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LONG TIME ESTIMATE OF SOLUTIONS TO
3D NAVIER–STOKES EQUATIONS

COUPLED WITH HEAT CONVECTION

Abstract. We examine the Navier–Stokes equations with homogeneous
slip boundary conditions coupled with the heat equation with homogeneous
Neumann conditions in a bounded domain in R3. The domain is a cylinder
along the x3 axis. The aim of this paper is to show long time estimates
without assuming smallness of the initial velocity, the initial temperature
and the external force. To prove the estimate we need however smallness of
the L2 norms of the x3-derivatives of these three quantities.

1. Introduction. The aim of this paper is to derive a long time a pri-
ori estimate for some initial-boundary value problem for a system of the
Navier–Stokes equations coupled with the heat equation. We assume the
slip boundary conditions for the Navier–Stokes equations and the Neumann
condition for the heat equation. We examine the problem in a straight finite
cylinder. To obtain the estimate we follow the ideas from [7, 8, 10] and the so-
lution considered remains close to a two-dimensional solution. The estimate
is the first and most important step in proving the existence of solutions to
the problem (see (1.1)) by the Leray–Schauder fixed point theorem (see the
next paper of the authors [9]).
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We consider the following problem:

(1.1)

v,t + v · ∇v − div T(v, p) = α(θ)f in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

θ,t + v · ∇θ − κ∆θ = 0 in ΩT ,

n̄ · D(v) · τ̄α = 0, α = 1, 2, on ST = S × (0, T ),

n̄ · v̄ = 0 on ST ,

n̄ · ∇θ = 0 on ST ,

v|t=0 = v(0), θ|t=0 = θ(0) in Ω,

where x = (x1, x2, x3) denote the Cartesian coordinates, Ω ⊂ R3 is a cylin-
drical type domain parallel to the x3 axis with arbitrary cross section,
S = ∂Ω, v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R3 is the velocity of the fluid
motion, p = p(x, t) ∈ R1 the pressure, θ = θ(x, t) ∈ R+ the temperature,
f = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 the external force field, n̄ is the unit out-
ward normal vector to the boundary S, τ̄α, α = 1, 2, are tangent vectors to
S and the dot denotes the scalar product in R3. We define the stress tensor
by

T(v, p) = νD(v)− pI,
where ν is the constant viscosity coefficient, I is the unit matrix and D(v) is
the dilatation tensor of the form

D(v) = {vi,xj + vj,xi}i,j=1,2,3.

Finally κ is a positive heat conductivity coefficient.
We assume that S = S1∪S2, where S1 is the part of the boundary which

is parallel to the x3 axis and S2 is perpendicular to that axis. More precisely,

S1 = {x ∈ R3 : ϕ0(x1, x2) = c∗, −b < x3 < b},
S2 = {x ∈ R3 : ϕ0(x1, x2) < c∗, x3 is equal either to −b or b},

where b, c∗ are given positive numbers and ϕ0(x1, x2) describes a sufficiently
smooth closed curve in the plane x3 = const.We can assume τ̄1 =(τ11, τ12, 0),
τ̄2 = (0, 0, 1) and n̄ = (τ12,−τ11, 0) on S1. Assume that α ∈ C2(R) and
ΩT satisfies the weak l-horn condition, where l = (2, 2, 2, 1) (see [2, Ch. 2,
Sect. 8]).

To apply the simpler version of the Korn inequality we assume that Ω is
not axially symmetric (see Lemma 2.1).

Assume that ‖θ(0)‖L∞(Ω) <∞. Define

a : [0,∞)→ [0,∞), a(x) = sup{|α(y)|+ |α′(y)| : |y| ≤ x}
and assume that

(1.2) a(θ(x)) ≤ c1,
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where c1 = a(‖θ(0)‖L∞(Ω)). The inequality (1.2) is justified in view of Lemma
2.3, Remark 2.4 and the properties of the function a(x). Let σ, % be such that
5/3 < σ <∞, 5/3 < % <∞, 5/%− 5/σ < 1.

Now we formulate the main result of this paper. Let
(1.3)
g = f,x3 , h = v,x3 , q = p,x3 , ϑ = θ,x3 , χ = (rot v)3, F = (rot f)3.

Assume the following conditions hold for all t ≤ T :
1. c1‖g‖L2(0,t;L6/5(Ω)) + c1c0‖f‖L∞(0,t;L3(Ω)) + c1‖F‖L2(0,t;L6/5(Ω))

+c1‖f3‖L2(0,t;L4/3(S2))+‖h(0)‖L2(Ω)+‖ϑ(0)‖L2(Ω)+‖χ(0)‖L2(Ω)+ψ(c0)
+ c20(c1‖f‖L2(0,t;L6/5(Ω)) + ‖v(0)‖L2(Ω)) ≤ k1 <∞,

2. ‖f‖L2(0,t;L3(Ω)) ≤ k2 <∞,
3. ‖f‖L2(Ωt) + ‖v(0)‖H1(Ω) ≤ k3 <∞,
4. c1‖f‖L∞(Ωt)e

cc21k
2
2k1+c1‖g‖Lσ(Ωt)+‖ϑ(0)‖

W
2−2/σ
σ (Ω)

+‖h(0)‖
W

2−2/σ
σ (Ω)

≤ k4 <∞,
5. c1‖g‖L2(0,t;L6/5(Ω)) + c1‖f3‖L2(0,t;L4/3(S2)) + ‖h(0)‖L2(Ω) + ‖ϑ(0)‖L2(Ω)

≤ d <∞,
6. c1 + ‖f‖L%(Ωt) + ‖v(0)‖

W
2−2/%
% (Ω)

+ ‖θ(0)‖
W

2−2/%
% (Ω)

≤ k5 <∞,

where c0 is the constant from Lemma 2.3, ψ(c0) is the increasing function
from Lemma 3.3 and k1, . . . , k5 are constants.

