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LONG TIME ESTIMATE OF SOLUTIONS TO
3D NAVIER-STOKES EQUATIONS
COUPLED WITH HEAT CONVECTION

Abstract. We examine the Navier—Stokes equations with homogeneous
slip boundary conditions coupled with the heat equation with homogeneous
Neumann conditions in a bounded domain in R?. The domain is a cylinder
along the zs axis. The aim of this paper is to show long time estimates
without assuming smallness of the initial velocity, the initial temperature
and the external force. To prove the estimate we need however smallness of
the Ly norms of the xg-derivatives of these three quantities.

1. Introduction. The aim of this paper is to derive a long time a pri-
ori estimate for some initial-boundary value problem for a system of the
Navier—Stokes equations coupled with the heat equation. We assume the
slip boundary conditions for the Navier—Stokes equations and the Neumann
condition for the heat equation. We examine the problem in a straight finite
cylinder. To obtain the estimate we follow the ideas from [7, [8, [10] and the so-
lution considered remains close to a two-dimensional solution. The estimate
is the first and most important step in proving the existence of solutions to
the problem (see (1.1)) by the Leray—Schauder fixed point theorem (see the
next paper of the authors [9]).
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We consider the following problem:

vi+v-Vo—divT(v,p) =a(@)f in 2T =02 x(0,T),

dive =0 in 27,
01 +v-VO— A0 =0 in 2T,
(1.1) n-DW) -Ta=0, a=1,2 on ST =5 % (0,T),
n-v= on ST,
n-Vl=0 on ST,
v]i=o = v(0), Bl¢=0 = 0(0) in 12,

where x = (21,72, 23) denote the Cartesian coordinates, 2 C R? is a cylin-
drical type domain parallel to the x3 axis with arbitrary cross section,
S = 002, v = (vi(x,t),va(x,t),v3(x,t)) € R3 is the velocity of the fluid
motion, p = p(z,t) € R! the pressure, § = f(x,t) € R, the temperature,
f = (fi(x,t), fa(z,t), f3(x,t)) € R3 the external force field, i is the unit out-
ward normal vector to the boundary S, 7,, a« = 1,2, are tangent vectors to
S and the dot denotes the scalar product in R3. We define the stress tensor
by
’]T(’U7p) = VD(U) _p]L
where v is the constant viscosity coefficient, I is the unit matrix and D(v) is
the dilatation tensor of the form
D(v) = {viz; + vja; bij=123-
Finally s is a positive heat conductivity coefficient.
We assume that S = 51 U.Ss, where S is the part of the boundary which
is parallel to the x5 axis and 59 is perpendicular to that axis. More precisely,
S; = {z € R®: py(z1,22) = cs, —b < x3 < b},
Sy = {z € R®: po(x1,29) < ¢4, 23 is equal either to —b or b},
where b, ¢, are given positive numbers and (21, z2) describes a sufficiently
smooth closed curve in the plane x3 = const. We can assume 71 = (711, 712, 0),
75 = (0,0,1) and 7 = (712, —711,0) on S;. Assume that a € C?*(R) and
07 satisfies the weak I-horn condition, where [ = (2,2,2,1) (see [2, Ch. 2,
Sect. 8).
To apply the simpler version of the Korn inequality we assume that (2 is
not axially symmetric (see Lemma 2.1).
Assume that [|0(0)| 1. () < co. Define
a:[0,00) = [0,00), a(x)=sup{|a(y)| +[&'(y)] : ly| <z}
and assume that
(1.2) a(f(z)) < c1,
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where ¢; = a(|6(0)|| . (). The inequality (1.2) is justified in view of Lemma
2.3, Remark 2.4 and the properties of the function a(x). Let o, o be such that
5/3<0<00,5/3<p<00,5/p—5/c<1.
Now we formulate the main result of this paper. Let
(1.3)
g:f,xsv hzv,ma q = D,x3> 79:9,1:37 X = (I‘Ot’l})g, = (I‘Otf)g.
Assume the following conditions hold for all t < T

L cillgllpao.65065(2)) + c1collf | o o.t52(02)) + Ll E I Lo(0,4:165(2))
1l fsll 1o(0,4:14 5(52) TN £y (2) P (O) | 1y (2) + X (O) | £ (52) +2 (c0)
+ C%(Cl||f”L2(0,t;L6/5(Q)) +[v(0) || £o(2)) < k1 < oo,

