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QUANTILE HEDGING FOR BASKET DERIVATIVES

Abstract. The problem of quantile hedging for basket derivatives in the
Black–Scholes model with correlation is considered. Explicit formulas for
the probability maximizing function and the cost reduction function are
derived. Applicability of the results to the widely traded derivatives like
digital, quantos, outperformance and spread options is shown.

1. Introduction. As recent events on the market have shown, the risk
in pricing financial contracts should be more thoroughly surveyed. Although
the problem of minimizing risk is widely studied in the literature, the great
majority of the results do not meet the expectations of practitioners who are
interested in straightforward applications. This paper is concerned with risk
analysis for the basket derivatives and provides explicit computing methods
for the risk parameters.

The risk is measured by the possibility of a partial hedging of the pay-
off. Thus our approach is based on the idea of quantile hedging which was
introduced in [6] and later developed in various directions (see for instance
[4], [10], [2], [1]). Let us briefly sketch the general concept. Denote by H
a contingent claim and assume that the arbitrage free pricing method indi-
cates its price p(H). This means that if the investor has an initial endowment
x ≥ p(H) then he is able to follow some trading strategy such that his portfo-
lio hedges H with probability 1. If this is the case, then x carries no risk and
the probability maximizing function Φ1 equals 1, i.e. Φ1(x) = 1. On the other
hand, if x < p(H) then the shortfall probability is strictly greater than zero
for each trading strategy and then Φ1(x) < 1. The greater the probability of
shortfall, the smaller the value Φ1(x). Thus the function Φ1 can be viewed
as a measure of risk sensitivity to the price reduction of the option. There
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is also another aspect of the problem. Assume that the hedger is willing to
accept some risk measured by the shortfall probability in order to reduce
initial cost. He chooses a number α ∈ [0, 1] and searches for a minimal initial
capital Φ2(α) which allows him to find a strategy such that the probability
of the shortfall is smaller than 1−α. Thus if the hedger accepts no risk, i.e.
α = 0, then the minimal cost required to replicate H is just p(H). In this
case the cost reduction function satisfies Φ2(0) = p(H). However, if α > 0
then Φ2(α) < p(H) and the function Φ2 enables us to view the effect of
how the risk acceptance affects the cost reduction of the option. Recall the
numerical example from [6, p. 261] which shows that Φ2(0, 05) = 0, 59 ·p(H)
for a call option with certain parameters. This means that the acceptance
of a 5% margin of risk reduces the hedging cost by 41%. This shows that
quantile hedging is an attractive tool for risk analysis and should be taken
into account by traders.

The basic problem, however, is to determine the functions Φ1 and Φ2 for
specific derivatives. There are only a few examples in the literature where
they are explicitly found. In [6] explicit formulas are given for the most im-
portant case of a call option in a classical Black–Scholes model. The method
can be mimicked to obtain formulas for the put option. The idea is based
on reducing the original dynamic problem to a static one which can be
solved with methods used in the theory of statistical tests. Since the market
considered in [6] was complete, the solution of the static problem could be
obtained, via the Neyman–Pearson lemma, by indicating a non-randomized
test for appropriate probability measures. The Neyman–Pearson lemma can
be generalized to the case of composite hypotheses, i.e. when measures are
replaced by families of measures (see [3] where the solution in the abstract
form is presented). However, straightforward applicability of this result to
incomplete markets seems to be questionable.

This paper is devoted to determining the functions Φ1 and Φ2 for the
basket derivatives in the Black–Scholes framework with correlation. As the
market is complete, we follow the same general method as in [6], but we find
the solutions explicitly using specific features of the model. More precisely,
we show that the original problem can be reduced to that of finding another
two deterministic functions Ψ1, Ψ2 depending on H, which turn out to be
regular, i.e. continuous and strictly monotone ifH is of a reasonable form (see
Propositions 3.4 and 3.5). Then, roughly speaking, Φ1 = Ψ1 ◦ Ψ−1

2 and Φ2 =
Ψ2 ◦ Ψ−1

1 ; for a precise formulation see Theorem 3.6. In the one-dimensional
case when H is a call option the result covers the above mentioned example
from [6]. We also determine explicit forms of Ψ1 and Ψ2 for commonly traded
derivatives (see Section 4). As Ψ1, Ψ2 are rather complicated, the inverse
functions cannot be given by analytic formulas but can be determined with
the use of numerical methods. Thus a great advantage of our results is that
they can be used in practice.



