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ON CONSTRAINED CONTROLLABILITY OF
DYNAMICAL SYSTEMS WITH

MULTIPLE DELAYS IN CONTROL

Abstract. Linear, continuous dynamical systems with multiple delays in
control are studied. Their relative and absolute controllability with con-
strained control is discussed. Definitions of various types of constrained rel-
ative and absolute controllability for linear systems with delays in control are
introduced. Criteria of relative and absolute controllability with constrained
control are established. Constraints on control values are considered. Mu-
tual implications between constrained relative controllability of systems with
and without delays are studied as well as implications between constrained
relative and absolute controllability of systems with delay in control. The
results are illustrated by examples.

1. Introduction. Investigating the controllability of dynamical systems
is one of the main elements in their analysis. Owing to the abundance of
mathematical models of dynamical systems with delays, the controllability
problem for such systems is especially important. Delay dynamical systems
occur in many fields of science, industry, medicine, biology and economy.

In this article we analyse dynamical systems with delays in control. We
discuss linear dynamical systems with multiple, time-dependent delays in
control. The monograph [3] provides necessary and sufficient conditions of
relative and absolute controllability for linear, continuous dynamical systems
with multiple delays in control, but these criteria only concern unconstrained
controls. Since, in practice, controls are always constrained, we investigate
the relative and absolute controllability with delays and constraints in con-
trol. We illustrate our analysis by examples.

2000 Mathematics Subject Classification: Primary 93B05.
Key words and phrases: delay systems, constrained controllability, control, constraints,

supporting function.

[87]



88 B. Sikora

2. Mathematical model. We consider linear, continuous, finite-dimen-
sional dynamical systems with time-dependent, multiple delays in control
described by the ordinary differential equation

ẋ(t) = A(t)x(t) +
M∑

i=0

Bi(t)u(vi(t)), t ≥ t0,(1)

where

• x(t) ∈ RM is the instantaneous state n-vector,
• u ∈ L2

loc([0,∞),Rm) is the control,
• A(t) is an M ×M matrix with elements akj ∈ L1

loc([0,∞),R), k, j =
1, . . . ,M ,
• Bi(t), i = 0, 1, . . . ,M , are M × m matrices with elements bikj ∈
L2

loc([0,∞),R), k = 1, . . . ,M , j = 1, . . . ,m,
• vi : [t0,∞) → R, i = 0, 1, . . . ,M , are absolutely continuous, strictly

increasing functions, satisfying

vM (t) < vM−1 < · · · < vk(t) < · · · < v1(t) < v0(t) = t, t ∈ [t0,∞),

where vi(t) = t − hi(t) and hi(t) ≥ 0, i = 0, 1, . . . ,M , are time-
dependent delays in control.

Let S ⊂ RM and U ⊂ Rm be any non-empty sets. Let L2([t0, t],Rm)
denote the Hilbert space of square integrable functions defined in the time
interval [t0, t] with values in Rm. The set L2([t0, t1], U) of square integrable
functions in [t0, t1] with values in U is the set of admissible controls for
the dynamical system (1). For a given initial condition z(t0) = {x0, ut0} ∈
RM × L2([vM (t0), t0], U), where x0 = x(t0) ∈ RM and ut0 is a given initial
value in [vM (t0), t0], and an admissible control u ∈ L2([t0, t], U), for every
t ≥ t0 there exists a unique, absolutely continuous solution x(t, z(t0), u) of
the differential equation (1). This solution has the form (cf. [3])

x(t, z(t0), u) = F (t, t0)x(t0) +
t�

t0

F (t, τ)
M∑

i=0

Bi(τ)u(vi(τ)) dτ,(2)

where F (t, τ) is the n× n transition matrix of the linear system

ẋ(t) = A(t)x(t).

The initial condition z(t0) is called an initial complete state of the dy-
namical system (1). In the case of a dynamical system with delays, only a
complete state z(t) = (x(t), ut(s)), where ut(s) = u(s) for s ∈ [vM (t), t),
fully describes the behaviour of the dynamical system at time t.

