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BOUNDS FOR THE RANGE OF AMERICAN CONTINGENT
CLAIM PRICES IN THE JUMP-DIFFUSION MODEL

Abstract. The problem of valuation of American contingent claims for
a jump-diffusion market model is considered. Financial assets are described
by stochastic differential equations driven by Gaussian and Poisson random
measures. In such setting the money market is incomplete, thus contingent
claim prices are not uniquely defined. For different equivalent martingale
measures different arbitrage free prices can be derived. The problem is to
find exact bounds for the set of all possible prices obtained in this way. The
paper extends and improves some results of [1].

1. Introduction. The jump-diffusion market model described by a sto-
chastic differential equation driven by Gaussian and Poisson random mea-
sures serves as an important example of the so-called incomplete financial
market model in the sense of Harrison and Pliska’s definition (see [4], [8], [12]).
This means that for any such model there exists an infinite set of equivalent
martingale measures for which one can construct American (or some other)
contingent claim prices without inducing arbitrage opportunities.

For the last three decades investigations of this problem have been fo-
cused on some particular cases of such measures and corresponding prices
of given contingent claims. The most important equivalent martingale mea-
sures to be mentioned are: the measure proposed by Merton (see [9]), easy to
construct and appropriate for applications, and the so-called optimal mar-
tingale measure defined and constructed by Schweizer (see [13], and also [3],
where optimal exercise times for market models with Schweizer measures
have been constructed).

However, assuming given a full family of equivalent martingale measures,
one can ask for a maximal range of corresponding prices, and to localize some
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of them, e.g. those mentioned above. The first attempt in this direction was
made by Eberlein and Jacod in [2], who proved that for the underlying asset
price process, which is defined by a purely discontinuous Levy process with
unbounded jumps, the trivial bounds for European contingent claims do not
exist. Later on, Bellamy and Jeanblanc in [1] obtained the exact bounds for
the range (in the form of a bounded interval) of prices of European and
American vanilla options for a market model governed by a Wiener process
and a Poisson process with jumps of constant amplitude.

Our goal in this paper is to derive and prove in detail an explicit formula
for the range of prices of American contingent claims for a market model
governed by a Wiener process and a finite number of Poisson processes with
jumps of random magnitude. The non-trivial lower bound expressed in terms
of values of the Black—Scholes function is exact, and it can be attained by a
subfamily of equivalent martingale measures indexed by a single numerical
parameter.

2. The jump-diffusion model. Throughout the paper, we consider a
financial market on which there are two underlying assets, B and S, traded
up to a fixed time 7T > 0. Introducing a stochastic model of such market we
agree that the non-risky asset B (bond) is defined by the function B; = e
for ¢ € [0,T], and the risky asset S (stock) is given as a stochastic process,
which takes the initial value Sy > 0 (endowment), and solves the following
stochastic differential equation:

(1) dS; = S (pdt + odW, + Z Ui AN ) te (0,1],

where

(i) 7 > 0 denotes a risk-free (i.e. deterministic) constant interest rate,
(ii) p, o, and {\;}F_,, with fixed k > 1, are given positive constants;
(iii) for a probability space ({2, F,P) and a right-continuous filtration

{F} = {Fi}ico,r), which contains all P-negligible sets in F, the
process W = {W, : t € [0,T]} is an {F;}-Brownian motion, and
N* = {N} : ¢ e [0,T]} are {F;}-Poisson processes with intensities
Aifori=1,... k;

(iv) for 1 = 1,.. k {UZ j = 1,2,...} is a sequence of i.i.d. square
integrable random varlables on (2, F,P) with densities f' = f'(x),
whose supports are contained in (a;, b;) C (—1,00);

(v) Wy, N, and U; ¢ are all independent on ({2, F,P), and the filtration
{F:} can be assumed to be an appropriately constructed augmenta-

A A
tion of o(We, Ve, UL, ..., N UF s < 0).
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Further on we assume that the stock S provides dividends for its holder
with constant rate § € [0, 7).

REMARK 1. Recall that in the classical Black—Scholes stochastic model
of a financial market a risky asset is described by the SDE
(2) dSt == St(udt + O'th), te (O,T]

Quantitative and qualitative comparison of stochastic models of the finan-
cial market given as solutions to SDEs (1) and (2) and obtained through
computer simulations can be found in [7].

