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A NOTE ON THE CONTINUITY OF PROJECTION
MATRICES WITH APPLICATION TO THE ASYMPTOTIC

DISTRIBUTION OF QUADRATIC FORMS

Abstract. This paper investigates the continuity of projection matrices
and illustrates an important application of this property to the derivation
of the asymptotic distribution of quadratic forms. We give a new proof and
an extension of a result of Stewart (1977).

An important result in statistics concerning the distribution of quadratic
forms is the following: if X is a k × 1 vector having a multivariate normal
distribution with mean vector µ and identity covariance matrix, and if PB is
an idempotent matrix of rank p then X ′PBX is χ2(p, δ), where δ = µ′PBµ
(see for instance Muirhead (1982), Theorem 1.4.5).

Sometimes we are interested in an asymptotic version of this result (ex-
amples are given below): (i) the k × 1 random vector XT indexed by T
converges in distribution to a multivariate normal random variable with un-
known mean µ and identity covariance matrix Ik; (ii) the k × n (n ≤ k)
matrix B̂T converges in probability to the k × n matrix B (and we write
plimT→∞ B̂T = B). In this application B̂T has rank n with probability 1
for all but a finite number of T . Let PB̂T = B̂T (B̂′T B̂T )−1B̂′T . We want to
find the asymptotic distribution of X ′TPB̂TXT as T → ∞. If the mapping

B̂T → PB̂T is continuous we can conclude that X ′TPB̂TXT has an asymptot-
ically noncentral chi-square distribution with n degrees of freedom and non-
centrality parameter µ′PBµ (Muirhead (1982), Theorem 1.4.5). However, if
n > p = rank(B) for all but a finite number of T , then X ′TPB̂TXT often has
an asymptotically noncentral chi-square distribution with (again) n degrees
of freedom (rather than p) and noncentrality parameter µ′(plimT→∞ PB̂T )µ.
Two examples where such situation arises are given below.
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Example 1. Consider a single linear structural equation

y1 = Y2β + Z1γ + u,(1)

where y1 and Y2 are a T × 1 vector and a T × n matrix of endogenous
variables, Z1 is a T × k1 matrix of exogenous variables, and β and γ are
n× 1 and k1× 1 vectors of parameters. The reduced form equation for Y2 is

Y2 = Z1Φ2 + Z2Π2 + V2,(2)

where Z2 is a T × k2 matrix of exogenous variables not included in the
structural equation, and Φ2 and Π2 are matrices of parameters of dimension
k1×n and k2×n respectively. We assume throughout that k2 > n. Inserting
the reduced form (2) into the structural equation (1) gives

y1 = Z1φ1 + Z2π1 + v1,(3)

where the parameter (φ1, π1) and the error term v1 satisfy the compatibility
conditions:

π1 = Π2β,(4)

φ1 = γ + Φ2β,(5)

v1 = u+ V2β.(6)

Together, equations (2) and (3) form a multivariate linear model (MLM)

[y1, Y2] = Z1[φ1, Φ2] + Z2[π1,Π2] + [v1, V2](7)

with restrictions on its coefficients and its error components. Assume that
the following limits hold jointly:

(a) Q̂T = T−1Z ′2MZ1Z2 and plimT→∞ Q̂T = Q, where Q is a fixed, finite,
positive definite k2 × k2 matrix, and MZ1 = IT − Z1(Z ′1Z1)−1Z ′1;

(b) Ω̂T = T−1S and plimT→∞ Ω̂T = Ω, where S = Y ′MZY , Y = [y1, Y2],
Z = [Z1, Z2] and MZ = IT − Z(Z ′Z)−1Z ′;

(c) T
1
2 (Π̂−Π) L→ N(0, Q−1⊗Ω), where Π = [π1,Π2] and Π̂ is the OLS

estimator of Π in (7);

and suppose one is interested in the vector of coefficients β, and wants to
test whether equation (4) is satisfied. In a generalized method of moments
framework, one can base such a test on the statistic

T = π̃′1(Ik2 − PΠ̃2
)π̃1 = û′Z(Z ′Z)−1Z ′û,

where [π̃1, Π̃2] = Q̂
1/2
T [π̂1, Π̂2] and [π̂1, Π̂2] is the ordinary least squares

estimator of [π1,Π2] in (7). Forchini (2003) shows that if (4) holds then

TT
ω11.2(1 + (β∗1)′β∗1)

L→ χ2(k2 − n)
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independently of the rank of Π2. In the expression above we have used

Ω =
(
ω11 ω′21
ω21 Ω22

)
,

ω11.2 = ω11 − ω12Ω
−1
22 ω21,

β∗ = (Ω1/2
22 β −Ω−1/2

22 ω21)/ω1/2
11.2,

and β∗ = (β∗′1 , β
∗′
2 )′ is partitioned conformably to

π1 = (Π21,Π22)
(
β1
β2

)
,

where rank(Π2) = rank(Π21) = r ≤ n.