3. Relative controllability. In this paper, constraints put directly on
control values will be considered. Constraints of this type frequently oc-
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cur in practical problems connected with, among others, optimal control of
industrial processes or mathematical modelling of economic processes.

3.1. Basic definitions. In this section we define various types of relative
controllability with constrained values of control for the dynamical system
(1) in the time interval [t0, t1].

Definition 1. The dynamical system (1) is said to be relatively U -
controllable in the time interval [t0, t1] from the complete state z(t0) ∈ RM ×
L2([vM(t0), t0], U) into the set S ⊂ RM if for every vector x̃ ∈ S, there
exists an admissible control ũ ∈ L2([t0, t1], U) such that the corresponding
trajectory x(t, z(t0), ũ) of (1) satisfies x(t1, z(t0), ũ) = x̃.

Definition 2. The dynamical system (1) is said to be (globally) rela-
tively U -controllable in the time interval [t0, t1] into the set S if it is rela-
tively U -controllable in [t0, t1] into S for every initial complete state z(t0) ∈
RM × L2([vM (t0), t0], U).

Definition 3. The dynamical system (1) is said to be (globally) rela-
tively U -controllable from t0 into the set S if for every initial complete state
z(t0) ∈ RM × L2([vM(t0), t0], U), there exists t1 ∈ [0,∞) such that (1) is
relatively U -controllable in [t0, t1] into S.

If S = RM , then we talk about (global) relative U -controllability in [t0, t1].
When S = {0}, we talk about relative null U -controllability in [t0, t1] from
the complete state z(t0) , and (global) relative null U -controllability in [t0, t1].

Assume that S is a linear variety in RM of the form

S = {x ∈ RM : Lx = c},(3)

where L is a known p×M matrix of rank p and c ∈ Rp is a given vector. If
L = IM (the M ×M unit matrix) and c = 0, we get S = {0}.

There is also a related notion of attainable set. The attainable set from
the initial complete state z(t0) at time t ≥ t0 for the dynamical system (1)
is defined, just as for systems without constraints and delays [3], by

KU ([t0, t], z(t0)) =
{
x ∈ RM : x = F (t, t0)x(t0)

+
t�

t0

F (t, τ)
M∑

i−1

Bi(τ)u(vi(τ)) dτ, u ∈ L2([t0, t], U)
}
.

3.2. Controllability results. In order to formulate criteria for various
types of controllability with constrained controls for the dynamical system
(1), with the assumption that the final set is of the form (3), let us introduce
a scalar function J : RM × R × Rp → R, connected with the attainable set
KU ([t0, t], z(t0)) of the system (1) and defined by
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J(z(t0), t, a) = vTLF (t, t0)x(t0)

+
t�

t0

sup
{
aTLF (t, τ)

M∑

i=0

Bi(τ)u(vi(τ)) : u ∈ L2([t0, t], U)
}
dτ − aTc,

where a ∈ Rp is any vector; it is called the supporting function of the at-
tainable set. An application of supporting functions for dynamical systems
without delays can be found in [9].

Using the absolute continuity of the vi and applying their inverses ri :
[vi(t0), vi(t1)] → [t0, t1], i = 0, 1, . . . ,M, we can write the solution of (1) in
the following form:

x(t, z(t0), u) = F (t, t0)x(t0) +
M∑

i=0

vi(t1)�

vi(t0)

F (t, ri(τ))Bi(ri(τ))ṙi(τ)u(τ) dτ.