2. 1 fllza0,L5(2)) < k2 < 00,

3. N fllzacary + 0O (2) < ks < oo,

4. 01Hf||Loo(m)€CC%k%/€1+Cl||g||LU(Qt)+W(O)HWGQ—?/U(Q)JFHMO)ng—wa(m
< k4 < 00,

5. c1llgllLa(0.:6 5 (2)) F el 3l La(0.6:L 5 (52)) + 1RO | Lo () + (19(0) ]| 2y (2)
<d < o0,

6. c1 + || fllL 2t + \\U(O)ng—z/e(m + H@(O)ng—z/g(m < ks < 00,

where ¢g is the constant from Lemma 2.3, ¥(cg) is the increasing function
from Lemma 3.3 and k1, ..., ks are constants.

MAIN THEOREM. For every fixred T, and given positive constants ki—ks,
co,c1 under the above assumptions 1-6, if the constant d in condition 5 is
small enough, then there exists B = B(k1,...,ks,co,c1) < 0o such that for
any strong solution (v,p,8) to problem (1.1) we have

(1'4) HU||W§,1(Q¢) + HVPHLQ((F) + ’\9||W§71(9z) < B,
(1.5) ”hHWE’l(_Qt) + HVQHLU((N) + H’l9”W3,1(Qt) <B,
forallt <T.

In the next paper [6], we use this result to prove the long time existence
of regular solutions to (1.1).

Finally, we underline that a global a priori estimate guaranteeing ex-
istence of global regular solutions to (1.1) (see [9]) is possible under the
restriction that the quantity d from assumption 5 is sufficiently small. This
kind of assumption in the case of the Navier—Stokes equations only appeared
in [7, 10]. Problem (1.1) in the case of inflow-outflow was generalized by
Kacprzyk in [3, [4]. Papers [3] [4] base on [I3], where the inflow-outflow prob-
lem for the Navier—Stokes motions in a cylindrical pipe is considered.

2. Preliminaries. In this section we introduce notation and basic esti-
mates for weak solutions to problem (1.1).



26 J. Socata and W. M. Zajaczkowski

2.1. Notation. We use isotropic and anisotropic Lebesgue spaces: L,(Q),
Q e {07,57,02,8}, p € [1,00], and Ly(0,T; Ly(Q)), Q € {£2,5}, p,q €
[1, 00]; and Sobolev spaces
s,s/2 T
W (@QT), Qe {2,5}, g€l 0], s € NU{0}, s even,

with the norm

la|+2a<s QT
where DY = 031052053, |a| = a1 + az + a3, a,; € NU{0}.

In the case g = 2,
H(Q) =W3(Q), H»QT)=wy"*@Q7), Qe{s)

Moreover, L2(Q) = H(Q), L,(Q) = W(Q), L,(QT) = W°(Q7).
We define a space natural for the study of weak solutions to the Navier—
Stokes and parabolic equations:

V(") = {UZ [ullyp oy = esssup [|ull gr (o)
2 te[0,T]

+ (?kuqu) dt)1/2 < oo}-
0

2.2. Weak solutions. By a weak solution to problem (1.1) we mean a
pair v € V2(027), 0 € VY(2T) N Lo (27) satisfying the integral identities

(2.1) - S v-@drdt+ S ”U-Vv'god:cdt—i—g S D(v) - D(¢p) dz dt
nT 0T 0T
= S a(f)f - pdxdt + S v(0)p(0) dz,
or Q
22) -\ y,dedt+ | v VOpdudt+3 | VO Vydrdt
nT nT nT
= | 6(0)9(0) de,
2

for all @, € Wy (27) N Ls(£27) such that o(T) = 0, (T) = 0, div e = 0,
v-nlsg=0.

LEMMA 2.1 (Korn inequality, see [12]). Assume that
Eq(v) = ||]D)(U)”%2(Q) <oo, wv-nlg=0, dive=0.

If 2 is not azially symmetric there exists a constant c1 independent of v
such that

(2.3) [l gy < e1Ea(v).
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If 2 is azially symmetric, and n = (—x2,21,0), o = SQ’U -ndz, then there
exrists a constant co independent of v such that

(2.4) 011 () < e2(Ea(v) + |af?).
Let us consider the problem
hy—divT(h,q) = f in 27,
divh =0 in 27,
(2.5) fi-h=0, 7-D) -7,=0 a=1,2onS?,
hi=0, i=1,2 h3gz =0 on ST,
hli—o = h(0) in £2.

