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A CONVERGENCE ANALYSIS OF NEWTON-LIKE
METHODS FOR SINGULAR EQUATIONS USING

OUTER OR GENERALIZED INVERSES

Abstract. The Newton–Kantorovich approach and the majorant prin-
ciple are used to provide new local and semilocal convergence results for
Newton-like methods using outer or generalized inverses in a Banach space
setting. Using the same conditions as before, we provide more precise in-
formation on the location of the solution and on the error bounds on the
distances involved. Moreover since our Newton–Kantorovich-type hypothe-
sis is weaker than before, we can cover cases where the original Newton–
Kantorovich hypothesis is violated.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation

LF (x) = 0,(1)

where F is a Fréchet-differentiable operator defined on an open convex sub-
set D of a Banach space X with values in Banach space Y and L ∈ L(X,Y ),
the space of bounded linear operators from X into Y .

A large number of problems in applied mathematics and also in en-
gineering are solved by finding solutions of certain equations. For exam-
ple, dynamic systems are mathematically modeled by difference or differ-
ential equations, and their solutions usually represent the states of the sys-
tems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation ẋ = Q(x) (for some suitable operator Q), where x
is the state. Then the equilibrium states are determined by solving equa-
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tion (1). Similar equations are used in the case of discrete systems. The
unknowns of engineering equations can be functions (difference, differen-
tial, and integral equations), vectors (systems of linear or nonlinear alge-
braic equations), or real or complex numbers (single algebraic equations
with single unknowns). Except in special cases, the most commonly used
solution methods are iterative—when starting from one or several initial
approximations a sequence is constructed that converges to a solution of
the equation. Iteration methods are also applied for solving optimization
problems. In such cases, the iteration sequences converge to an optimal
solution of the problem at hand. Since all of these methods have the same
recursive structure, they can be introduced and discussed in a general frame-
work.

We consider Newton-like methods

xn+1 = xn − A(xn)#F (xn) (n ≥ 0, x0 ∈ D)(2)

to generate a sequence approximating x∗. Here, F ′(xn) denotes the Fréchet-
derivative operator F ′ evaluated at x = xn, A(xn) ∈ L(X,Y ) is an ap-
proximation of F ′(xn) and A(xn)# denotes an outer inverse of A(xn), i.e.,
A(xn)#A(xn)A(xn)# = A(xn)# (n ≥ 0).

Under some assumptions, Rheinboldt [16] established a convergence the-
orem for (2) when A(xn)# = A(xn)−1 (n ≥ 0) which includes the Newton–
Kantorovich theorem for the Newton method (A(xn) = F ′(xn)) as a spe-
cial case. A further generalization was given by Dennis [8]. Yamamoto [19]
and others [2]–[5], [7] improved on the error bounds obtained. In the con-
text of outer and generalized inverses, Ben-Israel [6], Deuflhard and Heindl
[9], Häubler [12], Yamamoto [20], Nashed and Chen [14] and Argyros [2],
[4] have provided Newton–Kantorovich type theorems under various condi-
tions.

Here motivated by the elegant work of Nashed and Chen [14], in par-
ticular, we introduce a new semilocal analysis for method (2). It turns out
that under the same conditions our Newton–Kantorovich type hypothesis
is weaker, and the error bounds on the distances involved as well as the
location of the solution are more precise.

Finally, we provide a local analysis for method (2) which compares fa-
vorably with earlier ones. In particular in the case of Newton’s method we
obtain a larger convergence radius. This observation is important in numer-
ical mathematics, since the method finds applications in projection methods
and in the construction of efficient mesh independence refinement strategies
[1], [5], [21].