LEMMA 1. Define A= A + -+ -+ A\, and a density function
A A
(3) f@) =5 F1@) 4+ @),

for parameters {\;}%_, and densities { fi}¥_, introduced above. Let U1, Us, . ..
be a sequence of i.i.d. square integrable random wvariables which follow the
law assigned by this density. Then the SDE (1) is equivalent to the stochastic
differential equation

dSy = Sp—(pdt + odW, + UpadN7), ¢ € (0,T],
or
(4)  dSi = Sp—(pdt + 0dW; + UppdN} = NEF(Uh)dt), ¢ € (0,7,

where p1* = p+ ANEF(UL), or is equivalent to the stochastic differential equa-
tion in the following integral form:

t t t
(5) Si=So+\uSeds+\oSe dW,+ || Se_yT(ds,dy), te(0,7],
0 0 OR

where v(dt, dx) =v(dt, dz)—Am(dz)dt, v(dt,dx) =3 et t1ar) Lz o+dz) (Una),
and m(dx) = f(z)dx for f = f(x) given by (3).

Proof. The lemma follows from well known properties of Poisson pro-
cesses and Poisson random measures (see [5], [11]). The main thing is to
notice that the Poissonian terms in SDEs (4) and (5) are related by

UnpdN = NEF(Un)dt = |y o(dt, dy). =
R
The financial market model defined by equivalent SDEs (1), (4) or (5) is
called a diffusion model with jumps of random magnitude.

3. Equivalent martingale measures. In our setting, a probability
measure Q on the space (£2,F,P,{F;}ico) is called an equivalent mar-
tingale measure if it is equivalent to the probability P and if the process
{e7"t+9tS, . t € [0,T]} is a martingale under Q.
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Our aim is to find a subfamily of measures Q for which we get the range
of the underlying American options prices. First we restrict ourselves to
those equivalent martingale measures Q whose Radon—-Nikodym densities
{L, = EP(Z% | Fy) it €[0,T]} satisfy the regularity condition
(6) sup EF(L?) < oo.

t€[0,T]
Such equivalent martingale measures are described by the following lemma,
proven e.g. in [1] and [10].

LEMMA 2. The set Q of martingale measures equivalent to P, with Ra-
don—Nikodym densities satisfying (6) consists of all probability measures P7
for which the processes {L;Y = EP(% |]:t) A [O,T]} take the form of
a product L] = LZ’WL;Y’U of two Doléans—Dade stochastic exponentials, i.e.
solutions of two linear SDEs

t
LV =1+ L2y aw,,
0
~ t 5
LY = 14177 {5 (s,y) O(ds, dy).
0 R

The processes = {1y : t € [0,T]} andy = {v(t,x) : (t,z) € [0,T] x R} are
predictable and linked by the equality

(7) pr—r 48+ o+ Ayt y)ym(dy) =0,
R
and such that

dPY
1+~(t,z) >0, EIF”<ﬁ ‘]—"T> =1.

The process 1 is called the market price of diffusion risk, while v is the
market price of jump risk.

REMARK 2. Predictable processes v = {y(t,z) : (t,z) € [0,T] x R}
from (7) such that the processes {e "**%S; : t € [0,T]} are martingales
under the corresponding measures P7, can be considered as a set of indices
parametrizing the full family of relevant martingale measures. However, for
our purposes (see Section 4) it is enough to consider only the smaller set I
of processes ¥ = {7y(x) : * € R} that do not depend on time ¢, i.e. we assume
from now on that P? € Q if and only if v € I'. To attain bounds for the
range of all prices for a given contingent claim and fixed model of a financial
market it is enough (and convenient, see relations (12)) to consider only
constant v € (—1,00) (see Theorem 3). However, e.g. the Schweizer optimal
price was explicitly described by some nonconstant function v = v(z) (see
[13] and [3]) though there exists a constant 7 corresponding to it.
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For any v € I' the process
t
(8) Wy =W, — 1 ds
0
is a standard Brownian motion under the probability measure P? from Q.
From Girsanov’s theorem (see [10]) it follows that also any homogeneous
compensated Poisson martingale measure