Let us fix a final time t1 > 0. Without loss of generality, for simplicity
of notation, we may assume that t0 = vk(t1) for some k ≥ M. If such a k
does not exist, then we introduce an additional delay hk with control matrix
Bk(t) = 0. Then the solution (2) of the dynamical system (1) has, at time t1,
the form (see [3])

x(t1, z(t0), u) = F (t1, t0)x(t0) +
k∑

i=0

t0�

vi(t0)

F (t1, ri(τ))Bi(ri(τ))ṙi(τ)ut0(τ) dτ

+
M∑

i=k+1

vi(t1)�

vi(t0)

F (t1, ri(τ))Bi(ri(τ))ṙi(τ)ut0(τ) dτ

+
k∑

i=0

vi(t1)�

t0

F (t1, ri(τ))Bi(ri(τ))ṙi(τ)u(τ) dτ.

The first three terms on the right hand side depend only on z(t0), but not
on u. To simplify notation we set (see [3])

q(z(t0)) = x(t0) +
k∑

i=0

t0�

vi(t0)

F (t0, ri(τ))Bi(ri(τ))ṙi(τ)ut0(τ) dτ(4)

+
M∑

i=k+1

vi(t1)�

vi(t0)

F (t0, ri(τ))Bi(ri(τ))ṙi(τ)ut0(τ) dτ ∈ RM ,

and for t ∈ [vi+1(t1), vi(t1)), i = 0, 1, . . . , k − 1,

Bt1(t) =
i∑

j=0

F (t0, rj(t))Bj(rj(t))ṙj(t).(5)
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Lemma 1 ([3]). Let

ẏ(t) = A(t)y(t) +Bt1(t)u(t), t ∈ [t0, t1],(6)

be a linear , time-dependent dynamical system without delays in control.
Then

x(t, z(t0), u) = y(t, q(z(t0)), u), t ∈ [t0, t1].

By Lemma 1, the relative controllability in [t0, t1] of the dynamical sys-
tem (1) and the controllability in [t0, t1] of the dynamical system (6) without
delays in control are equivalent.

The function J(z(t0), t, a), for t = t1, has the form

(7) J(z(t0), t1, a) = aTLF (t1, t0)q(z(t0))

+
t1�

t0

sup{aTLF (t1, τ)Bt1(τ)u(τ) : u ∈ L2([t0, t1], U)} dτ − aTc.

HereBt1(t) is a matrix of square integrable functions in [t0, t1], so the integral
in the above formula is properly defined.

Now we can formulate a criterion of relative controllability for (1).

Theorem 1. Let U be a compact set and E ⊂ Rp be any set con-
taining 0 as an interior point. Then the dynamical system (1) with de-
lays in control is relatively U -controllable from the complete state z(t0) ∈
RM × L2([vM (t0), t0], U) into the set S of the form (3) if and only if for
some t1 ∈ [t0,∞),

min{J(z(t0), t1, a) : a ∈ E} = 0

or , equivalently ,

J(z(t0), t1, a) ≥ 0 for every a ∈ E,
where J(z(t0), t1, a) is defined by (7).

Proof. By Lemma 1 the attainable set KU ([t0, t1], z(t0)) for (1) is

KU ([t0, t1], z(t0)) =
{
x ∈ RM : x = F (t1, t0)q(z(t0))

+
t1�

t0

F (t1, τ)Bt1(τ)u(τ) dτ, u ∈ L2([t0, t1], U)
}
.

This set is convex and compact. Indeed, to prove its compactness, we will
show that every sequence of points x1(t1), x2(t1), . . . in KU ([t0, t1], z(t0))
has a subsequence convergent to some x(t1) ∈ KU ([t0, t1], z(t0)). Since the
set L2([t0, t1], U) of admissible controls is weakly compact in L2([t0, t1],Rm)
(see [4, Lemma 1A, p. 169]), there exists a subsequence of controls uki ∈
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L2([t0, t1], U) weakly convergent to some control u such that

lim
ki→∞

t1�

t0

F (t1, τ)Bt1(τ)uki(τ) dτ =
t1�

t0

F (t1, τ)Bt1(τ)u(τ) dτ.

