(Ω) which satisfy the Poisson equation on a polygonal
domain with regular data on the boundary? Regular data on the boundary
means here that the data is the value of a boundary operator on an H2(Ω)
function. A similar problem in the case of a smooth domain was examined
in [2, Section 2.5.2]. Our Corollary 7 may be treated as a generalization of
Propositions 2.5.2.3 and 2.5.2.4 of [2] to the mixed boundary value problem
on a polygonal domain.
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