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ESTIMATION OF PARAMETERS OF A SPHERICAL
INVARIANT STABLE DISTRIBUTION

Abstract. This paper concerns the estimation of the parameters that de-
scribe spherical invariant stable distributions: the index α ∈ (0, 2] and the
scale parameter σ > 0. We present a kind of moment estimators derived
from specially transformed original data.

1. Introduction. The distribution of a random vector ξ = (ξ1, . . . , ξd)
is called α-stable spherically invariant if its characteristic function is of the
form

ŝd,α(t) = exp(−σα|t|α), σ > 0, α ∈ (0, 2], t ∈ Rd.

The parameter α is called the index while σ is called the scale parameter.
Each α-stable spherically invariant distribution determines a family of

so-called elliptically contoured distributions. The stable distribution inherits
many properties of the normal distribution.

Let X = (x(1), . . . , x(n)), where x(i) = (x(i)
1 , . . . , x

(i)
d ), i = 1, . . . , n, be a

sample from an α-stable spherical invariant distribution Sd,α(σ). From [ST,
Ch. 3.6] we have

Lemma 1.1. If a sample X is drawn from Sd,α(σ) distribution and
t ∈ Sd−1 is any vector then 〈t,X〉 is a symmetric one-dimensional random
variable with distribution S1,α(σ).

It seems that such a conclusion eliminates the question of multidimen-
sionality. However, it is true only in the case of normal distribution and the
analysis of the scale parameter: a sample of size n from Sd,2(σ) distribution
can be deemed as a sample of size nd from S1,2(σ) distribution. This follows
from the fact that the vector X ∼ Sd,2(σ) has coordinates which are inde-
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pendent, and it is not valid when α < 2. Hence, it can be expected that scale
parameter estimators will have better properties when α < 2.

One of the techniques for the estimation of parameters of Sd,α(σ) distri-
bution is the moment estimation by Zolotarev [ZM, N].

Lemma 1.2. Let X ∼ Sd,α(σ). Then E |X|p < ∞ only if −d < p < α
and

E |X|p = (2σ)p
Γ (1− p/α)Γ ((d+ p)/2)

Γ (1− p/2)Γ (d/2)
.

Construction of estimators based on Lemma 1.2 by the moment method
results in the technical issue of selection of p and analytical determination
of estimation of α.

Hence, let us consider a random variable

Y = h(X),

where h : Rd → R is such that all moments of Y are finite. Examples of such
functions are arctan and ln. We shall consider the function Y = ln |X|.

The paper is organized as follows. In Section 2 we present one-dimensional
estimators. In Section 3 the above mentioned method is extended to higher
dimensions. Some remarks concerning Monte Carlo simulation are given in
Section 4.

2. One-dimensional case. Consider t = (1, . . . , 0) ∈ Sd−1. Denote
xi = x

(i)
1 , i = 1, . . . , n. Let CE = −ψ(1) = 0.577 . . . , where ψ is the Euler

function and y = n−1
∑n

i=1 yi, s
2
y = (n − 1)−1

∑n
i=1(yi − y)2, where y1 =

ln |x1|, . . . , yn = ln |xn|.
From [Z, Ch. 3.6] we have

Lemma 2.1. Let Sα(σ, β, a) be the one-dimensional α-stable distribution
with scale parameter σ > 0, shape parameter β ∈ [−1, 1] and location param-
eter a ∈ R. Consider

X ∼ Sα
((

cos
πκα

2

)1/α

, β, 0
)
, where κ =

2
πα

arctan
(
β tan

πα

2

)
.

The regular moments of order s ∈ N of the random variable Y = ln |X| are
EY s = Cs(q1, . . . , qs) + s lnκ,

where

q1 = CE

(
1
α
− 1
)
,

qj = (2j − 1)(1− κj)π
j |Bj |
j

+
(

1
αj
− 1
)
Γ (j)ζ(j), j = 2, . . . , s,
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and Bj are the Bernoulli numbers, ζ is the Riemann zeta function and

Cs(q1, . . . , qs) =
∑ s!

k1! . . . ks!