Let x(t) be the solution corresponding to u(t). Then in [t0, t1] we have

x(t) = F (t, t0)q(z(t0)) +
t�

t0

F (t, τ)Bt1(τ)u(τ) dτ = lim
ki→∞

xki(t).

Therefore
lim
ki→∞

xki(t1) = x(t1) ∈ KU ([t0, t1], z(t0)).

The convexity of KU ([t0, t1], z(t0)) is proved in [5], [6].
It follows that the set K̃U ([t0, t1], z(t0)) of the form

K̃U ([t0, t1], z(t0)) = {y ∈ Rp : y = Lx, x ∈ KU ([t0, t1], z(t0))}
is also convex and compact. An initial complete state x0 can be steered to
the set S in time t1>0 if and only if the vector c and the set K̃U ([t0, t1], z(t0))
cannot be strictly separated by a hyperplane, that is, if

aTc ≤ sup{aTx̃ : x̃ ∈ K̃U ([t0, t1], z(t0))}
for all vectors a ∈ Rp. This follows from a theorem about separating convex
sets [2].

The above inequality can be equivalently written as follows:

aTLF (t1, t0)q(z(t0))

+ sup
{ t1�

t0

aTLF (t1, τ)Bt1(τ)u(τ) dτ : u ∈ L2([t0, t1], U)
}
− aTc ≥ 0.

Interchanging integration and taking supremum we conclude that c ∈
K̃U ([t0, t1], z(t0)) if and only if J(z(t0), t1, a) ≥ 0 for all a ∈ Rp.

Moreover, we can show that

kJ(z(t0), t1, a) = J(z(t0), t1, ka) for every k ≥ 0,

therefore, restricting to vectors a ∈ E, we obtain the assertion of the theo-
rem.

Corollary 1. Let U ⊂ Rm be a compact set and E ⊂ RM be any set
containing 0 as an interior point. Then the dynamical system (1) is relatively
null U -controllable from z(t0) ∈ RM × L2([vM(t0), t0], U) if and only if for
some t1 ∈ [t0,∞),

min{J(z(t0), t1, a) : a ∈ E} = 0

or , equivalently ,

J(z(t0), t1, a) ≥ 0 for every a ∈ E.
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Proof. This follows directly from Theorem 1 for S = {0}, i.e. for L = IM
and c = 0. Then E is a subset of RM .

Corollary 2. The dynamical system (1) is relatively U -controllable in
[t0, t1] from z(t0) ∈ RM × L2([vM(t0), t0], U) into the set S of the form (3)
if and only if the dynamical system without delays given by the equation

ẋ(t) = A(t)x(t) +Bi(t)u(t), t ∈ [t0, t1],(8)

is U -controllable in [t0, t1] from the initial condition q(z(t0)) into S.

Proof. Direct from Lemma 1 and Theorem 1.

Corollary 3. If (1) is relatively U -controllable in [t0, t1] from z(t0) ∈
RM ∈ L2([vM (t0), t0], U) into S of the form (3), then the dynamical system
without delays described by the equation

ẋ(t) = A(t)x(t) + B̃(t)w(t), t ∈ [t0, t1],(9)

where

B̃(t) = [B0(t)
...B1(t)

... . . .
...BM (t)]

is U -controllable in [t0, t1] from the initial condition q(z(t0)) into S.

Proof. Let w(t) = [w0(t), w1(t), . . . . . . , wM (t)]T . Then the solution of (9)
has the form

J(z(t0), t1, a) = aTLF (t0, t1)q(z(t0))

+
t1�

t0

sup{aTLF (t1, τ)B̃(τ)w(τ) : u ∈ L2([t0, t1], U)} dτ − aTc

= aTLF (t0, t1)q(z(t0))

+
t1�

t0

sup
{
aTLF (t1, τ)

M∑

i=0

Bi(τ)wi(τ) : u ∈ L2([t0, t1], U)
}
dτ − aTc.