Main Theorem. For every fixed T , and given positive constants k1–k5,
c0, c1 under the above assumptions 1–6, if the constant d in condition 5 is
small enough, then there exists B = B(k1, . . . , k5, c0, c1) < ∞ such that for
any strong solution (v, p, θ) to problem (1.1) we have

‖v‖
W 2,1
% (Ωt)

+ ‖∇p‖L%(Ωt) + ‖θ‖
W 2,1
% (Ωt)

≤ B,(1.4)

‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) + ‖ϑ‖
W 2,1
σ (Ωt)

≤ B,(1.5)

for all t ≤ T .
In the next paper [6], we use this result to prove the long time existence

of regular solutions to (1.1).
Finally, we underline that a global a priori estimate guaranteeing ex-

istence of global regular solutions to (1.1) (see [9]) is possible under the
restriction that the quantity d from assumption 5 is sufficiently small. This
kind of assumption in the case of the Navier–Stokes equations only appeared
in [7, 10]. Problem (1.1) in the case of inflow-outflow was generalized by
Kacprzyk in [3, 4]. Papers [3, 4] base on [13], where the inflow-outflow prob-
lem for the Navier–Stokes motions in a cylindrical pipe is considered.

2. Preliminaries. In this section we introduce notation and basic esti-
mates for weak solutions to problem (1.1).
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2.1. Notation.We use isotropic and anisotropic Lebesgue spaces: Lp(Q),
Q ∈ {ΩT , ST , Ω, S}, p ∈ [1,∞], and Lq(0, T ;Lp(Q)), Q ∈ {Ω,S}, p, q ∈
[1,∞]; and Sobolev spaces

W s,s/2
q (QT ), Q ∈ {Ω,S}, q ∈ [1,∞], s ∈ N ∪ {0}, s even,

with the norm

‖u‖
W
s,s/2
q (QT )

=
( ∑
|α|+2a≤s

�

QT

|Dα
x∂

a
t u|q dx dt

)1/q
,

where Dα
x = ∂α1

x1
∂α2
x2
∂α3
x3
, |α| = α1 + α2 + α3, a, αi ∈ N ∪ {0}.

In the case q = 2,

Hs(Q) = W s
2 (Q), Hs,s/2(QT ) = W

s,s/2
2 (QT ), Q ∈ {Ω,S}.

Moreover, L2(Q) = H0(Q), Lp(Q) = W 0
p (Q), Lp(QT ) = W 0,0

p (QT ).
We define a space natural for the study of weak solutions to the Navier–

Stokes and parabolic equations:

V k
2 (ΩT ) =

{
u : ‖u‖V k2 (ΩT ) = ess sup

t∈[0,T ]
‖u‖Hk(Ω)

+
(T�

0

‖∇u‖2Hk(Ω) dt
)1/2

<∞
}
.

2.2. Weak solutions. By a weak solution to problem (1.1) we mean a
pair v ∈ V 0

2 (ΩT ), θ ∈ V 0
2 (ΩT ) ∩ L∞(ΩT ) satisfying the integral identities

(2.1) −
�

ΩT

v · ϕ,t dx dt+
�

ΩT

v · ∇v · ϕdx dt+
ν

2

�

ΩT

D(v) · D(ϕ) dx dt

=
�

ΩT

α(θ)f · ϕdx dt+
�

Ω

v(0)ϕ(0) dx,

(2.2) −
�

ΩT

θψ,t dx dt+
�

ΩT

v · ∇θψ dx dt+ κ
�

ΩT

∇θ · ∇ψ dx dt

=
�

Ω

θ(0)ψ(0) dx,

for all ϕ,ψ ∈W 1,1
2 (ΩT ) ∩ L5(ΩT ) such that ϕ(T ) = 0, ψ(T ) = 0, divϕ = 0,

ϕ · n̄|S = 0.

Lemma 2.1 (Korn inequality, see [12]). Assume that

EΩ(v) = ‖D(v)‖2L2(Ω) <∞, v · n̄|S = 0, div v = 0.

If Ω is not axially symmetric there exists a constant c1 independent of v
such that

(2.3) ‖v‖2H1(Ω) ≤ c1EΩ(v).
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If Ω is axially symmetric, and η = (−x2, x1, 0), α =
	
Ω v · η dx, then there

exists a constant c2 independent of v such that

(2.4) ‖v‖2H1(Ω) ≤ c2(EΩ(v) + |α|2).

Let us consider the problem

(2.5)

h,t − div T(h, q) = f in ΩT ,

div h = 0 in ΩT ,

n̄ · h = 0, n̄ · D(h) · τ̄α = 0, α = 1, 2, on ST1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on ST2 ,

h|t=0 = h(0) in Ω.

Lemma 2.2. Let f ∈ Lp(ΩT ), h(0) ∈ W 2−2/p
p (Ω), S1 ∈ C2, 1 < p <∞.

Then there exists a solution to problem (2.5) such that h ∈W 2,1
p (ΩT ), ∇q ∈

Lp(ΩT ) and there exists a constant c depending on S and p such that

(2.6) ‖h‖
W 2,1
p (ΩT )

+ ‖∇q‖Lp(ΩT ) ≤ c(‖f‖Lp(ΩT ) + ‖h(0)‖
W

2−2/p
p (Ω)

).

The proof is similar to the proof in [1].

Lemma 2.3. Assume v(0)∈L2(Ω), θ(0)∈L∞(Ω), f ∈L2(0, T ;L6/5(Ω)),
T < ∞. Assume that Ω is not axially symmetric. Assume that there exist
constants θ∗, θ∗ such that θ∗ < θ∗ and θ∗ ≤ θ0(x) ≤ θ∗, x ∈ Ω. Then there
exists a weak solution to problem (1.1) such that (v, θ) ∈ V 0

2 (ΩT )×V 0
2 (ΩT ),

θ ∈ L∞(ΩT ) and

(2.7) θ∗ ≤ θ(x, t) ≤ θ∗, (x, t) ∈ ΩT ,

and there exist positive constants c, c0 independent of v and θ such that

‖v‖V 0
2 (ΩT ) ≤ c(a(‖θ0‖L∞(Ω))‖f‖L2(0,T ;L6/5(Ω)) + ‖v0‖L2(Ω)) ≤ c0,(2.8)

‖θ‖V 0
2 (ΩT ) ≤ c‖θ0‖L2(Ω) ≤ c0.(2.9)

Proof. Estimate (2.7) follows from standard considerations (see [8, Lem-
mas 3.1, 3.2]). Estimates (2.8), (2.9) follow formally from (1.1)1,3 by mul-
tiplying them by v and θ, respectively, integrating over Ω and (0, t), t ∈
(0, T ), employing (2.7), (1.1)2 and using the boundary and initial conditions
(1.1)4−7. Existence can be shown in the same way as in [5, Ch. 3, Sect. 1–5].
This concludes the proof.