Quantile hedging for basket derivatives 105

The paper is organized as follows. In Section 2 we briefly recall the multi-
dimensional Black–Scholes model and formulate the problem precisely. Sec-
tion 3 contains the main result, Theorem 3.6, which is preceded by a general
discussion on the results from [6] and the Neyman–Pearson technique. The
method established in Theorem 3.6 is used in Section 4 for calculating the
functions Ψ1, Ψ2 for two-asset derivatives which are widely traded: digital op-
tion, quanto domestic, quanto foreign, outperformance and spread options.

2. The model. Let (Ω,Ft, t ∈ [0, T ], P ) be a fixed probability space
with filtration. The prices of d shares are given by the Black–Scholes equa-
tions

dSit = Sit(αidt+ σidW
i
t ), i = 1, . . . , d, t ∈ [0, T ],

where αi ∈ R, σi > 0, i = 1, . . . , d and Wt = (W 1
t , . . . ,W

d
t ), t ∈ [0, T ], is a

sequence of standard Wiener processes adapted to {Ft; t ∈ [0, T ]} with the
correlation matrix Q of the form

Q =


1 ρ1,2 ρ1,3 . . . ρ1,d

ρ2,1 1 ρ2,3 . . . ρ2,d

...
...

...
...

...
ρd,1 ρd,2 ρd,3 . . . 1

 ,
where

ρi,j = cor{W i
1,W

j
1 }, i, j = 1, . . . , d.

We assume that Q is positive definite. The process given above will be called
a Q-Wiener process. The trader can invest his money in stocks as well as
put it on a savings account whose dynamics is given by

dBt = rBtdt, t ∈ [0, T ],

with r standing for a constant short rate.

Remark 2.1. The most common approach to the description of the mar-
ket is based on a sequence of independent Wiener processes (see for instance
the classical textbook [9]). It can be shown that the model described above
is equivalent to the model with d independent Wiener processes and the
d× d diffusion matrix with constant coefficients. We work with a correlated
Wiener process because it is more convenient for later calculations. Let us
also mention that parameters in such a model can be easily estimated from
data (see [7, p. 104]).

Let us now briefly characterize a martingale measure of the model, i.e.
a measure P̃ which is equivalent to P such that the discounted price processes
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Ŝit := e−rtSit , i = 1, . . . , d, are martingales. The following is a version of
Theorem 10.14 in [5] adapted to our finite-dimensional setting.

Theorem 2.2. Let ϕ be a predictable process taking values in Rd satis-
fying

E(e
	T
0 (Q−1/2ϕt,dWt)− 1

2

	T
0 |ϕt|

2 dt) = 1.

Then the process

W̃t = Wt −
t�

0

Q1/2ϕs ds, t ∈ [0, T ],

is a Q-Wiener process with respect to the measure P̃ with density

dP̃

dP
= e

	T
0 (Q−1/2ϕt,dWt)− 1

2

	T
0 |ϕt|

2 dt.

It can be shown that each measure equivalent to P can be characterized
by a density process

Zt := e
	t
0(Q−1/2ϕs,dWs)− 1

2

	t
0 |ϕs|

2 ds, t ∈ [0, T ],(2.1)

for some predictable Rd-valued process ϕ. The process Ŝi is a P̃ -martingale
if and only if ŜiZ is a P -martingale. Thus the measure P̃ can be determined
by finding a process ϕ in (2.1) such that ŜiZ, i = 1, . . . , d, are P -martingales.
Simple calculations based on the Itô formula yield

ϕt = −Q−1/2

[
α− r1d

σ

]
:= −Q−1/2


α1−r
σ1
...

αd−r
σd

 , t ∈ [0, T ].

The martingale measure P̃ is thus unique and given by the density process

Z̃t := e−(Q−1[
α−r1d
σ

],Wt)− 1
2
|Q−1/2[

α−r1d
σ

]|2t, t ∈ [0, T ].(2.2)

Moreover, it follows from Theorem 2.2 that the process

W̃t := Wt +
α− r1d

σ
t, t ∈ [0, T ],

is aQ-Wiener process under P̃ . The dynamics of the prices under the measure
P̃ can be written as

dSit = Sit(rdt+ σidW̃
i
t ), i = 1, . . . , d.

The wealth process with the initial endowment x and the trading strategy
π is defined by

Xx,π
t := π0

tBt +
d∑
i=1

πitS
i
t , t ∈ [0, T ],
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and assumed to satisfyXx,π
0 = x. All strategies are assumed to be admissible,

i.e. Xx,π
t ≥ 0 for each t ∈ [0, T ] almost surely, and self-financing, i.e.

dXx,π
t = π0

t dBt +
d∑
i=1

πitdS
i
t , t ∈ [0, T ].

A contingent claim, representing future random payoff, is a random variable
H ≥ 0 measurable with respect to FT . A hedging strategy against H is a pair
(x, π) such that

P (Xx,π
T ≥ H) = 1.