2. Semilocal analysis of Newton-like methods. We need the fol-
lowing result on the convergence of majorizing sequences.
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Theorem 1. Assume there exist nonnegative parameters K,M,L, `, µ,
η, δ ∈ [0, 1] such that :

L ≤ K,(3)

`+ 2µ < 1,(4)

and

hδ ≡
(
K + Lδ +

4M
2− δ

)
η + δ`+ 2µ ≤ δ.(5)

Then the iteration {tn} (n ≥ 0) given by

t0 = 0, t1 = η,

tn+2 = tn+1 +
K(tn+1 − tn) + 2(Mtn + µ)

2(1− `− Ltn+1)
(tn+1 − tn) (n ≥ 0)

(6)

is nondecreasing , bounded above by t∗∗ and converges to some t∗ such that

0 ≤ t∗ ≤ 2η
2− δ ≡ t

∗∗.(7)

Moreover , the following error bounds hold for all n ≥ 0:

tn+2 − tn+1 ≤
δ

2
(tn+1 − tn) ≤

(
δ

2

)n+1

η.(8)

Proof. The result clearly holds if η = 0 or K = 0 or δ = 0. So assume
K 6= 0, η 6= 0 and δ 6= 0. We must show that

K(ti+1−ti)+2(Mti+µ)+δ`+δLti+1 ≤ δ, 1−`−Lti+1 > 0 (i ≥ 0).(9)

Estimate (8) then follows immediately from (6) and (9). For i = 0, (8) and
(9) hold by (3)–(6). We also get

0 ≤ t2 − t1 ≤
δ

2
(t1 − t0).

Assume (8) and (9) hold for all i ≤ n+ 1. We have

(10) K(ti+2 − ti+1) + 2(Mti+1 + µ) + δ`+ δLti+2

≤ Kη
(
δ

2

)i+1

+ δ`+ 2
{
M

[
t1 +

δ

2
(t1 − t0) +

(
δ

2

)2

(t1 − t0)

+ · · ·+
(
δ

2

)i
η

]
+ µ

}
+ δL

[
t1 +

δ

2
(t1 − t0) + · · ·+

(
δ

2

)i+1

(t1 − t0)
]

≤
{
K

(
δ

2

)i+1

+
2δL
2− δ

[
1−

(
δ

2

)i+2]}
η +

4M
2− δ

[
1−

(
δ

2

)i+1]
η + δ`+ 2µ.

Quantity (10) will be bounded above by δ if we show

δL

[
2

2− δ

(
1−

(
δ

2

)i+1)
− 1
]
≤ K

[
1−

(
δ

2

)i+1]
(11)
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and
4M

2− δ

[
1−

(
δ

2

)i+1]
≤ 4M

2− δ .(12)

But (12) certainly holds by the choice of δ. Instead of (11) we can show
[
Lδ2

2− δ −K
][

1−
(
δ

2

)i+1]
≤ 0

or
Lδ2

2− δ ≤ K,(13)

which is true by the choice of δ. Hence, estimate (8) holds for all n ≥ 0.
Moreover we show that

ti ≤ t∗∗ (i ≥ 0).

The above estimate holds for i = 0, 1, 2 by the initial conditions. Assume it
holds for all i ≤ n. It then follows from (8) that

ti+2 ≤ ti+1 +
δ

2
(ti+1 − ti) ≤ ti +

δ

2
(ti − ti−1) +

δ

2
(ti+1 − ti)

≤ · · · ≤ n+
δ

2
η + · · ·+

(
δ

2

)i+1

η ≤ [1− (δ/2)i+2]η
1− δ/2 <

2n
2− δ = t∗∗.

Moreover,

Lti+2 <
2Lη
2− δ ≤ L(1 + δ)η ≤ 1− ` (by (5)),(14)

which shows (9) for all i ≥ 0. Hence the sequence {tn} (n ≥ 0) is bounded
above by t∗∗.

It also follows from (6) that {tn} (n ≥ 0) is nondecreasing and as such
it converges to some t∗ satisfying (7).

That completes the proof of Theorem 1.

Remark 1. It can easily be seen from the proof of Theorem 1 that (5)
can be replaced by the weaker conditions:

(5)′ hδ ≤ δ,
2Lη
2− δ ≤ 1 and

Lδ2

2− δ ≤ K

provided that δ ∈ [0, 2).