(
q1
1!

)k1
. . .

(
qs
s!

)ks

where the sum extends over {(k1, . . . , ks) :
∑s

j=1 jkj = s, kj ∈ N, j =
1, . . . , s}.

Corollary 2.2. Let X ∼ Sα(1, 0, 0) = S1,α(1). The first four regular
moments of the random variable Y = ln |X| are

EY = q1,

EY 2 = q21 + q2,

EY 3 = q31 + 3q1q2 + q3,

EY 4 = q41 + 3q22 + 6q21q2 + 4q1q3 + q4,

where

q1 = CE

(
1
α
− 1
)
,

q2 =
π2

12

(
1 +

2
α2

)
,

q3 = 2ζ(3)
(

1
α3
− 1
)
,

q4 =
π4

120

(
7 +

8
α4

)
.

Corollary 2.3. Let X ∼ S1,α(σ). The expected value, variance, and
fourth central moment of the random variable Y = ln |X| are

µ1 = EY = q1 = CE

(
1
α
− 1
)

+ lnσ,

µ2 = VarY = q2 =
π2(1 + 2/α2)

12
,

µ4 = E (Y − µ1)4 = 3q22 + q4 =
π4(19α4 + 20α2 + 36)

240α4
.

In view of Corollary 2.3, Zolotarev [Z] proposed the moment type esti-
mators

(2.1) σZ = exp(ȳ − CE(α−1 − 1))

and

(2.2) αZ =
1√

max
{

1
4 ,

6
π2 s2y − 1

2

} ,



74 P. Szymański

which is the solution of the system of equations{
µ1 = y,

µ2 = s2y.

Since α ≤ 2, the estimator αZ was altered by addition of the max function
and 1/4. Sometimes we use the notation σZ(X) and αZ(X) instead of σZ
and αZ .

The estimator of the scale parameter. First we consider the func-
tion

f : (2α−1
0 ,∞)× [α0, 2]→ R,

where α0 ∈ (0, 2) is a constant and

f(z, α) =
4

exp(2CE(1/α− 1))

(
Γ (1− 2/(zα))Γ (1/2 + 1/z)

Γ (1− 1/z)
√
π

)z
.

Lemma 2.4. The function f(z, α) has the properties:

(i)
∂f

∂α
(z, α) < 0,

(ii) lim
z→∞

f(z, α) = 1,

(iii)
∂f

∂z
(z, 2) < 0,

(iv) f(z, α) > 1.

Proof. (i) Calculating directly we get
∂f

∂α
(z, α) = 2(ψ(1− 2/(zα))− ψ(1))f(z, α).

Since the function ψ(y) = ∂ lnΓ
∂y (y) is increasing we have ∂f

∂α(z, α) < 0.
(ii) Use the fact that Γ (y + ∆) ∼ Γ (y)(1 + ψ(y)∆) as ∆ → 0, where ∼

denotes asymptotic equivalence.
(iii) Note that

∂2f

∂z2
(z, 2)

=
f(z, 2)
z2

[
ψ′(1/2 + 1/z)

z
+
(
z ln

Γ (1/2 + 1/z)√
π

− ψ(1/2 + 1/z)
)2]

> 0.

This means that the function f(z, 2) is convex. Using (ii) implies that it
must also be decreasing.

(iv) Note that

f(z, α)
(i)

≥ f(z, 2)
(iii)
> lim

z→∞
f(z, 2)

(ii)
= 1.
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Further, for simplicity, we will denote the mean square risk by R with
an appropriate subscript representing the estimator’s name, and with an
estimated parameter in parentheses. For instance RZ(σ) is the mean square
risk of the parameter σ for the estimator σZ .

Theorem 2.5. The estimator σZ has the properties:

(i) for each n > [1/α],

EσZ = σ
√
f(2n, α) > σ,

(ii) for each n > [2/α],

VarσZ = σ2[f(n, α)− f(2n, α)],

RZ(σ) = σ2[f(n, α)− 2
√
f(2n, α) + 1],

(iii) for each λ > 0,
σZ(λX) = λσZ(X),

(iv) the distribution of n1/2(σZ − σ) is asymptotic to N(0, b2), where

b2 = σ2π
2(1 + 2/α2)

12
.