LEMMA 2.2. Let f € Ly(27), h(0) € W2 2P(£2), ) € C2, 1 < p < .
Then there exists a solution to problem (2.5) such that h € Wg’l(QT), Vq e
L,(027) and there exists a constant ¢ depending on S and p such that

(26)  Nhllyzrory +IVallz,@ry < cllfll,@r) + 1RO 22/ p))-
The proof is similar to the proof in [1].

LEMMA 2.3. Assume v(0) € L2(£2), 0(0) € Loo(£2), f€ L2(0, T Lg/5(£2)),
T < oo. Assume that (2 is not axially symmetric. Assume that there exist
constants 0,0 such that 0, < 0* and 0, < Oy(x) < 0*, x € 2. Then there
exists a weak solution to problem (1.1) such that (v,0) € V) (02T) x VQ(027T),
0 € Loo(027) and

(2.7) 0. <0(z,t) <6, (x,t) €N,

and there exist positive constants c, cg independent of v and 0 such that
(2.8)  vllypory < ealllfoll L@ I1f 1La0,7:L6 5 (2)) + Iv0lla(2)) < <o,
(2.9) 101lv0(ry < cllboll Ly (2) < co.

Proof. Estimate (2.7) follows from standard considerations (see |8, Lem-
mas 3.1, 3.2]). Estimates (2.8), (2.9) follow formally from (1.1);3 by mul-
tiplying them by v and 6, respectively, integrating over 2 and (0,t), t €
(0,T), employing (2.7), (1.1)2 and using the boundary and initial conditions
(1.1)4_7. Existence can be shown in the same way as in [5, Ch. 3, Sect. 1-5].
This concludes the proof. =

REMARK 2.4. If 6(0) > 0, then 6(¢t) > 0 for ¢ > 0.

2.3. Auxiliary problems. To prove the existence of global regular so-
lutions we recall the quantities introduced in (1.3),

h:'U,mga q = D,x3, g:f,:v37 19:97333'
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Differentiating (1.1); 245 with respect to z3 and using [10] I3] yields
hy—divT(h,q) = —v-Vh—h-Vo+agdf +ag in 27,

divh =0 in T,
(2.10) n-h=0, @ -Dh)-73=0, B=1,2, on ST,

hi=0, i=1,2, hgu, =0 on ST,

hli=o = h(0) in £2.

Let ¢ and f3 be given, Then w = v3 is a solution to the problem

wi+v-Vw—vAw=—q+a(f)fs in 0T

n-Vw =0 on ST,
(2.11)

w=0 on ST,

wlt=0 = w(0) in £.

Let F' = (rot f)3, h,v,w be given. Then x = (rotwv)s is a solution to the
problem (see [8, [10])

Xt +v-Vx —=hax+ howg —hiwg, —vAx
= ag(0z,fo — 02, f1) +F in 27,
(2.12) x = Ui(nz’,xjﬁj + Tli,xjnj) +v-T1(T122, — Tll,2e) = X« ON S'ir,
Xs =0 on ST,
Xlt=0 = x(0) in 0,
where the summation convention over repeated indices is assumed.

Differentiating (1.1)3 67 with respect to x3 yields
Di+v-VO+h-VO—xA9=0 in02T

n-VI=0 on ST,
(2.13)

¥9=0 on ST,

I)t=0 = 9(0) in 2.

LEMMA 2.5. Assume that D(h) € La(£2), h-n|lg = 0, divh = 0 and
2 CR3. Then h satisfies the inequality

(2.14) 1Al z1(02) < D) 2o ()

where ¢ 1s a constant independent of h.
Proof. To show (2.14) we examine the expression

VID(W)P dz = {(hi; + hj,)? de = | (2h3 4 + 2hiw;hje,) da,
9] 2 2
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where the second expression under the last integral is

V iy, do = \(hiw;hy) 2, dx = \ higa hjdo =\ nihig by dS

n N N S1US2
= — S ’I’Li’zjhihj dSy + S nihi,zjhj dSy; = — S ni,xjhihj dSi.
S1 Sy S1
From the above considerations we have
(2.15) IR, ) < ¢ § D() 2 do + cllhl2, s, -
k0]

By the trace theorem

(2.16) IVRIZ, () < DI, (0) + 1R, 0)-
From [IT] we have
(2.17) 1Pl La(2) < OVAll Ly @) + MDA Ly

where 0 can be chosen sufficiently small and M = M(4) is some constant.
From (2.15)—(2.17) we have

(2.18) IVRIZ, ) < clDR)I7 50
From (2.18) and (2.17) we obtain (2.14). This concludes the proof. =

Let us consider the elliptic problem

V221 — Vlgg = X in 2 C R2,
(2.19) Vi, +V2z, = —h3 in 2 C R?
v-n=20 on S = 012,

where x3 is treated as a parameter.