(9) 07 (dt,dx) = v(dt,dx) — Ay(t, z)m(dz)dt
on (£2, F,P) can be viewed on ({2, F,P7) as a compensated random measure
(10) v (dt,dx) = V7 (dt,dx) — X7m" (dzx)dt,

with m?Y(dz) = f7(x)dx, or can be identified with a stochastic differential
represented by a homogeneous compensated Poisson process as follows:
(11) \y o (dt, dy) = U]Vtm AN} — XTEF(U)) dt,

R
where the Poisson process N = {N}" : t € [0,7]} and the i.i.d. sequence

{U;’ :7=1,2,...} of square integrable random variables U] are defined—in
terms of data from Lemma 1—by the following relations:

- e (LE9E)I@)
(12) X = Aﬂi(l UL O wiwwvmymy
After rewriting SDE (4) as
% = pdt + opdt + A S yy(y) m(dy) dt
- R
+odWy — oprdt + {y o(dt, dy) — A | yry(y) m(dy) dt,
R R

and making use of relations (7)—(11), we see that the stochastic differential
equation for the stock price S = {S; : t € [0,T]} with respect to P? € Q
takes the following equivalent integral form:

t t
(13) Si=So+(r—0) | Se—ds+o | Se_dW}
0+ 0+
t t
+ | S fyvr(ds, dy) — | S [y m7 (dy) du,
0+ R 0+ R

where {Sg+ Ss— SgyAYmY(dy)ds : t € [0,T]} is a semimartingale with con-

tinuous paths and {SEH Ss— Spyv7(ds,dy) : t € [0,T]} is a pure jump semi-
martingale.
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Rewriting equation (13) in detail, we see now that the stock price process
S solves the SDE reduced to the following differential form:

(14) dS, = S, (WVdt + odW, + U]VtM AN},

where 7 =r — 6 — \YEF (U)).

So, we conclude this section with the observation that the family {P7},cr
of equivalent martingale measures is correctly constructed. We can derive
different prices of American contingent claims for different measures P,
working with the stochastic model of time evolution of the underlying risky
asset price, which provides the same (independent of v € I') stochastic
process S = {S; : t € [0,T]}.

4. The range of contingent claim prices. In our framework the
problem of American contingent claim pricing can be formulated as a sto-
chastic nonstationary optimal stopping time problem for a linear SDE (14),
describing time evolution of a given risky asset S with given probability
space ({2, F,P7, {Fi}iej0,m) and fixed probability P7 € Q.

This means that for any fixed (¢, z) € [0, 7] x Ry we have at our disposal
the solution {S; = Sy”(w) : s € [t,T]} of the problem

(15)  Sy==, dS; =S (uds+odW] + U} dN)),  se(t,T],

and we can define the viable (i.e. arbitrage free) American contingent claim
price V7 (t,z) = Vg(t, x) in the form of a value function

(16) Vi(te) = sup eEF(eTC(SE)),
Te€T (t,T)

where 7 (t,T) denotes the set of all stopping times 7 = 7(w) for the space
(02, F, P, {Fi}iep0,1]), with values in [t, T']. Here ( = ((x) defined for z € R
is a pay-off function. We assume throughout the paper that ¢ multiplied by
exp(—p|In(z)|) is a bounded function with bounded first derivative on R.

It is known that always V7 (t,z) > ((x), and that the optimal stopping
time (i.e. optimal exercise time) for the problem (16) is the random variable

(17) Tyv(t,x;w) =inf{s € [t,T]: V7 (s, St"(w)) = ¢(SH*(w))}.

REMARK 3. To obtain, for example, an American put option price it is
enough to choose ((r) = (K — x)* for a fixed positive striking price K.
In [3], [14] one can find price surfaces {V7(¢t,z) : (t,z) € [0,T] x Ry} and
statistical estimates of the densities of the corresponding optimal exercise
times 7V (t,x) = 77" (t, 2;w) for the American put option corresponding to
the optimal Schweizer equivalent martingale measure P7 € Q, obtained from
computer solution of the underlying free boundary problem (i.e. backward
parabolic variational inequality with integro-differential operator) by linear
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programming methods, and from numerical approximation and Monte Carlo
simulations of solutions to SDE (15).