For comparison purposes we state the elegant semilocal convergence the-
orem for Newton-like methods using outer inverses (see Theorem 3.1 in [14,
p. 241]):

Theorem 2. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Assume:
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(a) there exist an approximation A(x) ∈ L(X,Y ) of F ′(x), an open con-
vex subset D0 of D, x0 ∈ D0, a bounded outer inverse A# of A(x0),
and parameters η > 0, K > 0, M ≥ 0, L ≥ 0, µ ≥ 0, ` ≥ 0 such that

‖A#F (x0)‖ ≤ η,(15)

‖A#[F ′(x)− F ′(y)]‖ ≤ K‖x− y‖,(16)

‖A#[F ′(x)−A(x)]‖ ≤M‖x− x0‖+ µ,(17)

‖A#[A(x)− A(x0)]‖ ≤ L‖x− x0‖+ `(18)

for all x, y ∈ D0;

(b)

b ≡ µ+ ` < 1,(19)

h ≡ 2ση ≤ (1− b)2,(20)

where
σ := max(K,M + L),(21)

U(x0, s
∗) ⊆ D0,(22)

s∗ =
1− b−

√
(1− b)2 − h
σ

.(23)

Then

(i) the sequence {xn} (n ≥ 0) generated by the Newton-like method (2)
with

A(xn)# = [I + A#(A(xn)−A(x0))]−1A#(24)

is well defined , remains in U(x0, s
∗) for all n ≥ 0 and converges to

a solution x∗ of A#F (x) = 0;
(ii) the solution x∗ is unique in Ũ(x0, s

∗)∩{R(A# +x0}, where R(A#)
denotes the range of A#,

Ũ(x0, s
∗) =

{
U(x0, s

∗) ∩D0 if h = (1− b)2,

U(x0, s
∗∗) ∩D0 if h < (1− b)2,

(25)

s∗∗ is the larger zero of the function f given by

f(s) =
σ

2
s2 − (1− b)s+ η(26)

and
R(A#) + x0 = {x+ x0: x ∈ R(A#)}.(27)

Moreover , define a function g by

g(s) = 1− Ls− `(28)

and a sequence {sn} (n ≥ 0) by

s0 = 0, s1 = η, sn+2 = sn+1 +
f(sn+1)
g(sn+1)

(n ≥ 0).(29)
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Then the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ sn+1 − sn,(30)

‖xn − x∗‖ ≤ s∗ − sn.(31)

We present the main semilocal result on the convergence of Newton-like
methods.

Theorem 3. Let D0, D, X, Y , F , A#, A(x0), A(x) be as in Theorem 2.
Assume:

(a) there exist nonnegative parameters η, K, M , L, µ, ` and δ satisfying
(3)–(5) or (3)–(5)′;

(b) conditions (15)–(18) hold for all x, y ∈ D0 and

U(x0, t
∗) ⊆ D0,(32)

where t∗ is defined in Theorem 1.

Then the sequence {xn} (n ≥ 0) generated by the Newton-like method (2) is
well defined , remains in U(x0, t

∗) for all n ≥ 0 and converges to a unique
solution x∗ of the equation A#F (x) = 0 in U(x0, t

∗) ∩ D0. Moreover , the
following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn,(33)

‖xn − x∗‖ ≤ t∗ − tn,(34)

where the sequence {tn} (n ≥ 0) is given by (6).

Proof. Simply replace s∗, {sn} (n ≥ 0) by t∗, {tn} (n ≥ 0) respectively in
the proof of Theorem 3.1 in [14, p. 241] and use Theorem 1 which establishes
the convergence of {tn} to t∗.

That completes the proof of Theorem 3.

Remark 2. The point t∗ can be replaced by 2η/(2− δ) in (32).

We now show that the error bounds obtained in Theorem 3 are more
precise than the corresponding ones in Theorem 2.

Theorem 4. Under the hypotheses of Theorems 2 and 3 the following
error bounds hold :

tn+1 ≤ sn+1 (n ≥ 1),(35)

tn+1 − tn ≤ sn+1 − sn (n ≥ 1),(36)

t∗ − tn ≤ s∗ − sn (n ≥ 0),(37)

t∗ ≤ s∗.(38)

Moreover strict inequality holds in (35) and (36) if K < M + L.
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Proof. We use induction to first show (35) and (36). For n = 0 in (6)
and (29) we obtain

t2 − η =
K
2 η

2 + (M0 + µ)η
1− `− Lη ≤

σ
2n

2 + (M · 0 + µ)η
1− `− Lη

≤
σ
2 η

2 +M(η − 0)0 + µ(η − 0)− g(0)(η − 0) + f(0)
g(η)

≤
σ
2 s

2
1 − (1− µ− `)s1 + η − (σ −M − L)s0(s1 − s0)

g(s1)

≤ f(s1)
g(s2)

= s2 − s1,

and
t2 ≤ s2.