LEMMA 2.6. Let 2 C R2. Assume that x, hs € La(£2). Then there exists
a solution to problem (2.19) such that v € H'(£2) and

(2.20) vl 1) < cllixXlza@) + 1h3llna(2)-
Assume that x, hs € HY(§2). Then the solution is such that v € H*(£2) and
(2.21) vl a2y < clllxllar ) + 1Pl a1(0)-

Proof. To solve problem (2.19) we introduce potentials ¢, ¢ such that
(2.22) V1 =Qa + ey, V2=Qay — Vg
Using representation (2.22) we see that (2.19)3 takes the form
(2.23) n-Vo+7-V¢y=0 onS,

where n L. T'S, T € TS. The potentials ¢ and 1 are determined up to
an arbitrary constant. Moreover, to determine the potential we split the
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boundary condition (2.23) into two boundary conditions

(2.24)

Given v = (v1,v2) we calculate ¢ and v from the problems

AQD = V1,24 + V2,29 in Qa

(2.25) n-Vels =0,
S pdr =20
Q
and
(226) Ap = Vize — V2,2

Pls = 0.
In view of (2.25), (2.26) problem (2.19) takes the form
Ap=x,  Yls=0,

(2.27) Ap = —h3, n-Ve|s=0, S pdx = 0.
(9}

Solving problem (2.27) we have the estimates

(2.28) Il 20y < elliXlza)y, el < cllhslliyw)-
Hence in view of (2.22) we get (2.20).

For more regular x and hg we also have the estimates
(2.29) [l a3y < cllixllaiwy,  llellasw) < cllhsllg )
Then (2.29) implies (2.21). This concludes the proof. m

Now we formulate the result on local existence of solutions to problem
(1.1) with regularity allowed by the regularity of data formulated in the Main
Theorem.

LEMMA 2.7. Let the assumptions of the Main Theorem hold. Then for
any A > 0 there exists t, > 0 and a solution (v,0,p) to problem (1.1)

such that v € W3 (2%), 0 € Wl (Q2), Vp € Ly(2%), h € W' (2%,
Vq € L,(02%) and

12llyyzr gy + 1Vl Ly (@te) + 19121 gy < A,
HUHWQQ’l(Qt*) + HHHWL?J(QM) + ”vaLQ(Qt*) <A,

where 0,0 € (5/3,00) satisfy 5/0 —5/0 < 1.
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Consider the problem

uy —vAu =0,
uls = o,
u|t:0 =0.

LEMMA 2.8. Assume that ¢ € Ly(0,T;Ly(S)), p,q € [1,00]. Then u €
Ly(0.T5 L,(2)) and
ullz,0.7:2,(2) < cll@llL,o7;L,05))-
Assume that ¢ € W21/2’1/4(ST). Then u € W2171/2(QT) and

HUHW;J/Q(QT) < CHSOHWQI/QJ/‘I(ST)'

3. Estimates

LEMMA 3.1. Let the assumptions of Lemma 2.3 be satisfied. Moreover as-
sume that f €L2<07 T L3(Q))7 f3 € L3(07 T L4/3(S2))7 ge L2(07 T L6/5(‘Q))7
h(O) S LQ(.Q), 0(0) < LQ(Q), Vv € LQ(O,T; Lg(.Q)), Vo € LQ(O,T; Lg(.Q))
Assume that h and 9 are sufficiently regqular solutions to (2.10), (2.13). Let
c1 = a(||0ollr.,) and moreover h € Loo(0,T; L3(12)). Then

B.1) Nhllvear) + 1910 0n < cexplectll 11,020
AR 0,622y T AN o024 52 AN o024 0(52)
+ 1RO + 1907, ))s < T
Let, additionally, v,0 € La(0,T; W4(£2)). Then
(32)  Nllgogor + 101500 < cexple(|VollZ, 0 L0(2))
+IVOI7 002502y T AN 002502))] - [C%HQH%Q(O,t;LGﬁ(Q))

+ c%|’f3”%2(07t;[l4/3(32)) +[1BO)1Z, () + [0O0)]1Z, )], t<T.