Here our main goal is to provide bounds for the function V7 = V7 (¢, x).
In order to get them we need—by analogy with (15)—(17)—more information
on the American claim prices in the classical Black—Scholes framework, given
by the stochastic model

So =Sy, dS;=S((r—8)dt+cdW;), te(0,T].

In this setting there exist a unique equivalent martingale measure and a
unique arbitrage free price, so—without notational changes—we can use

Sp==z, dS;=S,((r—8)ds+adW,), se(t,T),
in order to define the American contingent claim price as a Black—-Scholes
function given by

(18) G(t,x) =Ge(t,x) ;== sup et E(e_rTC(S\i’”")) for t € [0,T7,
T€T (¢,T)

and the corresponding optimal stopping time 79 as
79 =79(t,x) == inf{s € [t,T] : G(5, St%) = ¢(SL™)}.

Now, let us introduce on the space of C1?-regular functions u = u(t,x) the
following backward parabolic operator
ou 1 5 ,0%

(19) Lps(u)(t,z) := E(t’ x) + 30°% W(t,x) +(r—90)z %(t,:p),

with the degenerating elliptic part as x | 0.

It is well understood (for constructive details see [14], [15]) that the pay-
off function G = G(t,x) and the so-called free boundary b9 = b9(t) can
be obtained as a solution of the backward parabolic variational inequality
determined by the operator (19), and with the initial conditon (at time
t="T)

G(T,z) = ((x).

The free boundary is a continuous function on [0,7]. Assuming that ( is
monotonic, we see that so is the free boundary. It separates the domain
[0,T] x Ry of G into the continuation region CY and the stopping region SY:

CY:={(t,x) € (0,T] x Ry : G(t, ) > {(x)},

SY .= {(t,z) € (0,T] x Ry : G(t,z) = ((x)}.
If ¢ is convex, then the corresponding Black—Scholes function G = G(t,x)
has the following properties:
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(i) G is convex with respect to x for all ¢ € [0, ¢],
(ii) G has bounded partial derivative 0G/0x for all (¢,x) € (0,7] x R4
and (for some C' > 0)

(20) ‘g—i(t,x)' <C,
(iii) G € €% and for all (¢,z) € CY,
(21) Lps(e™"G(t,z)) = 0,
(iv) for any (¢,x) € [0,T] x R4 and any y € R,
(22) A(G(t,z);y)) = 0.

The proofs of these properties are given in [6], [8] and [10].
For further use we need another operator, defined by

0
(23)  Au(te)y) = ult, (L y)a) - ult2) - oy oo (1),
from which we construct a few integral operators, e.g.
t
Ly (u)(t,x) = | | Au(s, z); y) 07 (ds, dy).
0R
We also need the random variable

(24) 79 = 19(t,2) .= inf{s € [t, T] : G(s, Sv%) = ¢(SL™)},

which is a stopping time from 7 (¢, 7).
To end these preliminary remarks, notice that the solution to SDE (14)
can be described explicitly as a stochastic exponential (see e.g. [11])

N
1 S
Sy = S;exp (/ﬂs +oW] — 5023 + g In(1+ U])), set,T).
i=1

It is not difficult to see that for any a > 1,
(25)  E"(S5)* = (S)"exp(aps + 3a’0?s* — Lao?s)
x exp(=A\'(1 = EY (1 4+U])")s) < o0, s€|t,T].

Let us also recall the martingale properties of the most important sto-
chastic integrals we need in the proofs.

PROPOSITION 1. Let a stochastic point process identified with a Poisson
random measure v with compensator q belong to the class QL, i.e. be quasi
left-continuous. Suppose a process {g(t,x) : (t,x) € [0,00) x R} is {F;}-pre-
dictable and E(Sg §g l9(s,y)q(ds,dy)) < oo for all t > 0. Then the process
{Sg (r9(s,y)(ds,dy) : t € [0,T]} is an {F;}-martingale.
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PROPOSITION 2. Let ® = {&; : t € [0,T]} be an {Fi}-adapted and
measurable stochastic process such that E(SE @2 ds) < oo for allt > 0. Then
the stochastic integral {Sg by dWs : t € (0,7} is an {F;}-martingale.