Taking in particular wi(t) = u(vi(t)), by assumption and Theorem 1 we
obtain the assertion.

Corollary 4. Let t1 < hM . If (1) is relatively U -controllable in [t0, t1]
from z(t0) = (x0, 0) into S of the form (3), then the dynamical system with
delays in control of the form

ẋ(t) = A(t)x(t) +
M−1∑

i−0

Bi(t)u(vi(t)) + C(t)u(vM(t)), t ∈ [t0, t1],

where C(t) is any n ×m matrix with elements ckj ∈ L2
loc([t0,∞),R), k =

1, . . . , n, j = 1, . . . ,m, is relatively U -controllable in [t0, t1] from z(t0) =
(x0, 0) into S.
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Proof. The assertion follows directly from Theorem 1 and the form of
the matrix Bt1(t). For (1), Bt1(t) is defined by (4) for t ∈ [vi+1(t1), vi(t1)),
i = 0, 1, . . . , k − 1 and k = 1, . . . ,M. If t1 < hM , the matrix BM (·) does
not occur in the above formula. Therefore, by Theorem 1, with ut0 ≡ 0,
controllability of (1) does not depend on the form of the matrix at the
highest delay.

3.3. Examples. The examples below illustrate the mutual dependence
between U -controllability of a dynamical system without delays and relative
U -controllability of a dynamical system with delays in control with the same
matrices A(t) and B0(t).

Example 1. Consider the dynamical system (1) of the form

ẋ(t) = x(t) + u(t), t ∈ [0, 2],(10)

and the sets U = [0, 1] and E = [−1, 1].
First, we will test the null U -controllability of this dynamical system from

the initial state x0 = −1. Since the dynamical system (10) is stationary,

J(x0, 2, a) = x0e
2a+

2�

0

sup{u(τ)e2−τa : u ∈ L2([0, 2], U)} dτ, a ∈ E,

and we have

J(x0, 2, a) =
{
x0e

2a for a ∈ [−1, 0],

x0e
2a+ a(e2 − 1) for a ∈ (0, 1].

Therefore, (10) is null U -controllable in [0, 2] if and only if

min{J(x0, 2, a) : a ∈ [−1, 1]} = 0,

that is, from initial states x0 ∈ R satisfying the inequality

−1 + e−2 < x0 ≤ 0.

So, (10) is not null U -controllable from x0 = −1.
We now introduce three delays in (10): h1 = 1, h2 = 2, h3 = 3 and

assume ut0(s) = 1/2 for s ∈ [−3, 0], t0 = 0. We get the differential equation

ẋ(t) = x(t) + u(t) + u(t− 1) + u(t− 2) + u(t− 3), t ∈ [0, 2].(11)

Thus, for the dynamical system (11) with delays in control, in [0, 2] we have
v0(t) = t, v1(t) = t− 1, v2(t) = t− 2, v3(t) = t− 3, M = 3 and k = 2. Since
v2(2) = 0, it follows that

J(z(t0), 2, a) = q(z(t0))e2a

+
2�

0

sup{u(τ)B2(τ)e2−τa : u ∈ L2([0, 2], U)} dτ, a ∈ E,
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where, according to formula (5),

Bt1(t) =
{
e−t + e−t−2 for t ∈ [0, 1),

e−t for t ∈ [1, 2).

and q(z(t0)) is calculated from (4). After substitution we get

J(z(t0), 2, a) =
(
x0 + 1− 1

2e
−1 − 1

2e
−2)e2a

+
1�

0

sup{u(τ)(e−τ + e−τ−2)e2−τa : u ∈ L2([0, 2], U)} dτ

+
2�

1

sup{u(τ)e−τe2−τa : u ∈ L2([0, 2], U)} dτ, a ∈ E.

Therefore, for the system (11) we have

J(z(t0), 2, a)

=

{(
x0 + 1− 1

2e
−1 − 1

2e
−2
)
e2a for t ∈ [−1, 0],(

x0 + 1− 1
2e
−1 − 1

2e
−2
)
e2a+

(1
2 − e−2 + 1

2e
2
)
a for t ∈ (0, 1].