Example 2. A similar situation occurs with asymptotically uncoopera-
tive regressors (Schmidt (1976), pp. 85–88): consider the case

YT ∼WTβ + UT , UT ∼ N(0, σ2IT ),

where the ith row of WT is (1, λi) with |λ| < 1 and σ2 known. When testing
whether β = 0 one considers the statistic

σ−2U ′TPWT
UT = X ′TXT ,

where XT = σ−1(W ′TWT )−1/2W ′TUT ∼ N(0, σ2I2). This quantity has a chi-
square distribution with 2 (= rank(PXT )) degrees of freedom. Note however
that T−1W ′TWT →

(1
0

0
0

)
so that rank(PlimT→∞XT ) = 1.

These results are surprising: the limiting distribution of X ′TPB̂TXT does
not depend on p. To understand why, we need to look at the properties of
the mapping B̂T 7→ PB̂T . Let BT be a sequence of k × n (n ≤ k) matrices

converging to the k × n matrix B, and let PBT = BTB
†
T and PB = BB†

be the projections on the spaces spanned by the columns of BT and B
respectively. The matrices B†T and B† are the Moore–Penrose generalised
inverses of BT and B.

Corollary 3.5 of Stewart (1977) shows that a necessary and sufficient con-
dition for limT→∞B

†
T = B† is that rank(BT ) = rank(B) for all but a finite

number of T . Given the uniqueness of the Moore–Penrose generalised in-
verse, it follows that a necessary and sufficient condition for limT→∞ PBT =
PB is that rank(BT ) = rank(B) for all but a finite number of T . In this
note we give a new direct proof of this result, and give an indication of what
happens when rank(BT ) > rank(B) for all but a finite number of T .

Precisely, we have:

Proposition 1. Let BT be a sequence of matrices converging to the ma-
trix B.
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(i) limT→∞ PBT = PB if and only if rank(BT ) = rank(B) for all but a
finite number of T .

(ii) If rank(BT ) > rank(B) for all but a finite number of T , then the
space spanned by the columns of B is contained in the space spanned
by limT→∞ PBT .

Thus, the space spanned by the columns of plimT→∞ PB̂T is larger than
the space spanned by the columns of PB = PplimT→∞ B̂T

. The degrees of
freedom of the resulting chi-square distribution are not affected by the rank
of B because the space spanned by the columns of PB̂T does not collapse to
that spanned by the columns of B.

Proof of Proposition 1. Consider a sequence BT → B. Without loss of
generality we can assume that rank(BT ) = g ≥ p = rank(B). Then write

BTB
′
T = HT

(
ΛT 0
0 0

)
H ′T ,

where HT is a k × k orthogonal matrix and ΛT is a g × g matrix which
contains the g nonzero eigenvalues of BTB′T in descending order. Partition
HT as HT = (H1T ,H2T ), where H1T is k×g and H2T is k×(k−g). The space
spanned by the columns of BT is spanned by the eigenvectors corresponding
to BTB′T , i.e. the columns of H1T , so we can write

PBT = H1TH
′
1T .

Now, PBT → PB if and only if every subsequence of PBT has a subsequence
which converges to PB.

Now consider an arbitrary subsequence PBTq . The elements of HTq and
ΛTq are bounded above uniformly in T , so there is a subsequence such
that HTqs and ΛTqs converge to some matrices H = (H1,H2) and Λ, and

B = H
(
Λ
0

0
0

)
H ′, where H is orthogonal and Λ is diagonal with g nonzero

diagonal elements.
Consider the case where g = p. Then HTqs → H and H1Tqs → H1,

ΛTqs → Λ (p× p) so that as q →∞,

PBTqs = H1TqsH
′
1Tqs
→ H1H

′
1 = PB .

If g > p, it is still true that HTqs → H and H1Tqs → H1. Moreover Λ1Tqs →
Λ =

(
Λ∗
0

0
0

)
so that

PBTqs = H1TqsH
′
1Tqs
→ H1H

′
1.

But PB is the projection on the space spanned by the eigenvector associated
to the nonzero eigenvalues of BB′, so partitioning H1 = (H11,H12), where
H11 is k × p and H12 is k × (k − p), we have

PB = H11H
′
11
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so that
lim
T→∞

(PBT − PB) = H12H
′
12 6= 0.

Note thatH12H
′
12 is itself a projection into the space spanned by the columns

of BT and orthogonal to the space spanned by the columns of B.
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