Now we are in a position to prove the main theorems providing bounds
and the range of viable prices for American type financial derivatives.

THEOREM 1. Let P € Q be a martingale measure equivalent to the
probability P, and let V7 (t,S;) be the arbitrage free price of an American type
derivative asset defined by (16). Suppose the pay-off function ¢ is conver and
such that ((0) =0, 0 < ((z) <z, for x € Ry. Then for ally € I,

(26) G(t,S) <V(t,8) < St foranytel0,T].

Proof. The main task is to prove the inequality G(¢,S;) < V7(t,S;).
The argument is of rather technical nature, but it is based on some, not
obviously known facts from the theory of point processes, semimartingales
and semimartingale stochastic integrals.

The main idea is to make use of the stopping time (24), i.e. to work with
realisations (trajectories) of the stochastic process S = {(s,Ss) : s € [t,T|},
locating them in the sets CY and SY.

If (¢,5¢) € CY, i.e. t < 79, then we make use of the equality G(79,5,¢) =
¢(79). Let us begin with the obvious estimate

VI(t,S;) = sup e ET (e777¢(S,) [ Sh)
T€T (t,T)

> e EF (€77 ¢(S,6) | Se) = € EF (e77G(79,5,6) | Sh).

Then, applying the It6 formula (Theorem 33 in [11]) to the process S and
the Cl%-regular function f(t,z) := e "*G(¢, r), we arrive at

©27) e G(r9,8.0) — e "G(L, Sy)

g g
T 9 —-rs K 9 —rs
S@t( G(s, Se- ))ds+tﬁ+a—x( G(s,Ss_)) dS
Ly & e "G(s, Ss-)) d[I, 1] Ly o ~"G(s, Ss-)) d[S, S
+§5aﬂ (SN AT + 5 | gz (e7"606Sec) S,
+9
82 —Ts C
+§ 5 (€776 (s, S:)) dl1, S);
t+

S { —rsgss>>_%(e—mg(s,ss_>mss},

t<s<79
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where I = {Is}c[o,r) stands for the function (deterministic process) of the
form I, := s.

It is not difficult to check that that [I,I]° = 0 and [Z,S]¢ = 0, so from
representation (13) of § we get AS; =S, {, yv7(ds,dy), and then

S, SJ; = dIS. ), ~ (A8,)? = dIS, ), — (8- Jyo(ds, )
R

2
d[S,S]s = 0%5% ds + (S’S, S yu7(ds, dy)) ,
R
d[S, S]¢ = 0252 ds.

Thus, a more explicit form of (27) is as follows:

(28) e 77G(79,S,0) — TG (L S))
79 79
= S é(e—’r‘sg(s7 Ss—)) ds + S %(e—rsg(s’ Ss—))Ss— (’I" _ 5) ds

t+ ot t+
el

+)
t+

0
2 (eTs v
83:(6 G(s,S5-))Ss—o dW,

7,

+ S 88 (€77G (s, 95-))Ss— | y 07 (ds, dy)
R

17 P .
§§a— G(s,Ss_))o2S5% ds

+ ) {A(e”Q(s,SS)) - g(emg(s,Ss_))ASs}.
t<s<t9 v
G(s, Se_

Noticing that G(s, + AS,) = §x G(s,Ss— + Ss—y) vV (ds, dy), we get

0
A(e77°G(5,5.)) — S-(e77"G (s, 5.))AS,
=e "G(s,Ss— + AS;) —e "°G(s,S5-) — e "* %(S, Ss—)AS;

= e\ G(s, 95— + Ss-y) v (ds, dy) — e ™" | G(s,8,-) v (ds, dy)
R

R
rsS
R

e A(G(5,S5-);y) v (ds, dy).
R

Qv‘Qv
8 Q

s—)Ss—y v (ds, dy)
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From (19) and (21) we derive

9
0= | Las(e"G(s,S,-)) ds
t+
79 e
= | o (€760, 8,0 ds + | A (e G(5,5, )5 (r = ) s

ot Ve or y Ds5— 5—

t+ i
17 62
_ Y (TS 2 2

T3 t& ) (e7"°G(s,Ss—))o"S;5_ ds.