Hence (11) is null relatively U -controllable in [0, 2] from the initial states
x0 ∈ R satisfying

−3
2 + 1

2e
−1 + e−4 ≤ x0 ≤ −1 + 1

2e
−1 + 1

2e
−2.

In particular, after introducing delays to the system we obtain null relative
U -controllability from x0 = −1.

Example 2. Consider the system (10) in [1, 2] with U = [0, 1] and
E = [−1, 1]. It is easy to calculate that it is null U -controllable from x0
satisfying

−1 + e−1 ≤ x0 ≤ 0.

It is also clear that the system is not null U -controllable from x0 = −1.
We introduce in (10) three time varying delays in control, getting the

system

ẋ(t) = x(t) + u(t) + u(v1(t)) + u(v2(t)) + u(v3(t)), t ∈ [1, 2],(12)

where v1(t) = t, v2(t) = t, v3(t) = t, that is, M = 3 and k = 2 (since
v2(2) = 1).

So, F (t1, t0) = e and

B2(t) =
{
e1−t + 4

3e
1−4/3t for t ∈

[
1, 3

2

)
,

e1−t for t ∈
[3

2 , 2
)
.

Taking ut0 = 0, we get
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J(z(t0), 2, a)

= x0ea+
3/2�

1

sup
{
u(τ)

(
e1−τ + 4

3e
1−4/3τ)e2−τa : u ∈ L2([1, 2], U)

}
dτ

+
2�

3/2

sup{u(τ)e1−τe2−τa : u ∈ L2([1, 2], U)} dτ, a ∈ E.

Using Theorem 1 we find that the system (12) is null relatively U -control-
lable in [1, 2] from x0 satisfying

−1
2 − 7

2e
−1/3 + 1

2e
−2 + 7

4e
−3/2 ≤ x0 ≤ 0.

So, as in Example 1, after introducing delays we obtain null relative U -
controllability from x0 = −1. Moreover, in this case the dynamical system
(12) with delays is also null relatively U -controllable from every initial state
from which the system (10) without delays is null U -controllable (because
[−1 + e−1, 0] ⊂

[
− 1

2 − 7
2e
−1/3 + 1

2e
−2 + 7

4e
−3/2, 0

]
).

Example 3. We keep considering the system (10) of the form

ẋ(t) = x(t) + u(t), t ∈ [0,∞),

with U = [0, 1] and E = [−1, 1]. In a time interval [0, t1] we have

J(x0, t1, a) = x0e
t1a+

t1�

0

sup{u(τ)et1−τa : u ∈ L2([0, t1], U)} dτ, a ∈ E.

We get

J(x0, t1, a) =
{
x0e

t1a for a ∈ [−1, 0],

x0e
t1a+ a(et1 − 1) for a ∈ (0, 1],

so (10) is null U -controllable if and only if

min{J(x0, t1, a) : a ∈ [−1, 1]} = 0,

that is, from x0 satisfying

−1 < x0 ≤ 0.

Therefore, the system is not null U -controllable from x0 = −1 in any time
interval [0, t1], for t1 ∈ [0,∞).

Let us now introduce two delays: h1 = 1 with B1 = et and h2 = 2 with
B2 = 1. Moreover, assume that ut0 ≡ 0. We get the differential equation

ẋ(t) = x(t) + u(t) + etu(t− 1) + u(t− 2), t ∈ [0,∞).(13)

For the system (13) with delays in control, in [0, t1] we have
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J(z(t0), t1, a)

= x0e
t1a+

t1�

0

sup{u(τ)Bt1(τ)et1−τa : u ∈ L2([0, t1], U)} dτ, a ∈ E.