Proof. (i) We have

EσZ =
1

exp(CE(1/α− 1))
E exp(y).

Note that

E exp(y) = E
n∏
i=1

|xi|1/n.

Because the random variables xi, i = 1, . . . , n, are independent,

E exp(y) = (E |x1|1/n)n.

From Lemma 1.2, for d = 1 and p = 1/n < α we get

E exp(y) = 2σ
(
Γ (1− 1/(nα))Γ (1/2 + 1/(2n))

Γ (1− 1/(2n))
√
π

)n
.

Hence, we have the conclusion.
(ii) We have

VarσZ
(i)
= Eσ2

Z − σ2f(2n, α)

and
Eσ2

Z =
1

exp(2CE(1/α− 1))
E exp(2y).

By analogy to (i) we show Eσ2
Z = σ2f(n, α). After substitution we get the

conclusion. Similarly we prove the equality for the risk.
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(iii) Note that

σZ(X) =
n
√∏n

i=1 |xi|
exp(CE(1/α− 1))

.

Then for λ > 0 we have

σZ(λX) =
n
√∏n

i=1 |λxi|
exp(CE(1/α− 1))

=
n
√
λn
∏n
i=1 |xi|

exp(CE(1/α− 1))
= λσZ(X).

(iv) From the Lindeberg–Lévy theorem [S, Ch. 1.9],
√
n(y − µ1) →d

N(0, µ2). Let g(z)=exp(z−CE(α−1−1). Then g′(z)=g(z). From the conver-
gence theorem (see also [R]) we have

√
n(g(y)−g(µ1))→d N(0, (g′(µ1))2µ2).

Therefore

b2 = σ2µ2 = σ2q2 = σ2π
2(1 + 2/α2)

12
.

Corollary 2.6. The estimator σZ is biased and

EσZ − σ = σ(
√
f(2n, α)− 1) > 0.

From Theorem 2.5(i) we can consider the new unbiased estimator

σNZ =
σZ√

f(2n, α)
.

We will call it the new Zolotarev estimator.

Theorem 2.7. Let α ∈ (0, 2] be a constant. The estimator σNZ has the
properties:

(i) for n > [1/α],
EσNZ = σ,

(ii) for n > [2/α],

VarσNZ = RNZ(σ) = σ2

[
f(n, α)
f(2n, α)

− 1
]
,

(iii) for all λ > 0,
σNZ(λX) = λσNZ(X),

(iv) the distribution of n1/2(σNZ − σ) is asymptotic to N(0, b2), where

b2 = σ2π
2(1 + 2/α2)

12
.

Proof. (i) This follows directly from the definition of σNZ .
(ii) The estimator σNZ is unbiased. Moreover

VarσNZ =
VarσZ
f(2n, α)

.

(iii) The proof is analogous to that for σZ .
(iv) The estimators σZ and σNZ are asymptotically equivalent. Hence

σNZ ∼ σZ , n→∞.
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We have
σZ
σNZ

=
√
f(2n, α).

Next, we use Lemma 2.4(ii).

Corollary 2.8. For n > [2/α],

RZ(σ) > RNZ(σ) and Var(σZ) > Var(σNZ).

The inequalities in Corollary 2.8 mean that the estimator σZ is inadmis-
sible.

The estimator for the index. Let us consider the Zolotarev estimator
αZ of the form (2.1).

Theorem 2.9. The estimator αZ has the properties:

(i) for each λ > 0, αZ(λX) = αZ(X),
(ii) for n > 1 we have

RZ(α) ≤ 16
5

(
22
α4

+
10
α2

+ 13
)

1
n

+ 8
(

2
α2

+ 1
)2 1
n(n− 1)

,

(iii) the distribution n1/2(αZ − α) is asymptotic to N(0,m2), where

m2 =
α2(13α4 + 10α2 + 22)

20
.