Thus (27) takes the form
(20) e G(r9,5,0) = eG(L, S))

g
K —rs g ~
= [ es, %(S,SS_)(adWQ—i—Syv”(ds,dy))
t+ R
9
+ { e L AG(s, S5 );) 07 (ds, dy)
t+ R
79 ag
= [ s s, 80 )oawy
ox
t+
79 ag
+ 4\ <e”Ss— 5, (555 )y + e A(G(s, S5 )sy) W(ds,dy)>
t+ R v
9
+ | e [ A(G(s, Sem )i y) N m7 (dy) ds.
t+ R

Now we show that the first two integrals on the right hand side above are P7-
martingales. Indeed, the process {e_’”SS’S,‘g—g(S, Ss—)o : s €]0,T]} is adapted
and measurable. Therefore, to prove that {{;, e S, % (s, )o dWJ -

z € [t,T]} is a P7-martingale it is enough to check that for any z € (¢, 7],

P ( —rs g ?
E (S <e Se— %(S,SS_)O'> ds | < o0

t+

(see Proposition 2). The estimate

- 99 ? 2 202
rs = o < -
(e S D (s,S )0’> < C*0°S;
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follows directly from (20), so

P ( —rs a_g 2
E (S <6 Se— 8m(S’SS_)U> ds>

t+
z

z
< C%? E“”( [ 52 ds) = C%* | EP(S2) ds.
t+ t+
From (25) it follows that the function s — EF’(S2_) is integrable on (¢, 2].
The assumptions of Proposition 2 are satisfied for all z € (¢,T]. Therefore,
the process { §it e_’"SSs_g—g(s, Ss_)odWJ : z € [t,T]} is a martingale with
respect to P7.

The compensator of the martingale measure v7 is given by the formula
q"(ds,dy) = \Ym"(dy)ds, where m” stands for a positive and finite measure
on R. So, the point process (N, {U],U],...}) belongs to the class of QL
processes (see [5, Chapter II]). Let us define
M(s,y) :==e"Ss_ g—i(s, Ss—)y+e "A(G(s, S5-);y).

The process M = {M(s,y) : (s,y) € [0,T] x R} is predictable. Therefore,
in order to show that the stochastic process given by the stochastic integral
{§,1 Se M(s,y) 0V (ds,dy) : z € (t,T]} is a martingale for P7, it is enough to
prove that for any z € (¢, 7] we have
z
B (] § 10 (s, )] g7 (ds, dy) ) < oo
t+ R

(see Proposition 1). Now, directly from the definition (23) of the operator A
we get the estimate

0
M s,0)] = [Sun G551+ AG s 5. )iv)|

|, aG oG ‘

— |8 5 (5,8 )y + Gls, (14 9)Sem) = Gls, Sso) = Suy 5 (15,0

<e"|G(s, (1 +y)Ss—) — G(s,55_)| < CSs_|y|
for some positive constant C. Thus we obtain

B (] J 1M (s, (s, ) < CE (] | Suclyldm () ds)
R R

:OMEP”( [ 5. ds) £ (y

t+
z

=cox | EF (S dsS | (y
t+
Because the density f7 = f7(y) is positive only on a ﬁmte interval in R, the
integral ; |y|f7(y) dy is finite and the function s — E”(S,_) is integrable
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on (t, z]. This means that the assumption of Proposition 1 is satisfied and the
process {{;, §p M(s,y)07(ds,dy) : z € (t,T]} is a martingale with respect
to the probability P7.
Concluding the investigation of both stochastic integrals above, which
start from 0 at time ¢ € [0, 7], we see that
76

EY (Ar e "8 gg (s,S5—)o dW]

St) —0,

X

e
EY < S S (e_rsss— Z_i(sa Ss—)y +e " A(G(s, Ss—); y))ﬁ'y(ds, dy)
t+ R

) =

Then, coming back to (29) we obtain
EY (e G(79,5,6) | ) — e "G (t, Sp)

G
— E]P"Y< S e T S A(Q(S,SS,);ZJ))\W m’Y(dy) ds ‘ St) >0.
t+ R

Finally, we get
VI(t,8) = e BY (e 777 ¢(S,0) | Sh)

-G
=G(t,S) + e EPW< S e "’ S A(G(s,95-);y) AT m7 (dy) ds ‘ St)
t+ R

Z g(ta St)7

which ends the proof of the first inequality in (26) for the case of (¢,.5;) € CY.
If (t,5;) € SY, i.e. t > 79, then G(t,S;) = ¢(S;), and we get

V7(t,Sy) = sup ertEPV(e_TTC(ST)]St)
T€T (t,T)

> " ET (e7C(50) | S) = ¢(Sh) = G, S).