Remark 2.4. If θ(0) ≥ 0, then θ(t) ≥ 0 for t ≥ 0.

2.3. Auxiliary problems. To prove the existence of global regular so-
lutions we recall the quantities introduced in (1.3),

h = v,x3 , q = p,x3 , g = f,x3 , ϑ = θ,x3 .
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Differentiating (1.1)1,2,4,5 with respect to x3 and using [10, 13] yields

(2.10)

h,t − div T(h, q) = −v · ∇h− h · ∇v + αθϑf + αg in ΩT ,

div h = 0 in ΩT ,

n̄ · h = 0, n̄ · D(h) · τ̄β = 0, β = 1, 2, on ST1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on ST2 ,

h|t=0 = h(0) in Ω.

Let q and f3 be given, Then w = v3 is a solution to the problem

(2.11)

w,t + v · ∇w − ν∆w = −q + α(θ)f3 in ΩT ,

n̄ · ∇w = 0 on ST1 ,

w = 0 on ST2 ,

w|t=0 = w(0) in Ω.

Let F = (rot f)3, h, v, w be given. Then χ = (rot v)3 is a solution to the
problem (see [8, 10])

(2.12)

χ,t + v · ∇χ− h3χ+ h2w,x1 − h1w,x2 − ν∆χ
= αθ(θ,x1f2 − θ,x2f1) + αF in ΩT ,

χ = vi(ni,xjτ1j + τ1i,xjnj) + v · τ̄1(τ12,x1 − τ11,x2) ≡ χ∗ on ST1 ,

χ,x3 = 0 on ST2 ,

χ|t=0 = χ(0) in Ω,

where the summation convention over repeated indices is assumed.
Differentiating (1.1)3,6,7 with respect to x3 yields

(2.13)

ϑ,t + v · ∇ϑ+ h · ∇θ − κ∆ϑ = 0 in ΩT ,

n̄ · ∇ϑ = 0 on ST1 ,

ϑ = 0 on ST2 ,

ϑ|t=0 = ϑ(0) in Ω.

Lemma 2.5. Assume that D(h) ∈ L2(Ω), h · n̄|S = 0, div h = 0 and
Ω ⊂ R3. Then h satisfies the inequality

(2.14) ‖h‖H1(Ω) ≤ c‖D(h)‖L2(Ω),

where c is a constant independent of h.

Proof. To show (2.14) we examine the expression
�

Ω

|D(h)|2 dx =
�

Ω

(hi,xj + hj,xi)
2 dx =

�

Ω

(2h2
i,xj + 2hi,xjhj,xi) dx,
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where the second expression under the last integral is�

Ω

hi,xjhj,xi dx =
�

Ω

(hi,xjhj),xi dx−
�

Ω

hi,xixjhj dx =
�

S1∪S2

nihi,xjhj dS

= −
�

S1

ni,xjhihj dS1 +
�

S2

nihi,xjhj dS2 = −
�

S1

ni,xjhihj dS1.

From the above considerations we have

(2.15) ‖∇h‖2L2(Ω) ≤ c
�

Ω

|D(h)|2 dx+ c‖h‖2L2(S1).

By the trace theorem

(2.16) ‖∇h‖2L2(Ω) ≤ c(‖D(h)‖2L2(Ω) + ‖h‖2L2(Ω)).

From [11] we have

(2.17) ‖h‖L2(Ω) ≤ δ‖∇h‖L2(Ω) +M‖D(h)‖L2(Ω),

where δ can be chosen sufficiently small and M = M(δ) is some constant.
From (2.15)–(2.17) we have

(2.18) ‖∇h‖2L2(Ω) ≤ c‖D(h)‖2L2(Ω).

From (2.18) and (2.17) we obtain (2.14). This concludes the proof.

Let us consider the elliptic problem

(2.19)

v2,x1 − v1,x2 = χ in Ω ⊂ R2,

v1,x1 + v2,x2 = −h3 in Ω ⊂ R2,

v · n̄ = 0 on S = ∂Ω,

where x3 is treated as a parameter.

Lemma 2.6. Let Ω ⊂ R2. Assume that χ, h3 ∈ L2(Ω). Then there exists
a solution to problem (2.19) such that v ∈ H1(Ω) and

(2.20) ‖v‖H1(Ω) ≤ c(‖χ‖L2(Ω) + ‖h3‖L2(Ω)).

Assume that χ, h3 ∈ H1(Ω). Then the solution is such that v ∈ H2(Ω) and

(2.21) ‖v‖H2(Ω) ≤ c(‖χ‖H1(Ω) + ‖h3‖H1(Ω)).

Proof. To solve problem (2.19) we introduce potentials ϕ,ψ such that

(2.22) v1 = ϕ,x1 + ψ,x2 , v2 = ϕ,x2 − ψ,x1 .

Using representation (2.22) we see that (2.19)3 takes the form

(2.23) n̄ · ∇ϕ+ τ̄ · ∇ψ = 0 on S,

where n̄ ⊥ TS, τ̄ ∈ TS. The potentials ϕ and ψ are determined up to
an arbitrary constant. Moreover, to determine the potential we split the
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boundary condition (2.23) into two boundary conditions

(2.24)
n̄ · ∇ϕ|S = 0,
τ̄ · ∇ψ|S = 0 ⇒ ψ|S = 0.

Given v = (v1, v2) we calculate ϕ and ψ from the problems

(2.25)

∆ϕ = v1,x1 + v2,x2 in Ω,

n̄ · ∇ϕ|S = 0,�

Ω

ϕdx = 0

and

(2.26)
∆ψ = v1,x2 − v2,x1

ψ|S = 0.