A replicating strategy is a pair (x, π) such that

P (Xx,π
T = H) = 1.

A price of H is defined by

p(H) := inf{x : ∃π such that P (Xx,π
T ≥ H) = 1}

and, due to the fact that the market is complete, it follows from the general
theory that p(H) = Ẽ[e−rTH], where the expectation is calculated under
the measure P̃ .

If x < p(H) then P (Xx,π
T ≥ H) < 1 for all π and the question under

consideration is to find a strategy maximizing the probability of successful
hedge, i.e.

P (Xx,π
T ≥ H) −→

π
max .(2.3)

We will refer to the corresponding function Φ1 : [0,+∞)→ [0, 1] given by

Φ1(x) := max
π

P (Xx,π
T ≥ H)

as the maximal probability function. If there exists π̂ such that P (Xx,π̂
T ≥H)

= Φ1(x) then it will be called the probability maximizing strategy for x.
We also consider the problem of cost reduction. Let α ∈ [0, 1] be a fixed

number describing the level of shortfall risk accepted by the trader. Then
we are searching for a minimal initial cost such that there exists a strategy
with the probability of successful hedge exceeding 1− α, i.e.

x→ min; ∃π such that P (Xx,π
T ≥ H) ≥ 1− α.(2.4)

The cost reduction function Φ2 : [0, 1]→ [0, p(H)] is thus defined by

Φ2(α) := min{x : ∃π such that P (Xx,π
T ≥ H) ≥ 1− α}.

If there exists π̂ such that P (XΦ2(α),π̂
T ≥ H) ≥ 1 − α then it will be called

the cost minimizing strategy for α.
In what follows we study the problem of determining the functions Φ1

and Φ2 for the contingent claim H of a general form. Then in Section 4
specific payoffs are examined.
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3. Main results. In this section we present a general method of deter-
mining Φ1 and Φ2. Let us start with the auxiliary problems which can be
solved via the Neyman–Pearson lemma.

Assume that we are given two probability measures P1, P2 with strictly
positive density dP1

dP2
and consider two types of optimizing problems{

P1[A]→ max,
P2[A] ≤ x,

(3.5) {
P1[B] ≥ 1− α,
P2[B]→ min,

(3.6)

where α, x ∈ [0, 1] are fixed constants. Problem (3.5) is a classical one ap-
pearing in the statistical hypotheses testing. Recall that if there exists a
constant c ≥ 0 such that P2

(
dP1
dP2
≥ c
)

= x then the set

Ã :=
{
dP1

dP2
≥ c
}

is a solution of (3.5). It is not surprising that the solution of the problem
(3.6) is of a similar form. For the convenience of the reader we prove the
following.

Proposition 3.1. If there exists a constant c ≥ 0 satisfying P1

(
dP2
dP1
≤c
)

= 1− α then the set

B̃ :=
{
dP2

dP1
≤ c
}

is a solution of the problem (3.6).

Proof. Let B be an arbitrary set satisfying P1(B) ≥ 1−α. We will show
that P2(B) ≥ P2(B̃). The following estimate holds:

P2(B)− P2(B̃) =
�

Ω

(1B − 1B̃) dP2

=
�

{ dP2
dP1
≤c}

(1B − 1B̃) dP2 +
�

{ dP2
dP1

>c}

(1B − 1B̃) dP2

≥ c
�

{ dP2
dP1
≤c}

(1B − 1B̃) dP1 + c
�

{ dP2
dP1

>c}

1B dP1

= c
( �
Ω

1B dP1 −
�

Ω

1B̃ dP1

)
= c(P1(B)− P1(B̃))

≥ c(P1(B)− (1− α)) ≥ 0.
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Let us notice that both optimal sets Ã, B̃ have a similar form{
dP1

dP2
≥ c
}
,(3.7)

with suitable constants c ≥ 0. More precisely, for Ã the constant c is such
that

P2

(
dP1

dP2
≥ c
)

= x,(3.8)

and for B̃ it is such that

P1

(
dP1

dP2
≥ c
)

= 1− α.(3.9)

Now, let us come back to the initial problem of determining Φ1, Φ2. Let us
start by presenting two auxiliary results which are nonrandomized versions
of Theorems 2.34 and 2.42 in [6].

Theorem 3.2. Let x ≥ 0. If Ã is a set solving the problem{
P [A]→ max,
Ẽ[e−rTH1A] ≤ x,

(3.10)

then Φ1(x) = P (Ã) and the probability maximizing strategy for x is the one
replicating the payoff H1Ã.

Let us notice that if x ≥ p(H) then Ã = Ω and thus Φ1(x) = 1. Moreover,
if (3.10) has a solution for every x ≥ 0, then Φ1 is increasing.