Proof. Multiplying (2.10) by h, integrating over 2 and using Lemma 2.5
yields

(3.3) HhHLQ y VIRl ) < eV Ih- Vo blde + ¢ | a0 fh] da
02 2
cS lagh|dz + ¢ S lafahs| dzy dzo
2 S

where the first term on the r.h.s. is estimated by

etllhllZ g0 + c1/e)IVUllL, ) I, o),

Q.‘Q‘

1
2

the second by
21113y + e(1/e2)a (Mol oo ) 19£15, oy
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the third by
eallhllT g0y + 0(1/53)‘12(”90HL00(Q))HQH%W(Q)
and the fourth by

eallllzp ) + c(1/e0)a® (180l Lo ()1 £3 11, (55)-
Assuming that €1, €9, 3,4 are sufficiently small we obtain

(3-4) HhHL2 ) F VIRl ) < eIVl o) IRl 2,0)

+ Cl(”ﬁHLQ(Q)HfHLg(Q) + HQHLG/5(Q) + Hf3‘|%4/3(5'2)))'
Multiplying (2.13) by ¢ and integrating over {2 yields

1d

(3.5) S €

007, + #1031 ) < ¢ | 1h- VOO da
2
< 5”19”%6(9) +e(1/e) 107, ) IVOII7 02)

For sufficiently small € we have

d
(3.6) 0L, ) + 0117 () < ellbllLy o) IVOIL, 0

Adding (3.4) and (3.6), integrating with respect to time and using (2.8) and
(2.9) we obtain (3.1).
We can replace inequalities (3.4) and (3.6) by

(3.7) HhHL2 + VHhHHl < ([ Vol !2)||h||L2(Q
+ 01(“19||L2(Q)Hf”L3(Q) + ||9HL6/5(Q) + ||f3”%4/3(s2)))
and
d
(3.8) a”ﬁ”%z(n) + 352|913 ) < VO, P17,

Adding (3.7) and (3.8), and integrating the sum with respect to time, yields
(3.2). This ends the proof. m

To obtain an estimate for solutions to problem (2.12) we introduce a
function y : 2 x [0,7] — R as a solution to the problem

Xt —vAx =0 in 27,

S _ ST,
X,z3 =0 on Sy,
Tlizo =0 in 0.

Then the function
(3.10) X' =x-X
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satisfies
X+ v VX = h3xX + haw gy — hw g, — vAY
= g0, fo—Oapf1) +aF —v-Vx 4 hzy in 27T,
(3.11) X' =0 on SIT7
Xfxg =0 on S;‘F,
X'lt=0 = x(0) in 2.

LEMMA 3.2. Let the assumptions of Lemma 2.3 be satisfied. Moreover
assume that h, f € Loo(0,T; L3(82)), F € La(0,T; Lg5(£2)), v' = (v1,v2) €

Loo(0,T; HY/2+2(02)) N W21’1/2(QT), x(0) € La(£2), and e7 > 0 is arbitrarily
small. Assume that (v,0) is a sufficiently regular solution to (1.1). Then for
the solution x to (2.12) we have

(312) [Ixlpan < elcisup Al ) +icosupllf11Z,(0)
+AllF L0424 52) + NI 0,682
113 otar/zee ) + 10" 2172 ey + IX(0)17, ()
+ (g (1/er) + sup 1817 (2))
X (a2(H00HLm(Qt))HfH%Q(O,t;L6/5(Q)) + llvoll,2))
forallt <T.

Proof. Multiplying (3.11); by x/, integrating over {2, and using boundary
conditions (3.11)2.3, (1.1)5 and (1.1)2, we obtain

1d
(3.13) 5 &HX/H%Q(Q) + VX700 = S hax'? da
2
= Y (haway = hwa )X de + § ag(00, f2 = 00, f1)X de
Q Q
+ S aFy dr — S v-Vyx do + S haxx' dx.
Q Q Q

Now we estimate the terms on the r.h.s. of the above equality. Let 2/ =
(21, 22). The first term is estimated by

c
e1lX g0 + a’!x"\%z(n)”hsf\%3(n)a
the second by

C
20X 600 + 5||h||%3(9)||w,x’||%2(9)v
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and the third by

esllx’ ”L6 @ T Z 01||9 HL2 )||f”L3(Q

where we have used (1.2), and the fourth by
D P e L
AlX 11 Lg(2) gq ! Le/s5(52)

where we have also used (1.2).