In view of (2.25), (2.26) problem (2.19) takes the form

(2.27)
∆ψ = χ, ψ|S = 0,

∆ϕ = −h3, n̄ · ∇ϕ|S = 0,
�

Ω

ϕdx = 0.

Solving problem (2.27) we have the estimates

(2.28) ‖ψ‖H2(Ω) ≤ c‖χ‖L2(Ω), ‖ϕ‖H2(Ω) ≤ c‖h3‖L2(Ω).

Hence in view of (2.22) we get (2.20).
For more regular χ and h3 we also have the estimates

(2.29) ‖ψ‖H3(Ω) ≤ c‖χ‖H1(Ω), ‖ϕ‖H3(Ω) ≤ c‖h3‖H1(Ω).

Then (2.29) implies (2.21). This concludes the proof.

Now we formulate the result on local existence of solutions to problem
(1.1) with regularity allowed by the regularity of data formulated in the Main
Theorem.

Lemma 2.7. Let the assumptions of the Main Theorem hold. Then for
any A > 0 there exists t∗ > 0 and a solution (v, θ, p) to problem (1.1)
such that v ∈ W 2,1

% (Ωt∗), θ ∈ W 2,1
% (Ωt∗), ∇p ∈ L%(Ωt∗), h ∈ W 2,1

σ (Ωt∗),
∇q ∈ Lσ(Ωt∗) and

‖h‖
W 2,1
σ (Ωt∗ ) + ‖∇q‖Lσ(Ωt∗ ) + ‖ϑ‖

W 2,1
σ (Ωt∗ ) ≤ A,

‖v‖
W 2,1
% (Ωt∗ ) + ‖θ‖

W 2,1
% (Ωt∗ ) + ‖∇p‖L%(Ωt∗ ) ≤ A,

where %, σ ∈ (5/3,∞) satisfy 5/%− 5/σ < 1.
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Consider the problem
u,t − ν∆u = 0,
u|S = ϕ,

u|t=0 = 0.

Lemma 2.8. Assume that ϕ ∈ Lq(0, T ;Lp(S)), p, q ∈ [1,∞]. Then u ∈
Lq(0, T ;Lp(Ω)) and

‖u‖Lq(0,T ;Lp(Ω)) ≤ c‖ϕ‖Lq(0,T ;Lp(S)).

Assume that ϕ ∈W 1/2,1/4
2 (ST ). Then u ∈W 1,1/2

2 (ΩT ) and

‖u‖
W

1,1/2
2 (ΩT )

≤ c‖ϕ‖
W

1/2,1/4
2 (ST )

.

3. Estimates

Lemma 3.1. Let the assumptions of Lemma 2.3 be satisfied. Moreover as-
sume that f ∈L2(0, T ;L3(Ω)), f3∈L3(0, T ;L4/3(S2)), g∈L2(0, T ;L6/5(Ω)),
h(0) ∈ L2(Ω), ϑ(0) ∈ L2(Ω), ∇v ∈ L2(0, T ;L3(Ω)), ∇θ ∈ L2(0, T ;L3(Ω)).
Assume that h and ϑ are sufficiently regular solutions to (2.10), (2.13). Let
c1 = a(‖θ0‖L∞) and moreover h ∈ L∞(0, T ;L3(Ω)). Then

(3.1) ‖h‖V 0
2 (ΩT ) + ‖ϑ‖2V 0

2 (Ωt) ≤ c exp(cc21‖f‖2L2(0,t;L3(Ω)))

· [c20‖h‖2L∞(0,t;L3(Ω)) + c21‖g‖2L2(0,t;L6/5(Ω)) + c21‖f3‖2L2(0,t;L4/3(S2))

+ ‖h(0)‖2L2(Ω) + ‖ϑ(0)2L2(Ω)], t ≤ T.

Let, additionally, v, θ ∈ L2(0, T ;W 1
3 (Ω)). Then

(3.2) ‖h‖2V 0
2 (Ωt) + ‖ϑ‖2V 0

2 (Ωt) ≤ c exp[c(‖∇v‖2L2(0,t;L3(Ω))

+ ‖∇θ‖2L2(0,t;L3(Ω)) + c21‖f‖2L2(0,t;L3(Ω)))] · [c
2
1‖g‖2L2(0,t;L6/5(Ω))

+ c21‖f3‖2L2(0,t;L4/3(S2)) + ‖h(0)‖2L2(Ω) + ‖ϑ(0)‖2L2(Ω)], t ≤ T.

Proof. Multiplying (2.10) by h, integrating over Ω and using Lemma 2.5
yields

1
2
d

dt
‖h‖2L2(Ω) + ν‖h‖2H1(Ω) ≤ c

�

Ω

|h · ∇v · h| dx+ c
�

Ω

|αθϑfh| dx(3.3)

+ c
�

Ω

|αgh| dx+ c
�

S2

|αf3h3| dx1 dx2

where the first term on the r.h.s. is estimated by

ε1‖h‖2L6(Ω) + c(1/ε1)‖∇v‖2L2(Ω)‖h‖
2
L3(Ω),

the second by

ε2‖h‖2L6(Ω) + c(1/ε2)a2(‖θ0‖L∞(Ω))‖ϑf‖2L6/5(Ω),



32 J. Socała and W. M. Zajączkowski

the third by

ε3‖h‖2L6(Ω) + c(1/ε3)a2(‖θ0‖L∞(Ω))‖g‖2L6/5(Ω)

and the fourth by

ε4‖h‖2H1(Ω) + c(1/ε4)a2(‖θ0‖L∞(Ω))‖f3‖L4/3(S2).

Assuming that ε1, ε2, ε3, ε4 are sufficiently small we obtain

(3.4)
d

dt
‖h‖2L2(Ω) + ν‖h‖2H1(Ω) ≤ c(‖∇v‖

2
L2(Ω)‖h‖

2
L3(Ω)

+ c21(‖ϑ‖2L2(Ω)‖f‖
2
L3(Ω) + ‖g‖2L6/5(Ω) + ‖f3‖2L4/3(S2))).