Theorem 3.3. Let α ∈ [0, 1] be fixed. If B̃ is a set solving the problem{
P [B] ≥ 1− α,
Ẽ[e−rTH1B]→ min,

(3.11)

then Φ2(α) = Ẽ[e−rTH1B̃] and the cost minimizing strategy for α is the one
replicating the payoff H1B̃.

Notice that Φ2(0) = p(H) and if (3.11) has a solution for each α ∈ [0, 1]
then Φ2 is decreasing.

Now we apply the method of solving the problems (3.5) and (3.6) to
(3.10) and (3.11). Notice that (3.10) and (3.11) can be reformulated{

P [A]→ max,
P ∗(A) ≤ x/Ẽ[e−rTH],

(3.12)

and {
P [B] ≥ 1− α,
P ∗(B)→ min,

(3.13)
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where P ∗ is the probability measure given by the density
dP ∗

dP̃
=

H

Ẽ[H]
.

In view of (3.7) we are searching for solutions Ã, B̃ to (3.12), (3.13) in the
family of sets{

dP

dP ∗
≥ c
}

=
{
dP

dP̃

dP̃

dP ∗
≥ c
}

=
{
Z̃−1
T ≥ c H

Ẽ[H]

}
, c ≥ 0,

where Z̃T is given by (2.2). Denoting, for simplicity, the constant c/Ẽ[H] by
c we see that the optimal sets Ã, B̃ are of the form

Ac := {Z̃−1
T ≥ cH},(3.14)

where, by (3.8) and (3.9), c is such that

P ∗(Ac) =
x

Ẽ[e−rTH]
for Ã,(3.15)

P (Ac) = 1− α for B̃.(3.16)

Now define Ψ1 : [0,+∞)→ [0, 1] and Ψ2 : [0,+∞)→ [0, p(H)] by

Ψ1(c) := P (Ac),(3.17)

Ψ2(c) := P ∗(Ac) · Ẽ[e−rTH] = Ẽ[e−rTH1Ac ].(3.18)

Notice that both Ψ1, Ψ2 are decreasing and Ψ1(0) = 1, Ψ2(0) = p(H). Thus
Ψ2(0) provides the arbitrage free price of the continent claimH. Below we list
some properties of Ψ1, Ψ2 needed later. First let us introduce two conditions
concerning a real function f : Rd → [0,+∞):

(C1) λd
(
{z : f(z) = c}

)
= 0 for each c > 0,

(C2) λd
(
{z : f(z) ∈ (a, b]}

)
> 0 for each 0 < a < b.

Here λd stands for the Lebesgue measure on Rd.

Proposition 3.4.

(a) The function Ψ1 is left continuous with right hand limits at each point
of the domain.

(b) limc→+∞ Ψ1(c) = P (H = 0).

Assume that Z̃TH = f(WT ) where f : Rd → [0,+∞). Then Ψ1 is

(c) continuous if and only if (C1) is satisfied,
(d) strictly decreasing if and only if (C2) is satisfied.

Proof. (a) The function Ψ1 can be written in the form

Ψ1(c) = P

(
Z̃TH ≤

1
c

)
= FZ̃TH

(
1
c

)
, c > 0,(3.19)
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where FZ̃TH stands for the distribution function of the random variable Z̃TH.
Thus Ψ1 has one-sided limits for any c > 0 and the left continuity follows
from the right continuity of FZ̃TH for any c > 0. Left continuity at c = 0
follows from monotonicity.

(b) The assertion follows from the formula

Ψ1(c) = P (Z̃−1
T ≥ cH | H > 0)P (H > 0) + P (Z̃−1

T ≥ cH | H = 0)P (H = 0)

and from

lim
c→+∞

P (Z̃−1
T ≥ cH | H > 0) = 0.

(c) First we show continuity at zero. If cn ↓ 0 then {Z̃−1
T ≥ cnH}n is an

increasing family of sets and by the continuity of probability we have

lim
n→+∞

Ψ1(cn) = lim
n→+∞

P (Z̃−1
T ≥ cnH) = P

(⋃
n

{Z̃−1
T ≥ cnH}

)
= P (Z̃−1

T > 0) = 1 = Ψ1(0).

Taking into account (3.19) we see that Ψ1 is continuous for each c > 0 if and
only if the random variable Z̃TH = f(WT ) has no positive atoms. In view
of the equality

P (Z̃TH = c) = P (f(WT ) = c) = LWT
({z : f(z) = c}), c > 0,

and the fact that the distribution of WT is nondegenerate we see that the
continuity of Ψ1 is equivalent to (C1). LWT

above stands for the distribution
of WT .