To estimate the fifth term on the r.h.s. of (3.13) we integrate it by parts
and use (1.1)25. Then it takes the form

1= SU~VX/)~<dx.
9]

Hence
1< <59 B + IolEaca) K1)
Finally, the last term on the r.h.s. of (3.13) is bounded by
e L e D e
Using the above estimates in (3.13), assuming that €1, ..., g are sufficiently

small, integrating the result with respect to time and using (2.8)-(2.9) we
obtain

(3.14) XI5 r) < C(SUP 1P1Z 5 ) I1X 17 5 0,620 (2
+cg sup HhHL3 + e sup HfHL3 + CIHF”LQ(Ot Le;5(2))

+ COHXHLOO(O,t;Lg(Q)) +sup 1A () IX1I T4 0,650 020y T+ IXO1Z52))-

In view of (2.8) we have ||x||r,(ot) < cco.
Using (3.10) and this fact we obtain from (3.14) the inequality

(315) Il < (CoSuP||h||L3(Q +c CoSUP||f||L3(Q
+ C%||F‘|%2(O,t;L6/5(Q)) + G lIXNT 0,61 (2)) F sup P12 1X1F 5 20y
+ [ Xllve ey + 1XO)17,02)-

Since x is a solution of (3.9) and x, is described by (2.12)2 we have the
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following estimates, by Lemma 2.8:

t t
VIXE)Z 0 d < CS 1o ()7 s) 4" < eI/ (¢ 17y at
0 0 0

< c(@®([100]| o )1 0,012 5 (2)) T 100117 (2)):

(3.16) X1 Lo (0,6:25(2)) < V'L 0525(5)) < €71V | o 04352 (2))

+ c(1/en) V'] o (0,651 (2))
t
1% 0 0ry < (I3, (0o + S IRy @)
0

< C’|Ul|‘%w(0,t;H1/2+E( + CHU ” 1, I/Q(Qt) e>0.

Employing (3.16) in (3.15) yields (3.12). This concludes the proof. =

Let us consider the problem

: /
U2,x1 - Ul,xz =X m Q )

: /

(3.17) Vg T V2,2, = —hg in (2,
v-n =0 on S,

where 2" = 2N {x3 = const € (—a,a)}, 5" = SN {x3 = const € (—a,a)},
x3,t are treated as parameters, i’ = (nq, ng).

LEMMA 3.3. Let the assumptions of Lemmas 2.3, 3.1, 3.2 be satisfied.
Assume that (v, p,0) is a weak solution to problem (1.1). Assume that

(3.18)  c1llgllrao,t:zs2)) + 10l fll Lo 0t:zs(2)) T Ll F I La(0.65265(2))
+ cllf3llLo04245(52)) + 1RO) |y (2) + [19(0) | () + IX(0) | y(2)
+ (1l f o026 5(2)) F 1[0(0)]Ly(2) + (c0) <k < o0,

1l 2200,6515(02)) < k2 <00
for allt <T. Then

(3.19) HUIH%/Ql(Qt)

2k2, 2 2 2 2
< e (lIhlIT o 04,15 (02)) F P(c0)kT) + HUIHLQ(Q;Hl/z(o,t))]
or a where v' = (v1,v2) an is an increasing positive function.
for allt < T, wh "= (v1,v2) and ¥ i ' ing positive functi

Proof. Assuming that e7 is sufficiently small, in view of (3.1), (3.12) and
Lemma 2.6 we obtain for solutions to problem (3.17) the inequality (see [11])

(320) 1117,y < €llt/lIpny < el PRI 0 115009) + ¥ (c0)RD)
( )

+ V17 s 24y + ”“I”iv;m(m)]’
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where ¢ is an arbitrarily small number and (3.18) was used. By interpolation
inequalities,
10l 0,501 7242 (2)) < €11V (| o 0,150 (2)) + €(L/ED) IV | Log (0,8 L0(02))
and
[ical| s L1200 = 10| Ly, (2)) + 10| Ly 211272 0,09
where
HU,HLQ(O,t;Hl(Q)) < cky.

Then we obtain (3.19) from (3.20) for sufficiently small ;. This concludes
the proof. m

Let us consider problem (1.1)124,5 7 in the form

vy —divT(v,p) = —v - V'v —wh+a(@)f in 07,

dive =0 in 27,
(3.21)

v-=0, 7-Dv) Ta=0, a=12  ons,

v]i=0 = o in (2.

where v' - V' = 010;, + v20,,.