Multiplying (2.13) by ϑ and integrating over Ω yields

(3.5)
1
2
d

dt
‖ϑ‖2L2(Ω) + κ‖ϑ‖2H1(Ω) ≤ c

�

Ω

|h · ∇θϑ| dx

≤ ε‖ϑ‖2L6(Ω) + c(1/ε)‖h‖2L3(Ω)‖∇θ‖
2
L2(Ω).

For sufficiently small ε we have

(3.6)
d

dt
‖ϑ‖2L2(Ω) + κ‖ϑ‖2H1(Ω) ≤ c‖h‖

2
L3(Ω)‖∇θ‖

2
L2(Ω).

Adding (3.4) and (3.6), integrating with respect to time and using (2.8) and
(2.9) we obtain (3.1).

We can replace inequalities (3.4) and (3.6) by

(3.7)
d

dt
‖h‖2L2(Ω) + ν‖h‖2H1(Ω) ≤ c(‖∇v‖

2
L3(Ω)‖h‖

2
L2(Ω)

+ c21(‖ϑ‖2L2(Ω)‖f‖
2
L3(Ω) + ‖g‖2L6/5(Ω) + ‖f3‖2L4/3(S2)))

and

(3.8)
d

dt
‖ϑ‖2L2(Ω) + κ‖ϑ‖2H1(Ω) ≤ c‖∇θ‖

2
L3(Ω)‖h‖

2
L2(Ω).

Adding (3.7) and (3.8), and integrating the sum with respect to time, yields
(3.2). This ends the proof.

To obtain an estimate for solutions to problem (2.12) we introduce a
function χ̃ : Ω × [0, T ]→ R as a solution to the problem

(3.9)

χ̃,t − ν∆χ̃ = 0 in ΩT ,

χ̃ = χ∗ on ST1 ,

χ̃,x3 = 0 on ST2 ,

χ̃|t=0 = 0 in Ω.

Then the function

(3.10) χ′ = χ− χ̃
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satisfies

(3.11)

χ′,t + v · ∇χ′ − h3χ
′ + h2w,x1 − h1w,x2 − ν∆χ′

= αθ(θ,x1f2 − θ,x2f1) + αF − v · ∇χ̃+ h3χ̃ in ΩT ,

χ′ = 0 on ST1 ,

χ′,x3
= 0 on ST2 ,

χ′|t=0 = χ(0) in Ω.

Lemma 3.2. Let the assumptions of Lemma 2.3 be satisfied. Moreover
assume that h, f ∈ L∞(0, T ;L3(Ω)), F ∈ L2(0, T ;L6/5(Ω)), v′ = (v1, v2) ∈
L∞(0, T ;H1/2+ε(Ω)) ∩W 1,1/2

2 (ΩT ), χ(0) ∈ L2(Ω), and ε7 > 0 is arbitrarily
small. Assume that (v, θ) is a sufficiently regular solution to (1.1). Then for
the solution χ to (2.12) we have

‖χ‖2V 0
2 (Ωt) ≤ c(c

2
0 sup

t
‖h‖2L3(Ω) + c21c

2
0 sup

t
‖f‖2L3(Ω)(3.12)

+ c21‖F‖2L2(0,t;L6/5(Ω)) + c20ε
2
7‖v′‖2L∞(0,t;H1(Ω))

+ ‖v′‖2
L∞(0,t;H1/2+ε(Ω))

+ ‖v′‖
W

1,1/2
2 (Ωt)

+ ‖χ(0)‖2L2(Ω)

+ (c20c
2(1/ε7) + sup

t
‖h‖2L3(Ω))

× (a2(‖θ0‖L∞(Ωt))‖f‖2L2(0,t;L6/5(Ω)) + ‖v0‖2L2(Ω)))

for all t ≤ T.

Proof. Multiplying (3.11)1 by χ′, integrating over Ω, and using boundary
conditions (3.11)2,3, (1.1)5 and (1.1)2, we obtain

(3.13)
1
2
d

dt
‖χ′‖2L2(Ω) + ν‖∇χ′‖2L2(Ω) =

�

Ω

h3χ
′2 dx

−
�

Ω

(h2w,x1 − h1w,x2)χ′ dx+
�

Ω

αθ(θ,x1f2 − θ,x2f1)χ′ dx

+
�

Ω

αFχ′ dx−
�

Ω

v · ∇χ̃χ′ dx+
�

Ω

h3χ̃χ
′ dx.

Now we estimate the terms on the r.h.s. of the above equality. Let x′ =
(x1, x2). The first term is estimated by

ε1‖χ′‖2L6(Ω) +
c

ε1
‖χ′‖2L2(Ω)‖h3‖2L3(Ω),

the second by

ε2‖χ′‖2L6(Ω) +
c

ε2
‖h‖2L3(Ω)‖w,x′‖

2
L2(Ω),
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and the third by

ε3‖χ′‖2L6(Ω) +
c

ε3
c21‖θ,x‖2L2(Ω)‖f‖

2
L3(Ω),

where we have used (1.2), and the fourth by

ε4‖χ′‖2L6(Ω) +
c

ε4
c21‖F‖2L6/5(Ω),

where we have also used (1.2).
To estimate the fifth term on the r.h.s. of (3.13) we integrate it by parts

and use (1.1)2,5. Then it takes the form

I ≡
�

Ω

v · ∇χ′χ̃ dx.

Hence

|I| ≤ ε5‖∇χ′‖2L2(Ω) +
c

ε5
‖v‖2L6(Ω)‖χ̃‖

2
L3(Ω).

Finally, the last term on the r.h.s. of (3.13) is bounded by

ε6‖χ′‖2L6(Ω) +
c

ε6
‖h‖2L3(Ω)‖χ̃‖

2
L2(Ω).

Using the above estimates in (3.13), assuming that ε1, . . . , ε6 are sufficiently
small, integrating the result with respect to time and using (2.8)–(2.9) we
obtain

(3.14) ‖χ′‖2V 0
2 (Ωt) ≤ c(sup

t
‖h‖2L3(Ω)‖χ

′‖2L2(0,t;L2(Ω))

+ c20 sup
t
‖h‖2L3(Ω) + c21c

2
0 sup

t
‖f‖2L3(Ω) + c21‖F‖2L2(0,t;L6/5(Ω))

+ c20‖χ̃‖2L∞(0,t;L3(Ω)) + sup
t
‖h‖2L3(Ω)‖χ̃‖

2
L2(0,t;L2(Ω)) + ‖χ(0)‖2L2(Ω)).

In view of (2.8) we have ‖χ‖L2(Ωt) ≤ cc0.
Using (3.10) and this fact we obtain from (3.14) the inequality

(3.15) ‖χ‖2V 0
2 (Ωt) ≤ c(c

2
0 sup

t
‖h‖2L3(Ω) + c21c

2
0 sup

t
‖f‖2L3(Ω)

+ c21‖F‖2L2(0,t;L6/5(Ω)) + c20‖χ̃‖2L∞(0,t;L3(Ω)) + sup
t
‖h‖2L3(Ω)‖χ̃‖

2
L2(Ωt)

+ ‖χ̃‖V 0
2 (Ωt) + ‖χ(0)‖2L2(Ω)).