It is easy to get the upper bound in (26). Thanks to the inequality
¢(x) <z, we obtain

VI(t,8) = sup € ET(e77¢(Sr)|S)

T€T(t,T)
< sup e—&’r-ﬁ-rt E]P’“f (e_rT+6TS-,- | St) = sup 6_6T+5t5t _ St-
T€T(t,T) T€T (¢,T)

This completes the proof. m

THEOREM 2. Let P € Q be a martingale measure equivalent to the
probability P, and let V7 (t,S;) be the arbitrage free price of an American type
derivative asset defined by (16). Suppose the pay-off function ¢ is conver and
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such that 0 < {(z) < ((0) for x € Ry. Then for ally € I,
(30) G(t,Sy) <V7(t,S;) <¢(0) foranyte[0,T).

Proof. In comparison with Theorem 1 the only thing to do is to prove
the upper bound in (30).
From the inequality ((x) < {(0) we get

V7(t,S) = sup eTtEPW(e_”C(STHSt)

T€T (t,T)
< sup €"ET(e77T¢0)[S) = sup €"T¢(0) =¢(0). =
T€T (t,T) T€T (¢,T)

In [1] it is shown that the range of prices in question is a full interval
(bounded, as we have seen above). Now, in view of Remark 2, we prove that
the left end of this interval is identified exactly, and can be approached with
constant indices y € (—1, 00).

THEOREM 3. Let V7(t,S;) be the price of an American type derivative
asset, defined by (16) for any constant v € (—1,00). Suppose the pay-off
function ¢ = ((x) is convex. Then

liml V’Y(t’ St) == g(t, St)
Y=

Proof. From Theorem 1 we know that
g(ta St) S V’Y(t’ St)

It is obvious that ((S;) < G(t,S¢). Otherwise we would have an arbitrage
opportunity on the market. So, we have

VI(t,8)= sup e E(e7T¢(S,)|S) < sup " EY (e777G(T, Sp) | Sh).
T€T (t,T) Te€T (t,T)

Applying the It6 formula for any 7 € 7(¢,T), we get
e EY (777G (T, S7)|Sh)

T

=G(t,S) + et EY ( S e "’ S A(G(s,Ss—);y)N" m7(dy) ds ‘ St).
t+ R

It follows immediately from (12) that \Y = A(1 + ) and m?(dy) = 7 (y)dy
for v constant, so

(31)  V7(t,S:) < G(t,St)

T

FA1+9) sup BT (§ e [ AG(s, S )ip) S () dy ds| S ).
T€T(t,T) + R
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It is easy to see (repeating an argument from the proof of Theorem 1) that
AG(s, S,-); y)| < 2CS,lyl, and then

T

ot EPW( VeV AG(s, S )sm) 7 (y) dy ds ‘ St)‘

t+ R
T
<20 {1yl () dy BT (] S,-ds| )
R t+
T
= 2CS lylf7(y) dy S EY(S,_ | Sy)ds < .
R t+

Thus (31) yields lim,—._1 V7(£,5;) = G(,5;). m

5. Conclusions. It is quite obvious that the range of American contin-
gent claim prices in the diffusion model with jumps of random magnitude
presented and characterized in this paper is much too wide in comparison
with real-life data from money markets. When performing appropriate com-
puter experiments, it becomes evident that the “reasonable” range of prices
would be much smaller, e.g. comparable with the smallest interval contain-
ing Merton and Schweizer prices (see [3], [14], or get some results with the
help of the SDE-Solver software package from [7]). It is a challenging task to
find and characterize subclasses of equivalent martingale measures P in Q
which would be appropriate for applications.
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