(d) For 0 < c1 < c2 we have

Ψ1(c1)− Ψ1(c2) = P (Z̃TH ≤ 1/c1)− P (Z̃TH ≤ 1/c2)
= P (f(WT ) ∈ (1/c2, 1/c1])
= LWT

({z : f(z) ∈ (1/c2, 1/c1]}),
and it follows from the nondegeneracy of the distribution of WT that the
strict monotonicity of Ψ1 is equivalent to (C2).

Proposition 3.5.

(a) The function Ψ2 is left continuous with right hand limits at each point
of the domain.

(b) limc→+∞ Ψ2(c) = 0.

Assume that Z̃TH = f(WT ) where f : Rd → [0,+∞). Then Ψ2 is

(c) continuous if and only if (C1) is satisfied,
(d) strictly decreasing if and only if (C2) is satisfied.

Proof. (a) It follows from monotonicity that one-sided limits exist. We
show left continuity for any c > 0. For cn ↑ c the family {Z̃−1

T ≥ cnH}n is



112 M. Barski

decreasing and⋂
n

{Z̃−1
T ≥ cnH} = {H = 0} ∪ {Z̃−1

T ≥ cH} = {Z̃−1
T ≥ cH}.

Thus by dominated convergence we have

lim
n→+∞

Ψ2(cn) = lim
n→+∞

Ẽ[e−rTH1{Z̃−1
T ≥cnH}

]

= Ẽ[e−rTH1{Z̃−1
T ≥cH}

] = Ψ2(c).

(b) For cn ↑ +∞ we have

{Z̃−1
T ≥ cnH}n ↓

⋂
n

{Z̃−1
T ≥ cnH} = {H = 0} ∪ {Z̃−1

T = +∞} = {H = 0},

and thus

lim
n→+∞

Ψ2(cn) = lim
n→+∞

Ẽ[e−rTH1{Z̃−1
T ≥cnH}

] = Ẽ[e−rTH1{H=0}] = 0.

(c) We show that the right continuity of Ψ2 is equivalent to (C1). Then
continuity follows from (a). For cn ↓ c ≥ 0 we have

{Z̃−1
T ≥ cnH} ↑

⋃
n

{Z̃−1
T ≥ cnH} = {H = 0} ∪ {H > 0, Z̃−1

T > cH}

= {Z̃−1
T > cH} = {1 > cf(WT )},

and thus

lim
n→+∞

Ψ2(cn) = Ẽ[e−rTH1{1>cf(WT )}].

The condition limn→+∞ Ψ2(c) = Ψ2(c) holds if and only if P̃ (1 ≥ cf(WT )) =
P̃ (1 > cf(WT )). The last condition holds for c = 0, and for c > 0 it is
equivalent to (C1).

(d) Fix 0 < c1 < c2. The inequality

Ψ2(c1)− Ψ2(c2) = Ẽ[e−rTH1{1/c1<f(WT )≤1/c2}] > 0

holds if and only if P̃ (1/c1 < f(WT ) ≤ 1/c2) > 0. The last condition is
equivalent to (C2).

Now assume that Z̃TH = f(WT ) for some f : Rd → [0,+∞). Fix α ∈
[0, 1], x > 0 and consider the problem of existence of solutions to the equation

Ψ1(c) = 1− α,(3.20)

as well as to

Ψ2(c) = x.(3.21)

In view of Propositions 3.4 and 3.5, if (C1) is satisfied then Ψ1, Ψ2 are contin-
uous decreasing functions with images (P (H = 0), 1] and (0, p(H)] respec-
tively. Thus for α ∈ [0, P (H 6= 0)) and x ∈ (0, p(H)] the equations (3.20)
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and (3.21) do have solutions. Moreover, if (C2) is satisfied then the solutions
are unique.

The description of Φ1 and Φ2 is provided by the following theorem, which
is the main result of the paper.

Theorem 3.6. Assume that Z̃TH = f(WT ) for some f : Rd → [0,+∞)
satisfying (C1).

(a) Let c = c(x) ∈ [0,+∞) be a solution of the equation

(3.22) Ψ2(c) = x, x ∈ (0, p(H)).

Then the maximal probability function is given by

Φ1(x) =


P (H = 0) for x = 0,
Ψ1(c(x)) for x ∈ (0, p(H)),
1 for x ≥ p(H).

Moreover, for any x ∈ (0, p(H)) the probability maximizing strategy
for x is the one replicating the payoff H1Ac(x).

(b) Let c = c(α) ∈ [0,+∞) be a solution of the equation

(3.23) Ψ1(c) = 1− α, α ∈ [0, P (H 6= 0)).