Since χ̃ is a solution of (3.9) and χ∗ is described by (2.12)2 we have the
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following estimates, by Lemma 2.8:

(3.16)

t�

0

‖χ̃(t′)‖2L2(Ω) dt
′ ≤ c

t�

0

‖v′(t′)‖2L2(S) dt
′ ≤ c

t�

0

‖v′(t′)‖2H1(Ω) dt
′

≤ c(a2(‖θ0‖L∞(Ω))‖f‖2L2(0,t;L6/5(Ω)) + ‖v0‖2L2(Ω)),

‖χ̃‖L∞(0,t;L3(Ω)) ≤ c‖v′‖L∞(0,t;L3(S)) ≤ ε7‖v′‖L∞(0,t;H1(Ω))

+ c(1/ε7)‖v′‖L∞(0,t;L2(Ω)),

‖χ̃‖2V 0
2 (Ωt) ≤ c

(
‖χ̃‖2L∞(0,t;L2(Ω)) +

t�

0

‖χ̃(t′)‖2H1(Ω) dt
′
)

≤ c‖v′‖2
L∞(0,t;H1/2+ε(Ω))

+ c‖v′‖2
W

1,1/2
2 (Ωt)

, ε > 0.

Employing (3.16) in (3.15) yields (3.12). This concludes the proof.
Let us consider the problem

(3.17)
v2,x1 − v1,x2 = χ in Ω′,

v1,x1 + v2,x2 = −h3 in Ω′,

v′ · n̄′ = 0 on S′,

where Ω′ = Ω ∩ {x3 = const ∈ (−a, a)}, S′ = S ∩ {x3 = const ∈ (−a, a)},
x3, t are treated as parameters, n̄′ = (n1, n2).

Lemma 3.3. Let the assumptions of Lemmas 2.3, 3.1, 3.2 be satisfied.
Assume that (v, p, θ) is a weak solution to problem (1.1). Assume that

(3.18) c1‖g‖L2(0,t;L6/5(Ω)) + c1c0‖f‖L∞(0,t;L3(Ω)) + c1‖F‖L2(0,t;L6/5(Ω))

+ c1‖f3‖L2(0,t;L4/3(S2)) + ‖h(0)‖L2(Ω) + ‖ϑ(0)‖L2(Ω) + ‖χ(0)‖L2(Ω)

+ c20(c1‖f‖L2(0,t;L6/5(Ω)) + ‖v(0)‖L2(Ω)) + ψ(c0) ≤ k1 <∞,

‖f‖L2(0,t;L3(Ω)) ≤ k2 <∞
for all t ≤ T . Then

(3.19) ‖v′‖2V 1
2 (Ωt)

≤ c[ecc21k2
2(c20‖h‖2L∞(0,t,L3(Ω)) + ψ(c0)k2

1) + ‖v′‖2
L2(Ω;H1/2(0,t))

]

for all t ≤ T , where v′ = (v1, v2) and ψ is an increasing positive function.

Proof. Assuming that ε7 is sufficiently small, in view of (3.1), (3.12) and
Lemma 2.6 we obtain for solutions to problem (3.17) the inequality (see [11])

(3.20) ‖v′‖2L10(ΩT ) ≤ c‖v
′‖2V 1

2 (Ωt) ≤ c[e
cc21k

2
2(c20‖h‖2L∞(0,t;L3(Ω)) + ψ(c0)k2

1)

+ ‖v′‖2
L∞(0,t;H1/2+ε(Ω))

+ ‖v′‖2
W

1,1/2
2 (Ωt)

],
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where ε is an arbitrarily small number and (3.18) was used. By interpolation
inequalities,

‖v′‖L∞(0,t;H1/2+ε(Ω)) ≤ ε1‖v
′‖L∞(0,t;H1(Ω)) + c(1/ε1)‖v′‖L∞(0,t;L2(Ω)),

and
‖v′‖

W
1,1/2
2 (Ωt)

= ‖v′‖L2(0,t;H1(Ω)) + ‖v′‖L2(Ω;H1/2(0,t)),

where
‖v′‖L2(0,t;H1(Ω)) ≤ ck1.

Then we obtain (3.19) from (3.20) for sufficiently small ε1. This concludes
the proof.

Let us consider problem (1.1)1,2,4,5,7 in the form

(3.21)

v,t − div T(v, p) = −v′ · ∇′v − wh+ α(θ)f in ΩT ,

div v = 0 in ΩT ,

v · n̄ = 0, n̄ · D(v) · τ̄α = 0, α = 1, 2, on ST ,

v|t=0 = v0 in Ω.

where v′ · ∇′ = v1∂x1 + v2∂x2 .

Lemma 3.4. Assume that (v, θ) is a weak solution to problem (1.1). Let
the assumptions of Lemma 3.3 be satisfied. Let

‖f‖L2(Ωt) + ‖v0‖H1(Ω) ≤ k3 <∞,
H(t) = ‖h‖L∞(0,t;L3(Ω)) + ‖h‖L10/3(Ωt) <∞,

for all t ≤ T . Then there exists a constant c2 = c2(c0, c1) such that the
solution v to problem (3.21) satisfies

(3.22) ‖v‖
W 2,1

2 (Ωt)
+‖∇p‖L2(Ωt) ≤ c2ecc

2
1k

2
2(H+1+k1 +k3)2 +ck3, t ≤ T.