Assume that
ti+1 ≤ si+1, ti+1 − ti ≤ si+1 − si.(39)

Using (6), (29) and (39) we obtain

ti+2 − ti+1 =
K
2 (ti+1 − ti)2 + (Mti + µ)(ti+1 − ti)

1− `− Lti+1

≤
σ
2 (si+1 − si)2 + (Msi + µ)(si+1 − si)

g(si+1)

=
σ
2 (si+1 − si)2 +M(si+1 − si)si + µ(si+1 − si)− g(si)(si+1 − si) + f(si)

g(si+1)

=
σ
2 s

2
i+1 − (1− µ− `)si+1 + η − (σ −M − L)si(si+1 − si)

g(si+1)

≤ f(si+1)
g(si+1)

= si+2 − si+2,

which shows (35) and (36) for all n ≥ 1.
Let j ≥ 0. Then

ti+j − ti ≤ (ti+j − ti+j−1) + (ti+j−1 − ti+j−2) + · · ·+ (ti+1 − ti)(40)

≤ (si+j − si+j−1) + (si+j−1 − si+j−2) + · · ·+ (si+1 − si)
≤ si+1 − si.

By letting j →∞ in (40) we obtain (37).
Finally, (37) implies (38) (since t1 = s1 = 0). It can easily be seen from

(6) and (29) that strict inequality holds in (35) and (36) if K < M + L.
That completes the proof of Theorem 4.
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Remark 3. Due to (38) our Theorem 3 provides a more precise infor-
mation on the location of the solution x∗ than Theorem 2. Note also that
t∗ ∈ [η, 2η], and under the hypotheses of Theorems 2 and 3, t∗ ∈ [η, s∗],
where s∗ ≤ 2η and is given by (23).

Remark 4. Let us compare condition (5) with condition (20). For sim-
plicity let us consider only Newton’s method. That is, as in Corollary 3.1
in [14] we set A(x) = F ′(x) and choose M = µ = ` = 0, K = L to obtain,
using (21),

h = 2Kη ≤ 1,(41)

which is the famous Newton–Kantorovich hypothesis for the convergence of
Newton’s method [13]. However in general L ≤ K. Hence, our condition
becomes

h1 = (K + L)η ≤ 1.(42)

Note that

h ≤ 1 ⇒ h1 ≤ 1(43)

but not vice versa (unless K = L).

Remark 5. It is clear from Theorems 2 and 3 that if we replace U(x0, t
∗)

⊆ D by U(x1, t
∗ − η) ⊆ D, using the assumptions of Theorem 3 instead of

Theorem 2 and proceeding along the well established lines of [18] and [19], we
can first refine the error bounds obtained here which as we already showed
in Theorem 4 can further improve the corresponding error bounds in [14].
However, we leave the details to the motivated reader.

Remark 6. As in [14] (see Theorem 2 above), suppose that

[I + (A(x)− A(x0))A+]−1A(x) maps N(A(x0)) into R(A(x0))(44)

whenever I + (A(x)− A(x0))A+ is invertible for some x ∈ D, where N(A)
denotes the null space of A and A+ the generalized inverse of A(x0). Then
by Lemma 2.4 in [14], A(xn) = [I + A+(x0)(A(xn)− A(x0))]−1A+(x0) is a
generalized inverse. Hence by Lemma 2.4 of [14] and Theorem 3 we establish
a semilocal convergence theorem for Newton-like methods using generalized
inverses. In the finite-dimensional case (x, y both finite), condition (44) can
be replaced by

rank(A(x)) ≤ rank(A(x0)) (x ∈ D).(45)

We now complete this section with three simple numerical examples.
In the first and third example we show that hypothesis (41) fails whereas
(42) holds. In the second example used also in [15] we compare estimates
(30), (31) and (33), (34), respectively. Let A(x) = F ′(x), A(x)−1 = A#(x)
(x ∈ D) in the next three examples.
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Example 1. Let X = Y = R, D = [
√

2−1,
√

2+1], x0 =
√

2 and define
a function F on D by

F (x) =
1
6
x3 −

(
23/2

6
+ .23

)
.(46)

Using (15)–(18), (40) and (41) and setting µ = ` = M = 0, we obtain

η = .23, K = 2.4142136, L = 1.914213562,(47)

h = 2Kη = 1.1105383 > 1

and from (5) for δ = 1

(K + L0)η = .995538247 < 1.(48)

That is, the Newton–Kantorovich hypothesis (41) is violated. However since
(48) holds, Theorem 3 guarantees the convergence of Newton’s method to x∗.