To find k such that vk(t1) = 0 we introduce a fictitious delay h3 = t1 with
B3 = 0. We calculate:

Bt1(t) =





e−t + 1 + e−t−2 for t ∈ [0, t1 − 2),

e−t + 1 for t ∈ [t1 − 2, t1 − 1),

e−t for t ∈ [t1 − 1, t1).

Then

J(z(t0), t1, a)

= x0e
t1a+

t1−1�

0

sup{u(τ)(e−τ + 1)et1−τa : u ∈ L2([0, t1], U)} dτ

+
t1�

t1−1

sup{u(τ)e−τet1−τa : u ∈ L2([0, t], U)} dτ, a ∈ E.

For the system (13) we get

J(z(t0), t1, a) =

{
x0e

t1a for a ∈ [−1, 0],

x0e
t1a+

(3
2e
t1 − e− 1

2e
−t1)a for a ∈ (0, 1].

Therefore, the system (13) is null relatively U -controllable from x0 ∈ R
satisfying

−3
2 < x0 ≤ 0.

In this way we also obtain the null relative U -controllability from x0 = −1,
without diminishing the set of initial states from which one can reach zero
as a final state.

Examples 1 and 2 show that after introducing delays in control in a sys-
tem without delays which is not U -controllable from a given initial state,
we can obtain its relative U -controllability from that state. Moreover, Ex-
ample 2 shows that for properly selected delays the set of initial states may
increase.

We can also look for a connection between U -controllability in [t0, t1] of
the dynamical system without delays of the form

ẋ(t) = A(t)x(t) +B0(t)u(t),(14)

and relative U -controllability of (1) with the same matrices A(t) and B0(t).
Examples 1 and 3 show that there is no general implication here.
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4. Absolute controllability. The relative U -controllability of the dy-
namical system (1) makes sense in any time interval [t0, t1]. Assume now
that [t0, t1] is long, i.e.

t0 < vM (t1).

Then we can consider absolute controllability, where for given initial condi-
tions the final segment of the system’s trajectory should be a given function.
This is called functional controllability.

4.1. Definitions. Basing on the definition of absolute controllability for
dynamical systems with delays in control [3] we introduce the notion of
absolute U -controllability.

Definition 4. The dynamical system (1) is said to be absolutely U -
controllable in the time interval [t0, t1] from the complete state z(t0) ∈ RM×
L2([vM(t0), t0], U) into the set S if for any function w̃ ∈ L2([vM(t1), t1], U),
there exists a control ũ ∈ L2([t0, vM (t1)], U) such that the corresponding
trajectory x(t, z(t0), w̃, ũ) of (1) satisfies

x(t1, z(t0), w̃, ũ) ∈ S.
Definition 5. The dynamical system (1) is said to be (globally) abso-

lutely U -controllable in [t0, t1] into S if it is absolutely U -controllable [t0, t1]
into S for every z(t0) ∈ RM × L2([vM(t0), t0], U).

4.2. Controllability criterion. As in the relative controllability case the
lemma below allows us to replace studying the absolute controllability of the
dynamical system (1) with delays in control by studying the controllability
of a certain dynamical system without delays.

Lemma 2 ([3]). The dynamical system (1) is (globally) absolutely con-
trollable in [t0, t1] if and only if the dynamical system without delays in
control of the form

ẋ(t) = A(t)x(t) + B̂(t)u(t),(15)

where

B̂(t) =
M∑

i=0

F (t, ri(t))Bi(ri(t))ṙi(t),(16)

is controllable in [t0, vM (t1)].

As in the relative U -controllability case, we formulate a necessary and
sufficient condition for absolute U -controllability of (1).