Proof. (i) Note that s2y(λX) = s2y(X). This yields the given equality.
(ii) In [Z, Ch. 4.3] there is a proof. Regretfully, the fourth central moment

is incorrectly calculated, so the estimation contains an error. Therefore we
give a detailed argument.

Let v = 1/α2 and ṽ = max{1/4, v̂}, where v̂ = (6/π2)s2y − 1/2. We have

|αZ − α| = |ṽ−1/2 − v−1/2| = |ṽ − v|
vṽ1/2 + ṽv1/2

.

Because v, ṽ ≥ 1/4 we have

|αZ − α| ≤ 4|ṽ − v|.
Furthermore

|ṽ − v| = |max{1/4, v̂} −max{1/4, v}| ≤ |v̂ − v|.
Hence

(2.3) E (αZ − α)2 ≤ 16 E (v̂ − v)2 =
576
π4

Var s2y.

To find Var s2y we use formula (4.1.18) of [Z]. We have

Var s2y = (µ4 − µ2
2)

1
n

+ 2µ2
2

1
n(n− 1)

,
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where µ2, µ4 were determined in Corollary 2.3. After simplification we obtain

Var s2y =
π4

180α4
(13α4 + 10α2 + 22)

1
n

+
π4

72
(1 + 2/α2)2

1
n(n− 1)

,

which yields the desired result.
(iii) Note that max{1/4, (6/π2)S2

y−1/2} is asymptotic to (6/π2)S2
y−1/2.

From the Lindeberg–Lévy theorem we have
√
n(s2y − µ2)→d N(0, µ4 − µ2

2).

Let g(z) = 1√
(6/π2)z−1/2

. Hence g′(z) = −(3/π2)g(z)3. Next we have
√
n(g(s2y)− g(µ2))→d N(0, (g′(µ2))2(µ4 − µ2

2)).

Then

m2 = (g′(µ2))2(µ4 − µ2
2) =

72π2(2q22 + q4)
(12q2 − π2)3

=
α2(13α4 + 10α2 + 22)

20
.

3. Multidimensional case. We will denote by y = n−1
∑n

i=1 yi the
sample mean, where y1 = ln |x(1)|, . . . , yn = ln |x(n)|, and by s2y = (n− 1)−1

·
∑n

i=1(yi − y)2 the variance from the sample.

Lemma 3.1. Let X ∼ Sd,α(σ). Then the expected value, variance and
fourth central moment of the random variable Y = ln |X| are

µ1 = EY = ln(2σ) + CE

(
1
α
− 1

2

)
+

1
2
ψ

(
d

2

)
,(3.1)

µ2 = VarY =
π2

6

(
1
α2
− 1

4

)
+

1
4
ψ′
(
d

2

)
,(3.2)

µ4 = E (Y − EY )4 =
π4(α4 − 40α2 + 144)

960α4
+
π2(4− α2)

16α2
ψ′
(
d

2

)
+

3
16

[ψ′(d/2)]2 +
1
16
ψ′′′(d/2).

(3.3)

Proof. Let A ∼ Sα/2((cos (πα/4))2/α, 1, 0) and Z =
√

2σ2(Z1, . . . , Zd),
where Zi ∼ N(0, 1), i = 1, . . . , d, are independent random variables. Then
from Cor. 2.5.5(3) of [ST] we have

X = A1/2Z =
√

2σ2A1/2(Z1, . . . , Zd).

Thus |X|2 = 2σ2|A|T where T = Z2
1 + · · ·+ Z2

d ∼ χ2(d). Hence

Y =
1
2

ln 2 + lnσ +
1
2

ln |A|+ 1
2

lnT.

From Corollary 2.3 we have

E ln |A| = CE

(
2
α
− 1
)
,
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and from [P, formulas 2.6.21]

E lnT = ln 2 + ψ

(
d

2

)
we have

EY = ln(2σ) + CE

(
1
α
− 1

2

)
+

1
2
ψ

(
d

2

)
.

We have proven (3.1). To prove (3.2) we shall use the fact that (see also
Corollary 2.3)

Var ln |A| = π2

6

(
4
α2
− 1
)

and (see [P, formulas 2.6.21])

Var lnT = ψ′
(
d

2

)
.