The proof is the same as the proof of Lemma 3.3 in [7].
Finally, we obtain an estimate for h.

Lemma 3.5. Let the assumptions of Lemma 3.4 be satisfied. Let

(3.23)

c1‖f‖L∞(Ωt)e
cc21k

2
2k1 + c1‖g‖Lσ(Ωt) + ‖ϑ(0)‖

W
2−2/σ
σ (Ωt)

+ ‖h(0)‖
W

2−1/σ
σ (Ω)

≤ k4 <∞,

c1‖g‖L2(0,t;L6/5(Ω)) + c1‖f3‖L2(0,t;L4/3(S2)) + ‖h(0)‖L2(Ω)

+ ‖ϑ(0)‖L2(Ω) ≤ d <∞,
c1‖f‖L%(ΩT ) + ‖v(0)‖

W
2−2/%
% (Ω)

+ ‖θ(0)‖
W

2−2/%
% (Ω)

≤ k5 <∞,
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for t ≤ T . Then for d sufficiently small there exists a constant A such that

(3.24) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) ≤ A, 5/3 < σ ≤ 10/3, t ≤ T,
(3.25) ‖∇p‖L%(Ωt) + ‖v‖

W 2,1
% (Ωt)

+ ‖θ‖
W 2,1
% (Ωt)

≤ ϕ(A) + ck5,

5/3 ≤ % < 10, t ≤ T,
where ϕ is some positive increasing function.

Proof. In view of Lemma 2.2 for solutions to problem (2.10) we have

(3.26) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt)

≤ c(‖v · ∇h‖Lσ(Ωt) + ‖h · ∇v‖Lσ(Ωt)

+ ‖αθϑf‖Lσ(Ωt) + ‖αg‖Lσ(Ωt) + ‖h(0)‖
W

2−2/σ
σ (Ω)

).

In view of the imbedding

(3.27) ‖v‖L10(Ωt) + ‖∇v‖L 10
3

(Ωt) ≤ c‖v‖W 2,1
2 (Ωt)

.

and inequality (3.22) we estimate the first term on the r.h.s. of (3.26) by

‖v‖L10(Ωt)(ε1‖h‖W 2,1
σ (Ωt)

+ c(1/ε1)‖h‖L2(Ωt))

and the second by

‖∇v‖L10/3(Ωt)(ε2‖h‖W 2,1
σ (Ωt)

+ c(1/ε2)‖h‖L2(Ωt)).

In view of (2.6) and (1.2) the third and the fourth terms on the r.h.s. of
(3.26) can be estimated by

cc1(‖f‖L∞(Ωt)‖ϑ‖Lσ(Ωt) + ‖g‖Lσ(Ωt)) ≡ I.
We use (3.1) with the notation of (3.18). Then we obtain

I ≤ cc1(‖f‖L∞(Ωt)e
cc21k

2
2(k1 + c0‖h‖L∞(0,t;L3(Ω))) + ‖g‖Lσ(Ωt)),

where σ ≤ 10/3.
We will also use the interpolation

‖h‖L∞(0,t;L3(Ω)) ≤ ε2‖h‖W 2,1
σ (Ωt)

+ c(1/ε3)‖h‖L2(Ωt).

Employing the above estimates in (3.26), assuming that ε1, ε2, ε3 are suffi-
ciently small and using (3.22) we obtain

(3.28) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) ≤ ϕ(H)‖h‖L2(Ωt)

+ cc1(‖f‖L∞(Ωt)e
cc21k

2
2k1 + ‖g‖Lσ(Ωt)) + c‖h(0)‖

W
2−2/σ
σ (Ω)

,

where 5/3 < σ ≤ 10/3, ϕ is an increasing positive function depending on H
and on the constants c0, c1, k1, . . . , k5. Using the notation of (3.23)1 we have

(3.29) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) ≤ ϕ(H)‖h‖L2(Ωt) + ck4.
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We want to estimate ‖h‖L2(Ωt) by applying (3.2). For this purpose we need
to estimate ‖∇θ‖L2(0,t;L3(Ω)). Hence we consider problem (1.1)3,6,7 and we
are looking for solutions of this problem such that θ ∈ W 2,1

% (Ωt) with % so
large that

(3.30) ‖∇θ‖L2(0,t;L3(Ω)) ≤ c‖θ‖W 2,1
% (Ωt)

.

We see that (3.30) holds for % ≥ 5/3. Considering problem (1.1)3,6,7 we have

(3.31) ‖θ‖
W 2,1
% (Ωt)

≤ c(‖v · ∇θ‖L%(Ωt) + ‖θ(0)‖
W

2−2/%
% (Ω)

).

The first term on the r.h.s. is estimated by

‖v‖L%λ1
(Ωt)‖∇θ‖L%λ2

(Ωt) ≡ I1,

where 1/λ1 + 1/λ2 = 1, %λ1 = 10.
We have the interpolation inequality

‖∇θ‖L%λ2
(Ωt) ≤ ε4‖θ‖W 2,1

% (Ωt)
+ c(1/ε4)‖θ‖L2(Ωt)

which holds for 5
% −

5
%λ2

< 1 so for 5
%λ1

< 1. Hence

I1 ≤ ‖v‖L10(Ωt)(ε4‖θ‖W 2,1
% (Ωt)

+ c(1/ε4)‖θ‖L2(Ωt)).

Using the estimate in (3.31), assuming that ε4 is sufficiently small, and using
(3.27) and (3.22), we obtain

(3.32) ‖θ‖
W 2,1
% (Ωt)

≤ ϕ(H) + c‖θ(0)‖
W

2−2/%
% (Ω)

,

where % < 10.
Similarly by Lemma 2.2 applied to (3.21) and (2.8) we obtain

(3.33) ‖v‖
W 2,1
% (Ωt)

+ ‖∇p‖L%(Ωt)
≤ ϕ(H, c0) + c1‖f‖L%(ΩT ) + c‖v(0)‖

W
2−2/%
% (Ω)

.

Let us consider (3.29). In view of (3.2) we estimate the norm ‖h‖L2(Ωt),
where

‖∇v‖L2(0,t;L3(Ω)) + ‖∇θ‖L2(0,t;L3(Ω)) ≤ ϕ(H) + ck5.