Theorem 2. Let U be a compact set and E ⊂ Rp be any set con-
taining 0 as an interior point. Then the dynamical system (1) with de-
lays in control is absolutely U -controllable from the complete state z(t0) ∈
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RM × L2([vM(t0), t0], U) into the set S of the form (3) if and only if for
some t1 ∈ [t0,∞),

min{J(z(t0), z(t1), vM (t1), a) : a ∈ E} = 0

or , equivalently ,

J(z(t0), z(t1), vM(t1), a) ≥ 0 for every a ∈ E,
where

(17) J(z(t0), z(t1), vM(t1), a)

= vTLF (t1, t0)
[
x(t0) +

M∑

i=0

t0�

vi(t0)

F (t0, ri(τ))Bi(ri(τ))ṙi(τ)ut0(τ) dτ

+
M∑

i=0

vi(t1)�

vM (t1)

F (t0, ri(τ))Bi(ri(τ))ṙi(τ)ut1(τ) dτ
]

+
vM (t1)�

t0

sup{aTLF (t1, τ)B̂(τ)u(τ) : u ∈ L2([t0, vM (t1)], U)} dτ − aTc.

Proof. The proof proceeds analogously to that of Theorem 1, taking into
consideration that KU ([t0, t1], z(t0)) is the attainable set of the system (15)
with constrained control u(t) ∈ U.

4.3. Example. The example below shows that relative U -controllability
in [0, t1] does not imply absolute U -controllability in the same interval. By
Definitions 1 and 4, the converse is true: absolute U -controllability in [0, t1]
implies relative U -controllability in that interval.

Example 4. Consider a dynamical system with two delays in control of
the form

ẋ(t) = x(t) + u(t) + etu(t− 1) + u(t− 2), t ∈ [0,∞),(18)

and the sets U = [0, 1], E = [−1, 1]. In Example 3 it has been shown that
this system is relatively null U -controllable in [0, t1] from all initial states
x0 ∈ R satisfying

−3
2 < x0 ≤ 0,

with ut0 ≡ 0. Assume that t1 > 2. It is easy to verify that the dynamical
system (18) is relative null U -controllable in [0, t1].We will study its absolute
null U -controllability in [0, t1].

The function J(z(t0), z(t1), vM (t1), a) has the following form:
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(19) J(z(t0), z(t1), vM(t1), a)

= vet1
[
x0 +

M∑

i=0

0�

vi(0)

e−ri(τ)Bi(ri(τ))ṙi(τ)ut0(τ) dτ

+
M∑

i=0

vi(t1)�

vM (t1)

e−ri(τ)Bi(ri(τ))ṙi(τ)ut1(τ) dτ
]

+
vM (t1)�

0

sup{u(τ)et1−τ B̂(τ)a : u ∈ L2([0, vM(t1)], U)} dτ,

where vM (t1) = v2(t1) = t1 − 2 and

B̂(t) = 1 + et + e−2.

Taking ut0(t) = 0 and ut1(t) = 1/2, we get

J(z(t0), z(t1), t1 − 2, a)

= aet1
[
x0 +

1
2

2∑

i=0

vi(t1)�

v2(t1)

e−ri(τ)Bi(ri(τ))ṙi(τ) dτ
]

+
t1−2�

0

sup{u(τ)et1−τ (1 + eτ + e−2)a : u ∈ L2([0, v2(t1)], U)} dτ.

Finally, for a ∈ E, the above equality takes the form

J(z(t0), z(t1), t1 − 2, a)

=





aet1
(
x0 + 1

2e
t1 − 1

2 + 1
2e
−2
)

for a ∈ [−1, 0],

aet1
(
x0 + 1

2e
t1 − 1

2 + 1
2e
−2
)

+ a(t1et1 − et1 + et1−2 − e−2 − 1) for a ∈ (0, 1].

By Theorem 2, the dynamical system (18) is not absolutely null U -control-
lable in [0, t1] for t1 > 2, because

min{J(z(t0), z(t1), vM(t1), a) : a ∈ E}

does not exist for t1 →∞.

5. Concluding remarks. The results obtained in this article extend
those in [1], [8] and [9] to systems with delays in control. Controllability
results for dynamical systems with delays in state and with constrained
controls can be found in [10].
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