LEMMA 3.4. Assume that (v,0) is a weak solution to problem (1.1). Let
the assumptions of Lemma 3.3 be satisfied. Let

£l Loty + [lvoll (o) < ks < oo,
H(t) = Mo 0.t:2502)) + 1Pl L1 500 < 00,

for all t < T. Then there exists a constant ca = ca(co,c1) such that the
solution v to problem (3.21) satisfies

(322)  [lvllypza (g +1VPllLy(on) < Coe B (H 41+ k) +k3)?+cks, t<T.

The proof is the same as the proof of Lemma 3.3 in [7].
Finally, we obtain an estimate for h.

LEMMA 3.5. Let the assumptions of Lemma 3.4 be satisfied. Let
etllf a2k + cllglr,or) + 19(0) ]y 2-2/7
ROy 2170 g < K < o0,
(3.23) Cl”9|\L2(o,t;L6/5(Q)) + Cl|’f3HL2(0,t;L4/3(Sg)) + ROl 2o (2
+[[9(0)][ Lo() < d < o0,
el llzygarm) + 10Oy 2-270 g + 10Oy 2-270,y < B < o0,
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fort <T. Then for d sufficiently small there exists a constant A such that

(3.24)  |hlly2ron +IVallL ey <A, 5/3<0<10/3, t<T,

(325) 198l y000 + ol o) + 180y g < 9(A) + s
5/3<0<10, t<T,

where p is some positive increasing function.

Proof. In view of Lemma 2.2 for solutions to problem (2.10) we have

(3.26) ”hHngl(Qt) + qu”Lo(Qt)
<c(llv-Vhllp, o +I1h- Vol on
+lleod fllL, 2n) + lagllLo @ + [O0)ly2-2/e p))-
In view of the imbedding
(3.27) ollzao(eny + IVl @0 < ellvllmz gr)-
and inequality (3.22) we estimate the first term on the r.h.s. of (3.26) by
[0l 1o (20 (Ellllyy21 ey + (1 /eD) [Pl Ly 2t))
and the second by
IVl 520y (2l Pl (r) + (/) 1A Lot)-

In view of (2.6) and (1.2) the third and the fourth terms on the r.h.s. of
(3.26) can be estimated by

cer(If Lo 1912ty + 19l L, (20) = 1.
We use (3.1) with the notation of (3.18). Then we obtain

cc% k% (

I <car([|fllpeone k1 + coll Pl oo 0,6525(2))) + 1912, (21))5

where o < 10/3.
We will also use the interpolation

1Pl Lo 05 (2)) < E2lPlly21 oy + c(1/€3)[[R]| Ly (2)-

Employing the above estimates in (3.26), assuming that €1, e2,€3 are suffi-
ciently small and using (3.22) we obtain

(3.28) Hhsz,l oty T | vQ”Lg(Qt) < <P(H)HhHL2(m)
& (£21)
+ CCl(HfHLOO(Qf)GCC%k%kl + HQHLU(m)) + c||h(0)||”,02,2/(,(9),

where 5/3 < 0 < 10/3, ¢ is an increasing positive function depending on H
and on the constants ¢, c1, k1, . . ., k5. Using the notation of (3.23); we have

(329) Wl on + 1Vallza (@ < oDl y(or + cha.
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We want to estimate ||k, o) by applying (3.2). For this purpose we need
to estimate ||[VO||L,(0,414(0))- Hence we consider problem (1.1)367 and we
are looking for solutions of this problem such that 6 € VVQ2 ’1(Qt) with ¢ so
large that

(3.30 98010502 < Nl 0y
We see that (3.30) holds for ¢ > 5/3. Considering problem (1.1)3 67 we have
(3.31) 101l ey < elllo - VOl Lty + 10(0) 2270 )-

The first term on the r.h.s. is estimated by
HUHLMl(Qt)Hve”Lmz(Qt) =1,

where 1/A1 + 1/ =1, oA\ = 10.
We have the interpolation inequality

VOl L ny (20 < €allBllyy2 () + (/) 10]| L2ty

29
which holds for % — & < 1 so for g5T1 < 1. Hence
I < [ollLyg(n) (€allOll 21 oy + c(1/ea) 0] Lo(r))-

Using the estimate in (3.31), assuming that 4 is sufficiently small, and using
(3.27) and (3.22), we obtain