Since VarY = 1
4 Var ln |A|+ 1

4 Var lnT, after substitution we have

VarY =
π2

6

(
1
α2
− 1

4

)
+

1
4
ψ′
(
d

2

)
.

Property (3.3) is proved analogously. We have

E (lnA− E lnA)4 =
π4(α4 − 40α2 + 144)

60α4

and (see [P, formulas 2.6.21])

E (lnT − E lnT )4 = 3
[
ψ′
(
d

2

)]2

+ ψ′′′
(
d

2

)
.

Note that

E (Y − EY )4 =
1
16

E [(ln |A| − E ln |A|) + (lnT − E lnT )]4.

Taking advantage of independence of the random variables A and T and the
formula (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4 we have after simplification

E (Y − EY )4 =
π4(α4 − 40α2 + 144)

960α4
+
π2(4− α2)

16α2
ψ′
(
d

2

)
+

3
16

[
ψ′
(
d

2

)]2

+
1
16
ψ′′′
(
d

2

)
.

Estimators (see also [N, U, ZM]) based on (3.1) and (3.2) for the param-
eters α and σ, analogously to the one-dimensional case, have the form

σdZ = exp(y −Ad − CE(α−1 − 1)),(3.4)

αdZ =
1√

max{1/4, (6/π2)s2y +Bd}
,(3.5)
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where

Ad = ln 2 +
1
2

(CE + ψ(d/2)) =


ln 2 +

m−1∑
j=1

1
2j
, d = 2m,

m∑
j=1

1
2j − 1

, d = 2m+ 1,

and

Bd =
1
4
− 3

2π2
ψ′(d/2) =


6
π2

m−1∑
j=1

1
(2j)2

, d = 2m,

−1
2

+
6
π2

m∑
j=1

1
(2j − 1)2

, d = 2m+ 1.

The estimator for the scale parameter. Let α0 ∈ (0, 2) be a con-
stant number. To analyse scale parameter estimators we will use the function

g : [2−1,∞)× (0, α02−1)× [1, 2α−1
0 ]→ R

defined as

g(p, z, a) =
1

exp(CE(a− 1) + ψ(p))

(
Γ (1− az)Γ (p+ z)
Γ (1− z)Γ (p)

)1/z

.

Lemma 3.2. The function g(p, z, a) has the following properties:

(i) g(2−1, z−1, 2α−1) = f(z, α), where f was defined in Lemma 2.4,

(ii)
∂g

∂a
(p, z, a) > 0,

(iii)
∂g

∂p
(p, z, a) < 0,

(iv) g(p, z, a) > 1.

Proof. (i) Obvious.
(ii) Calculating the derivative directly we have

∂g

∂a
(p, z, a) = −g(p, z, a)(ψ(1− az)− ψ(1)).

The function ψ(y) is increasing. Therefore ψ(1− az)− ψ(1) < 0.
(iii) Calculating the derivative directly we have

∂g

∂p
(p, z, a) = g(p, z, a)

(
ψ(p+ z)− ψ(p)

z
− ψ′(p)

)
.

Since ψ′′(y) < 0, ψ(y) is concave, which means that each difference quotient
is less than the derivative at p.
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(iv) Note that

g(p, z, a)
(ii)

≥ g(p, z, 1)
(iii)

≥ g(2−1, z, 1)
(i)
= f(z−1, 2) > 1.

The latter inequality results from Lemma 2.4(iv).

Theorem 3.3. Fix α ∈ (0, 2]. The estimator σdZ has the following prop-
erties:

(i) for n > [1/α],

EσdZ = σ
√
g(d/2, 1/(2n), 2/α) > σ,

(ii) for n > [2/α],

VarσdZ = σ2[g(d/2, 1/n, 2/α)− g(d/2, 1/(2n), 2/α)],

Rd
Z(σ) = σ2[g(d/2, 1/n, 2/α)− 2

√
g(d/2, 1/(2n), 2/α) + 1],

(iii) for each λ > 0,
σdZ(λX) = λσdZ(X),

(iv) the distribution of n1/2(σdZ − σ) is asymptotic to N(0, b2), where

b2 = σ2

[
π2

6

(
1
α2
− 1

4

)
+

1
4
ψ′
(
d

2

)]
.