Example 2. Let X = Y = R, x0 = 1.3,

D = [x0 − 2‖F ′(x0)−1F (x0)‖, x0 + 2‖F ′(x0)−1F (x0)‖]
and define a function F on D by

F (x) =
1
3

(x3 − 1).(49)

As in Example 1 and setting µ = ` = M = 0, we obtain

η = .236094674, K = 2.097265501, L = 1.817863519,

h = 2Kη = .990306428 < 1, (K + L0)η = .92434111 < 1 (for δ = 1),

t∗ = .369677842, s∗ = .429866445.

That is, we provide a better information on the location of the solution x∗

since
U(x0, t

∗) ⊂ U(x0, s
∗).(50)

We can tabulate the following results:

Comparison table

xn Estimates (34) Estimates (33) Estimates (31) Estimates (30)

x1 = 1.0639053254 .236094674 .133583172 .236094674 .193771771

x2 = 1.0037617275 .102400629 .031182539 .115780708 .0779910691

x3 = 1.0000140800 .028585756 .002596783 .053649732 .024342893

x4 = 1.0000000002 .002575575 .000021208 .020186667 .004156226

x5 = 1 .000021207 .000000001 .003987206 .00016902

x6 = 1 .000000001 0 .000166761 .000002259

Example 3. Let X = Y = R, x0 = 1 and define a function F by

F (x) = x3 − a for all a ∈ [0, 1/2), x ∈ [a, 2− a].
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Using (15), (16) and (18) we get

η =
1
3

(1− a), K = 2(2− a), L = 3− a.

The Newton–Kantorovich hypothesis (41) does not hold since

h =
4
3

(1− a)(2− a) > 1 for all a ∈ [0, 1/2).

However (42) holds for all a ∈ [(5−
√

13)/3, 1/2) since

h1 =
1
3

(1− a)[3− a+ 2(2− a)] ≤ 1,

and so the Newton’s method (2) converges to the solution x∗= 3
√
a of F (x)

= 0.

3. Local analysis of Newton’s method. We can show the following
local result for Newton-like methods:

Theorem 5. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Assume:

(a) there exist an approximation A(x) ∈ L(X,Y ) of F ′(x), a simple
solution x∗ ∈ D of equation (1), a bounded outer inverse A#

1 of
A(x∗) and nonnegative parameters K, L, M , µ, ` such that

‖A#
1 [F ′(x)− F ′(y)]‖ ≤ K‖x− y‖,(51)

‖A#
1 [F ′(x)−A(x)]‖ ≤M‖x− x∗‖+ µ,(52)

‖A#
1 [A(x)− A(x∗)]‖ ≤ L‖x− x∗‖+ `(53)

for all x, y ∈ D;
(b) the equation

(
K

2
+M + L

)
r + µ+ `− 1 = 0(54)

has a minimal nonnegative zero r∗ satisfying

Lr + ` < 1,(55)

U(x∗, r∗) ⊆ D.(56)

Then the sequence {xn} (n ≥ 0) generated by the Newton-like method (2) is
well defined , remains in U(x∗, r∗) for all n ≥ 0 and converges to x∗ provided
that x0 ∈ U(x∗, r∗). Moreover , the following error bounds hold for all n ≥ 0:
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(57) ‖x∗ − xn+1‖

≤ 1

1− L‖x∗ − xn‖ − `

[
K

2
‖x∗ − xn‖+ (M‖x∗ − xn‖+ µ)

]
‖x∗ − xn‖

<
(K/2 +M)r∗ + µ

1− Lr∗ − `
‖x∗ − xn‖.