(3'32) ||9HW3’1(_Qt) < @(H) + CHQ(O)HWQQ*?/Q(QV

where o < 10.
Similarly by Lemma 2.2 applied to (3.21) and (2.8) we obtain

(3:33) vl + IVPlL, @0
< @(H, co) + 1l fll Lory + €lv(O) ]y 2-2re -

Let us consider (3.29). In view of (3.2) we estimate the norm ||A| 7,01,
where

IVl Ly 0,652502)) F IVOl Ly0,4515(02)) < w(H) + cks.
Then (3.29) takes the form
(3.3 Iz oy + IVl < (H)d -+ ek,

where ¢ is an increasing positive function.
Let o be such that

H = 1l 0ia() + Il sty < lbllyz gy
which holds for o > 5/3. Then (3.34) takes the form
(3.35) ||h||W§vl(Qt) + ”VQHLU((F) < 90(||h||W§»1(Qt))d+ cky.
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Hence for d sufficiently small there exists a constant A such that
(3.36) llyzs oy + IVl < A, t<T.
By (3.36), (3.32) and (3.33) the proof is complete. m

Proof of the Main Theorem. Now we want to increase regularity de-
scribed by (3.25). Assume 10 < p < oo. In view of [8, Theorem 2.1| for
a solution v to problem (1.1) we have
(337)  olly2a (0 + 19PNy

< c(llv-Vollp, 0t + a(0) fllL, 20 + Hvongﬁ/g(Q))-

We estimate the first term on the r.h.s. of (3.37) by

(3:38) vl IV, 0t
< clvllyzgn Ellvllyzr g + c(/e)llvllLy@n)

and the second by

(3.39) el fll Loty
Assuming that £; is sufficiently small and using (3.37)—(3.39) we obtain

(3.40) lellzs (o + 19Plz,00 < Bi.

where Bp is a constant depending on the constants from the imbedding
theorems and data.

Similarly by [5, Ch. 4, Sect. 9, Th. 9.1] we obtain

(3.41) < B,.

|!9\|W371(m)

Now we want to increase regularity described by (3.24). There exist p’ > o,
p” > 5/2 such that

5 5
Hence p = max{p/,p"} satisfies
5 5 5
(3.42) p>o0, p>-=, —-——-<1I1.
2 o p
Similarly we can prove that there exists ¢ such that
5 5
(3.43) g>o0, ¢>5 and - —-<2
o g

Define p,g by 1/p+1/p=1/0,1/q+1/G=1/0. Assume 5/3 < 0 < oc. In
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view of Theorem 2.1 for a solution to problem (2.10) we have
(349)  [hllyzs o, + [ Valz o0
<c(llv-Vhllp, 2t + Ih- Vol + leed fli, 2
+llaglz, @) + [AO)y2-27e )

By (3.42) and (3.43) we estimate the first term on the r.h.s. of (3.44) by
(3.45)  lvllz, e IVRllL 2t

< CHUHWQQJ(_Qt)(52||h||W§vl(m) + 0(52)”hHL2(Qt))a
the second by
(3.46) IVl )l Ly2n

< C||’UHWgal(m)(€3||h||wgvl(m) + 0(53)HhHL2(Qt))7
the third by
(3.47) Al ey Eall 2 ) + ) 9] 200,
and the fourth by

(3.48) cllglln, o)

In view of [5, Ch. 4, Sect. 9, Th. 9.1] for any solution to problem (2.13) we
have

(3:49) 1921 gy < clllv-VillLyany + 117 VOl L, 2ty +[1900) |y 2-2/0 0y )-

By (3.42) and (3.43) we estimate the first term on the r.h.s. of (3.49) by

(3.50) ol oy 319l 2 gy + e)9ll )

and the second by

(3.51) CHQHWg*l(Qt)(€6HhHW§’1(Qt) + C(EG)HhHLz(m))-

We choose r such that 5/3 < r < 10/3 and r < 0. By (3.1), the imbedding
hlosstaoy < el oo

and (3.24) there exists a constant Bs depending on the constants in imbed-
ding theorems and on the data such that

(3.52) Al Loty + 19 Loty < Bs.
Assuming that eg —e¢ are sufficiently small and using (3.44)—(3.52) we obtain
(3.53) HhHW}l(Qt) + ||VQHLU(Q’5) + ||19HW3*1(_Q15) < By,

where By is some constant depending on the data. By (3.40), (3.41) and
(3.53) the proof is finished. m
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