Then the cost reduction function is given by

Φ2(α) =
{
Ψ2(c(α)) for α ∈ [0, P (H 6= 0)),
0 for α ∈ [P (H 6= 0), 1].

Moreover, for any α ∈ [0, P (H 6= 0)) the cost reduction strategy for
α is the one replicating the payoff H1Ac(α)

.

Proof. The proof is based on the considerations preceding the formula-
tion of the theorem.

(a) If x ≥ p(H) then the hedging strategy is the probability maximizing
strategy and then clearly Φ1(x) = 1. Consider the case x ∈ (0, p(H)). By
Theorem 3.2 we know that Φ1(x) = P (Ã), where Ã is a solution of (3.10).
The solution of (3.12), which is equivalent to (3.10), is of the form (3.14)
with c satisfying (3.15). But (3.15) is equivalent to (3.22). Thus we have

Φ1(x) = P (Ac) = Ψ1(c),

where c is given by the condition Ψ2(c) = x. For x = 0 consider the trivial
strategy π = 0. Then P (Xx,π

T ≥ H) = P (H = 0). On the other hand, due to
the monotonicity of Φ1, we have Φ1(0) ≤ limx↓0 Φ1(x) = limx↓0 Ψ1(c(x)) =
limz↑+∞ Ψ1(z) = P (H = 0). As a consequence, Φ1(0) = P (H = 0). The
second part of the assertion follows from Theorem 3.2.

(b) If α ∈ [P (H 6= 0), 1] then consider a trivial strategy π = 0 with
zero initial endowment x = 0. Then Xx,π

T = 0 and thus P (Xx,π
T ≥ H) =

P (H = 0) ≥ 1 − α. As a consequence, Φ2(α) = 0. Now consider the case
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α ∈ [0, P (H 6= 0)]. It follows from Theorem 3.3 that Φ2(α) = Ẽ[e−rTH1B̃],
where B̃ is a solution to (3.11). The optimal solution of (3.11) is the same
as for (3.13) and has the form (3.14) with c satisfying (3.16). The condition
(3.16) can be written as Ψ1(c) = 1− α. Thus we have

Φ2(α) = Ẽ[e−rTH1Ac ] = Ψ2(c).

The second part of the assertion follows from Theorem 3.3.

In virtue of Theorem 3.6, to determine Φ1, Φ2 one has to find Ψ1, Ψ2

and solve the equations (3.22), (3.23). In general, as Ψ1, Ψ2 have a rather
sophisticated form, one should not expect to find analytic formulas for the
constants in (3.22), (3.23). However, the equations (3.22), (3.23) can be
solved with the use of numerical methods. In the following we solve the
problem of determining Ψ1, Ψ2 for the most common basket derivatives.

4. Quantile hedging in a two-dimensional model. In this section
we determine explicit formulas for the functions Ψ1, Ψ2 for a few examples of
popular options. Since our derivatives depend on two underlying assets we
first simplify the general formulas from Section 3.

For d = 2 we denote the correlation matrix by

Q =
[

1 ρ

ρ 1

]
.

Consequently,

Q−1 =
1

ρ2 − 1

[
−1 ρ

ρ −1

]
, Q−1/2 =

1
2

 1√
1+ρ

+ 1√
1−ρ

1√
1+ρ
− 1√

1−ρ

1√
1+ρ
− 1√

1−ρ
1√
1+ρ

+ 1√
1−ρ

 .
Hence the density of the martingale measure (2.2) can be written as

Z̃T = e−A1W 1
T−A2W 2

T−BT ,(4.24)

where

A1 :=
1

ρ2 − 1

(
−α1 − r

σ1
+ ρ

α2 − r
σ2

)
,

A2 :=
1

ρ2 − 1

(
ρ
α1 − r
σ1

− α2 − r
σ2

)
,

B :=
1
8

(((
1√

1 + ρ
+

1√
1− ρ

)
α1 − r
σ1

+
(

1√
1 + ρ

− 1√
1− ρ

)
α2 − r
σ2

)2

+
((

1√
1 + ρ

− 1√
1− ρ

)
α1 − r
σ1

+
(

1√
1 + ρ

+
1√

1− ρ

)
α2 − r
σ2

)2)
.
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The formula (3.14) for the set Ac simplifies to

Ac = {Z̃−1
T ≥ cH} = {eA1W 1

T+A2W 2
T+BT ≥ cH},

and consequently formulas (3.17), (3.18) become

Ψ1(c) = P (eA1W 1
T+A2W 2

T+BT ≥ cH),

Ψ2(c) = Ẽ[e−rTH1
{eA1W

1
T

+A2W
2
T

+BT≥cH}
].