Proof. This follows exactly as in the last part of the proof of Theorem
3.1 (uniqueness). Indeed using induction on k ≥ 0 and (51)–(56) we obtain

‖x∗ − xk+1‖ = ‖x∗ − xk + A(xn)#F (xk)− A(xk)#F (x∗)‖
= ‖A(xk)

#(A(xk)(x
∗ − xk) + F (xk)− F (x∗))‖

≤ ‖A(xn)#A(x∗)‖
{ 1�

0

‖A#
1 [F ′(xk + t(x∗ − xk))− F ′(xk)]‖ dt

+ ‖A#
1 (F ′(xk)− A(xk))‖

}
‖x∗ − xk‖

≤ 1

1− L‖x∗ − xk‖ − `

[
K

2
‖x∗ − xk‖+ (M‖x∗ − xk‖+ µ)

]
‖x∗ − xk‖

<
(K/2 +M)r∗ + µ

1− Lr∗ − `
‖x∗ − xk‖,

which shows (57) and xn ∈ U(x∗, r∗) (n ≥ 0) (since x0 ∈ U(x∗, r∗)). More-
over by the choice of r∗ there exists α ∈ [0, 1) such that

‖x∗ − xn+1‖ ≤ α‖x∗ − xn‖ ≤ αn+1‖x∗ − x0‖.
Hence, we deduce limn→∞ xn = x∗.

That completes the proof of Theorem 5.

Remark 7. Note that local results were not given in [14].

Remark 8. Let A(x)=F ′(x), A(x)−1 =A#(x) (if A(x)−1 exists) (x∈D)
and set M = µ = ` = 0. Then the radius of convergence is

r∗ =
2

2L+K
.(58)

To compare our results with earlier results on local convergence and con-
vergence radii, let us consider Rheinboldt’s result in [17], where only (16) is
used. In this case

r∗R =
2

3K
≤ r∗.(59)

Note that if L < K then strictly inequality holds in (59). Hence under
the hypotheses of Theorem 5 we obtain a larger convergence radius than
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before as well as finer error bounds. This observation is important in com-
putational mathematics and finds applications in projection methods and in
the construction of efficient/cheap mesh independence refinement strategies
[1], [4], [21].

Remark 9. As noted in [1], [5], [8], [9], [12], [25] the local results ob-
tained here can be used for projection methods such as Arnoldi’s, the gen-
eralized minimum residual method (GMRES), the generalized conjugate
residual method (GCR), for combined Newton/finite-difference projection
methods and in connection with the mesh independence principle in order
to develop the cheapest mesh refinement strategies.

From now on for simplicity we refer only to Newton’s method. That is,
we set A(x) = F ′(x), A(x)−1 = A#(x) (x ∈ D).

Remark 10. The local results obtained here can also be used to solve
equations of the form F (x) = 0, where F ′ satisfies the autonomous differen-
tial equation ([5], [13])

F ′(x) = T (F (x)),(60)

where T : Y → X is a known continuous operator. Since F ′(x∗) = T (F (x∗))
= T (0), we can apply the results obtained here without actually knowing
the solution x∗ of equation (1).

We complete this section with a numerical example.

Example 4. Let X = Y = R, D = U(0, 1) and define a function F on
D by

F (x) = ex − 1.(61)

Then it can easily be seen that we can set T (x) = x + 1 in (60). Since
F ′(x∗) = 1, we get ‖F ′(x) − F ′(y)‖ ≤ e‖x − y‖. Hence we set K = e.
Moreover since x∗ = 0 we obtain

F ′(x)− F ′(x∗) = ex − 1 = x+
x2

2!
+ · · ·+ xn

n!
+ · · ·

=
(

1 +
x

2!
+ · · ·+ xn−1

n!
+ · · ·

)
(x− x∗)

and for x ∈ U(0, 1),

‖F ′(x)− F ′(x∗)‖ ≤ (e− 1)‖x− x∗‖.
That is, L = e− 1. Using (59) and (58) we obtain respectively:

r∗R = .245252961, r∗ = .254028662.

That is, our convergence radius r∗ is larger than the corresponding one r∗R
due to Rheinboldt [17], which allows a wider choice of initial guesses x0.
Note also that L < K. Hence our error bounds on ‖xn − x∗‖ (n ≥ 0) are
also finer.
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