Then (3.29) takes the form

(3.34) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) ≤ ϕ(H)d+ ck4,

where ϕ is an increasing positive function.
Let σ be such that

H = ‖h‖L∞(0,t;L3(Ω)) + ‖h‖L10/3(Ωt) ≤ c‖h‖W 2,1
σ (Ωt)

,

which holds for σ > 5/3. Then (3.34) takes the form

(3.35) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) ≤ ϕ(‖h‖
W 2,1
σ (Ωt)

)d+ ck4.
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Hence for d sufficiently small there exists a constant A such that

(3.36) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) ≤ A, t ≤ T.

By (3.36), (3.32) and (3.33) the proof is complete.

Proof of the Main Theorem. Now we want to increase regularity de-
scribed by (3.25). Assume 10 ≤ % < ∞. In view of [8, Theorem 2.1] for
a solution v to problem (1.1) we have

(3.37) ‖v‖
W 2,1
% (Ωt)

+ ‖∇p‖L%(Ωt)
≤ c(‖v · ∇v‖L%(Ωt) + ‖α(θ)f‖L%(Ωt) + ‖v0‖W 2−2/%

% (Ω)
).

We estimate the first term on the r.h.s. of (3.37) by

(3.38) ‖v‖L∞(Ωt)‖∇v‖L%(Ωt)
≤ c‖v‖

W 2,1
5 (Ωt)

(ε1‖v‖W 2,1
% (Ωt)

+ c(1/ε1)‖v‖L2(Ωt))

and the second by

(3.39) c1‖f‖L∞(Ωt).

Assuming that ε1 is sufficiently small and using (3.37)–(3.39) we obtain

(3.40) ‖v‖
W 2,1
% (Ωt)

+ ‖∇p‖L%(Ωt) ≤ B1,

where B1 is a constant depending on the constants from the imbedding
theorems and data.

Similarly by [5, Ch. 4, Sect. 9, Th. 9.1] we obtain

(3.41) ‖θ‖
W 2,1
% (Ωt)

≤ B2.

Now we want to increase regularity described by (3.24). There exist p′ > σ,
p′′ > 5/2 such that

5
%
− 5
p′
< 1,

5
%
− 5
p′′

< 1.

Hence p = max{p′, p′′} satisfies

(3.42) p > σ, p >
5
2
,

5
%
− 5
p
< 1.

Similarly we can prove that there exists q such that

(3.43) q > σ, q > 5 and
5
%
− 5
q
< 2.

Define p̄, q̄ by 1/p+ 1/p̄ = 1/σ, 1/q + 1/q̄ = 1/σ. Assume 5/3 < σ <∞. In
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view of Theorem 2.1 for a solution to problem (2.10) we have

(3.44) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt)

≤ c(‖v · ∇h‖Lσ(Ωt) + ‖h · ∇v‖Lσ(Ωt) + ‖αθϑf‖Lσ(Ωt)

+ ‖αg‖Lσ(Ωt) + ‖h(0)‖
W

2−2/σ
σ (Ω)

).

By (3.42) and (3.43) we estimate the first term on the r.h.s. of (3.44) by

(3.45) ‖v‖Lq(Ωt)‖∇h‖Lq̄(Ωt)
≤ c‖v‖

W 2,1
% (Ωt)

(ε2‖h‖W 2,1
σ (Ωt)

+ c(ε2)‖h‖L2(Ωt)),

the second by

(3.46) ‖∇v‖Lp(Ωt)‖h‖Lp̄(Ωt)
≤ c‖v‖

W 2,1
% (Ωt)

(ε3‖h‖W 2,1
σ (Ωt)

+ c(ε3)‖h‖L2(Ωt)),

the third by

(3.47) c1‖f‖L∞(Ωt)(ε4‖ϑ‖W 2,1
σ (Ωt)

+ c(ε4)‖ϑ‖L2(Ωt)),

and the fourth by

(3.48) c1‖g‖Lσ(Ωt).

In view of [5, Ch. 4, Sect. 9, Th. 9.1] for any solution to problem (2.13) we
have

(3.49) ‖ϑ‖
W 2,1
σ (Ωt)

≤ c(‖v ·∇ϑ‖Lσ(Ωt) +‖h ·∇θ‖Lσ(Ωt) +‖ϑ(0)‖
W

2−2/σ
σ (Ωt)

).

By (3.42) and (3.43) we estimate the first term on the r.h.s. of (3.49) by

(3.50) c‖v‖
W 2,1
% (Ωt)

(ε5‖ϑ‖W 2,1
σ (Ωt)

+ c(ε5)‖ϑ‖L2(Ωt))

and the second by

(3.51) c‖θ‖
W 2,1
% (Ωt)

(ε6‖h‖W 2,1
σ (Ωt)

+ c(ε6)‖h‖L2(Ωt)).

We choose r such that 5/3 < r < 10/3 and r ≤ σ. By (3.1), the imbedding

‖h‖L∞(0,t;L3(Ω)) ≤ c‖h‖W 2,1
r (Ωt)

and (3.24) there exists a constant B3 depending on the constants in imbed-
ding theorems and on the data such that

(3.52) ‖h‖L2(Ωt) + ‖ϑ‖L2(Ωt) ≤ B3.

Assuming that ε2−ε6 are sufficiently small and using (3.44)–(3.52) we obtain

(3.53) ‖h‖
W 2,1
σ (Ωt)

+ ‖∇q‖Lσ(Ωt) + ‖ϑ‖
W 2,1
σ (Ωt)

≤ B4,

where B4 is some constant depending on the data. By (3.40), (3.41) and
(3.53) the proof is finished.



Long time estimate for Navier–Stokes equations 41

Acknowledgements. The second author is partially supported by Pol-
ish Grant NN 201 396 937.

References

[1] W. Alame, On existence of solutions for the nonstationary Stokes system with slip
boundary conditions, Appl. Math. (Warsaw) 32 (2005), 195–223.

[2] O. V. Besov, V. P. Il’in and S. M. Nikol’skĭı, Integral Representations of Functions
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