Now we set the notation concerning the multidimensional normal dis-
tribution and recall its basic properties, which can be found in standard
textbooks on probability theory or statistics (see for instance [8]). A random
vector X taking values in Rd has a multidimensional normal distribution if
its density is of the form

fX(x) =
1

(2π)d/2(detΣ)1/2
· e−

1
2
(x−m)TΣ−1(x−m), x ∈ Rd,(4.25)

where m ∈ Rd is the mean of X and Σ is a symmetric positive definite
d × d covariance matrix of X. The fact that X has a density (4.25) will be
denoted by X ∼ Nd(m,Σ) or L(X) = Nd(m,Σ). If d = 1 then the subscript
is omitted and N(m,σ) denotes the normal distribution with mean m and
variance σ. If X ∼ Nd(m,Σ) and A is a k × d matrix, then

AX ∼ Nk(Am,AΣAT );(4.26)

in particular if a ∈ Rd then

aTX ∼ N(aTm, aTΣa).(4.27)

LetX be a random vector taking values in Rd and fix an integer 0<k<d. Let
us divide X into two vectors X(1) and X(2) with lengths k, d−k respectively,
i.e.

X(1) = (X1, . . . , Xk)T , X(2) = (Xk+1, . . . , Xd)T .

Analogously, divide the mean vector m and the covariance matrix Σ,

m =
(
m(1)

m(2)

)
, Σ =

[Σ(11) Σ(12)

Σ(21) Σ(22)

]
,

so that EX(1) = m(1), EX(2) = m(2), CovX(1) = Σ(11), CovX(2) = Σ(22),
Cov(X(1), X(2)) = Σ(12) = Σ(21)T . Denote by L(X(1) | X(2) = x(2)) the con-
ditional distribution ofX(1) givenX(2) = x(2) ∈ Rd−k. If Σ(22) is nonsingular
then

L(X(1) | X(2) = x(2)) = Nk(m(1)(x(2)), Σ(11)(x(2))),(4.28)
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where

m(1)(x(2)) = m(1) +Σ(12)Σ(22)−1
(x(2) −m(2)),

Σ(11)(x(2)) = Σ(11) −Σ(12)Σ(22)−1
Σ(21).(4.29)

Actually the conditional variance Σ(11)(x(2)) does not depend on x(2) but we
keep the notation for the sake of consistency. The conditional density will
be denoted by fX(1)|X(2)=x(2)(x(1)), where x(1) ∈ Rk. In particular if (X,Y )
is a two-dimensional normal vector with parameters

m =
(
m1

m2

)
, Σ =

[
σ11 σ12

σ21 σ22

]
,

then

L(X | Y = y) = N(m1(y), σ1(y)),

where

m1(y) := m1 +
σ12

σ22
(y −m2), σ1(y) := σ11 −

σ2
12

σ22
.(4.30)

If X is a random vector then its distribution with respect to the measure P̃
will be denoted by L̃(X) and its density by f̃X . Analogously, the notation
f̃X(1)|X(2)=x(2)(x(1)) stands for the conditional density with respect to P̃ .

In the following subsections we will use the universal constants: A1, A2, B
defined in (4.24) as well as a1, a2, b, ã1, ã2, b̃ introduced below.

Fix a number K > 0. One can check the following:

{S1
T ≥ K} = {W 1

T ≥ a1} = {W̃ 1
T ≥ ã1},(4.31)

{S2
T ≥ K} = {W 2

T ≥ a2} = {W̃ 2
T ≥ ã2},(4.32)

{S1
T ≥ S2

T } = {σ1W
1
T − σ2W

2
T ≥ b} = {σ1W̃

1
T − σ2W̃

2
T ≥ b̃},(4.33)

where

a1 :=
1
σ1

(
ln
K

S1
0

−
(
α1 −

1
2
σ2

1

)
T

)
, ã1 :=

1
σ1

(
ln
K

S1
0

−
(
r − 1

2
σ2

1

)
T

)
,

a2 :=
1
σ2

(
ln
K

S2
0

−
(
α2 −

1
2
σ2

2

)
T

)
, ã2 :=

1
σ2

(
ln
K

S2
0

−
(
r − 1

2
σ2

2

)
T

)
,

b := ln
S2

0

S1
0

+
(
α2 − α1 −

1
2
(σ2

2 − σ2
1)
)
T, b̃ := ln

S2
0

S1
0

− 1
2
(σ2

2 − σ2
1)T.

In all the formulas below it is understood that ln 0 = −∞ and Φ stands for
the cumulative distribution function of N(0, 1).