Proof. (i) We argue as in the one-dimensional case. The strict inequality
results from Lemma 3.2(iv).

Items (ii), (iii) and (iv) are proved as in one-dimensional case. For (iv)
we additionally take advantage of the central moment data.

Corollary 3.4. The estimator σdZ is biased and its bias equals

EσdZ − σ = σ(
√
g(d/2, 1/(2n), 2/α)− 1) > 0.

To get rid of the bias in σdZ we propose a new estimator

σdNZ =
σdZ√

g(d/2, 1/(2n), 2/α)
.

Theorem 3.5. Let α ∈ (0, 2]. The estimator σdNZ has the following prop-
erties:

(i) for n > [1/α],
EσdNZ = σ,

(ii) for n > [2/α],

VarσdNZ = Rd
NZ(σ) = σ2

[
g(d/2, 1/n, 2/α)
g(d/2, 1/(2n), 2/α)

− 1
]
,

(iii) for each λ > 0,
σdNZ(λX) = λσdNZ(X),
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(iv) the distribution of n1/2(σdNZ − σ) is asymptotic to N(0, b2), where

b2 = b2(α, σ) = σ2

[
π2

6

(
1
α2
− 1

4

)
+

1
4
ψ′
(
d

2

)]
.

Proof. (i) results directly from the definiton of σdNZ . The other state-
ments are proved as in the one-dimensional case.

With the increase of the dimension or of α the estimator’s bias decreases.
The minimum value is reached for α = 2.

Analogously to d = 1 the estimator σdNZ is unbiased and has variance as
well as mean squared risk lower than those of σdZ (see also Corollary 2.8).
This means that the estimator σdZ is unacceptable.

Theorem 3.6. For each d ∈ N,

Rd+1
NZ (σ) < Rd

NZ(σ).

Proof. It is sufficient to note that the risk is decreasing as a function of d,
which is shown as in the proof of Lemma 3.2(iii).

It follows from the above statement that the NZ-estimator in the one-
dimensional case has larger risk than its multidimensional counterpart.

The estimator for the index. Let us consider the Zolotarev estimator
αZ of the form (3.5).

Remark 3.7. The estimator αdZ is biased. Just as in the one-dimensional
case, we shall not prove this fact.

We shall not include bias-related numerical results either since the esti-
mator αdZ behaves analogously to its one-dimensional equivalent. The esti-
mator either underestimates or overestimates the index α.

Remark 3.8. For α = 2 and a finite sample we have EαdZ < 2.

Theorem 3.9. The estimator αdNZ has the following properties:

(i) for λ > 0, αdZ(λX) = αdZ(X),
(ii) for n > 1 we have RZ(α) ≤ T1

n + T2
n(n−1) where

T1 = −2
5

(
1 +

40
α2
− 176

α4

)
+

24
π2
ψ′
(
d

2

)(
4
α2
− 1
)

+
36
π2

(
2ψ′
(
d

2

)
+ ψ′′′

(
d

2

))
,

T2 =
1152
π4

[
π2

6

(
1
α2
− 1

4

)
+

1
4
ψ′
(
d

2

)]2

,
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(iii) the distribution of n1/2(αdZ − α) is asymptotic to N(0,m2),where

m2 =
α2

160π4
[α4(90ψ′′′(d/2) + 180ψ′(d/2)2 − 60π2ψ′(d/2)− π4)

+ α240π2(6ψ′(d/2)− π2) + 176π4].

Proof. The proof is analogous to the one-dimensional case. For (ii) and
(iii) we additionally take advantage of (3.2) and (3.3).

Corollary 3.10. The bias and the square root of the risk of the estima-
tor αdZ are O(n−1/2) as n→∞. In particular, the estimator is asymptotically
unbiased.

With the increase of the sample size the risk decreases, whereas with
the increase of α it initially increases and then decreases. The estimation of
the risk Rd

Z(α) suggested in Theorem 3.9 can be useful only in asymptotic
applications.

4. Monte-Carlo simulations. The estimation of parameters of multi-
dimensional spherical invariant α-stable distributions takes place according
to the following sequence:

(i) estimation of α by means of αdZ ,
(ii) estimation of σ by means of σdNZ and substitution of α by αdZ .

Each vector ζ ∼ Sd,α(σ) when α < 2 can be presented in a way that facili-
tates simulation (see also [ST, Cor. 2.5.5]).

Lemma 4.1. Let α ∈ (0, 2), σ > 0, suppose a random variable A has dis-
tribution Sα/2((cos (πα/4))2/α, 1, 0) and Y1, . . . , Yd are independent random
variables of equal distribution N(0,

√
2). Then ζ = A1/2Y has distribution

Sd,α(σ).

The estimators αdZ and σdNZ have been evaluated by means of Monte-
Carlo simulation. Sample sizes taken were n = 50, 100, 500. N = 104 sim-
ulations were executed for each sample. The Chambers algorithm (see also
[C, W]) was used to simulate random variables with α-stable distributions.

Tables 1–3 include the results of estimation of the index α and scale
parameter σ. For each sample size we give an estimation of the mean value
(first row) and mean square risk (second row).

In the case of αdZ (see Table 1) it is clearly visible that the bias and mean
square risk decrease with the increase of sample size and vector dimension.
This is also the case for σdNZ (see Tables 2 and 3). Comparison of Tables 2
and 3 shows that for α < 1 the mean square risk when α does not require
estimation is larger than when the index has to be estimated. This apparent
contradiction is an outcome of a very “heavy tail” and biasness of αdZ . For
α > 1 the situation raises no doubts.
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Table 1. Expected value and mean square risk of the estimator αd
Z

α = 0.5 α = 1.5

n d = 1 d = 2 d = 3 d = 5 n d = 1 d = 2 d = 3 d = 5

50 0.519 0.517 0.516 0.516 50 1.581 1.542 1.533 1.523
0.007 0.005 0.005 0.005 0.131 0.047 0.031 0.024

100 0.509 0.508 0.508 0.507 100 1.571 1.525 1.515 1.513
0.003 0.003 0.002 0.002 0.095 0.025 0.016 0.013

500 0.502 0.502 0.502 0.502 500 1.526 1.505 1.503 1.503
0.001 0.001 0.000 0.000 0.028 0.005 0.003 0.002

Table 2. Expected value and mean square risk of the estimator σd
NZ (index α known)

α = 0.5 α = 1.5

n d = 1 d = 2 d = 3 d = 5 n d = 1 d = 2 d = 3 d = 5

50 1.008 1.003 1.004 1.002 50 0.999 1.000 0.997 1.000
0.175 0.152 0.146 0.149 0.032 0.015 0.011 0.009

100 0.999 0.997 1.003 0.997 100 1.002 1.000 1.000 1.000
0.081 0.070 0.069 0.066 0.015 0.007 0.005 0.004

500 0.999 1.001 1.001 1.000 500 1.000 1.000 1.000 1.000
0.015 0.013 0.013 0.013 0.003 0.001 0.001 0.001

Table 3. Expected value and mean square risk of the estimator σd
NZ (α estimated by

αd
Z)

α = 0.5 α = 1.5

n d = 1 d = 2 d = 3 d = 5 n d = 1 d = 2 d = 3 d = 5

50 0.994 0.998 0.995 0.993 50 1.008 1.003 1.003 1.003
0.128 0.104 0.096 0.092 0.053 0.016 0.010 0.007

100 0.997 0.996 0.997 0.998 100 1.009 1.002 1.001 1.000
0.064 0.049 0.048 0.045 0.029 0.008 0.005 0.003

500 0.998 0.999 0.997 1.000 500 1.004 1.000 1.001 1.000
0.012 0.010 0.009 0.009 0.006 0.002 0.001 0.001
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