Quantile hedging for basket derivatives 117

4.1. Digital option. In this section we determine Ψ1, Ψ2 for the payoff

H = K · 1{S1
T≥S

2
T }
, where K > 0.(4.34)

By (4.33) we have

Ψ1(c) = P (Ac) = P (eA1W 1
T+A2W 2

T+BT ≥ cK1{S1
T≥S

2
T }

)(4.35)

= P (A1W
1
T +A2W

2
T +BT ≥ ln(cK), S1

T ≥ S2
T )

+ P (eA1W 1
T+A2W 2

T+BT ≥ 0, S1
T < S2

T )

= P (A1W
1
T +A2W

2
T +BT ≥ ln(cK) | σ1W

1
T − σ2W

2
T ≥ b)

· P (σ1W
1
T − σ2W

2
T ≥ b) + P (σ1W

1
T − σ2W

2
T < b).

Let us notice that

X :=

[
A1W

1
T +A2W

2
T

σ1W
1
T − σ2W

2
T

]
=

[
A1 A2

σ1 −σ2

][
W 1
T

W 2
T

]
,

so in view of (4.26) we have X ∼ N2(0, Σ), where

Σ=

(A1 +A2r)TA1 + (A1r +A2)TA2 (σ1 − σ2r)TA1 + (σ1r − σ2)TA2

(σ1 − σ2r)TA1 + (σ1r − σ2)TA2 (σ1 − σ2r)Tσ1 − (σ1r − σ2)Tσ2

.
In virtue of (4.30) we have

L(A1W
1
T +A2W

2
T | σ1W

1
T − σ2W

2
T = y) = N(m(y), σ(y)),

where

m(y) = y
(σ1 − σ2r)A1 + (σ1r − σ2)A2

(σ1 − σ2r)σ1 − (σ1r − σ2)σ2
;

σ(y) =
T (A1σ2 +A2σ1)2(ρ2 − 1)
−σ2

1 + 2ρσ1σ2 − σ2
2

.

By (4.27) we have σ1W
1
T − σ2W

2
T ∼ N(0, T (σ2

1 − 2ρσ1σ2 + σ2
2)). Going back

to (4.35) we obtain

Ψ1(c) =
+∞�

b

P (A1W
1
T +A2W

2
T ≥ ln(cK)−BT | σ1W

1
T − σ2W

2
T = y)

· fσ1W 1
T−σ2W 2

T
(y) dy + P (σ1W

1
T − σ2W

2
T < b)

=
+∞�

b

Φ

(
m(y) +BT − ln(cK)√

σ(y)

)
fσ1W 1

T−σ2W 2
T
(y) dy

+ Φ

(
b√

T (σ2
1 − 2ρσ1σ2 + σ2

2)

)
.
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Now let us determine Ψ2. In virtue of (4.33) we have

Ψ2(c) = e−rT Ẽ[H1Ac ] = e−rT Ẽ[K1{S1
T≥S

2
T }
· 1{Z̃−1

T ≥cK1{S1
T
≥S2

T
}}

]

= e−rTKP̃ (S1
T ≥ S2

T , Z̃
−1
T ≥ cK1{S1

T≥S
2
T }

)

= e−rTKP̃ (Z̃−1
T ≥ cK | S1

T ≥ S2
T )P̃ (S1

T ≥ S2
T )

= e−rTKP̃ (eA1W 1
T+A2W 2

T+BT > cK | σ1W̃
1
T − σ2W̃

2
T ≥ b̃)

· P̃ (σ1W̃
1
T − σ2W̃

2
T ≥ b̃)

= e−rTK

+∞�

b̃

P̃ (eA1W 1
T+A2W 2

T+BT > cK | σ1W̃
1
T − σ2W̃

2
T = y)

· f̃
σ1

fW 1
T−σ2

fW 2
T
(y) dy

= e−rTK

+∞�

b̃

P̃

(
A1W̃

1
T +A2W̃

2
T > ln(cK) +A1

α1 − r
σ1

T

+A2
α2 − r
σ2

T −BT
∣∣∣∣ σ1W̃

1
T − σ2W̃

2
T = y

)
· f̃
σ1

fW 1
T−σ2

fW 2
T
(y) dy

= e−rTK

+∞�

b̃

Φ

(
m(y)− ln(cK)−A1

α1−r
σ1

T −A2
α2−r
σ2

T +BT√
σ(y)

)
· f̃
σ1

fW 1
T−σ2

fW 2
T
(y) dy.

4.2. Quantos

4.2.1. Quanto domestic. The contingent claim is of the form

H = S2
T (S1

T −K)+, K > 0.(4.36)

First, notice that

Ac = {eA1W 1
T+A2W 2

T+BT ≥ cS2
T (S1

T −K)}(4.37)

= {(A2 − σ2)W 2
T ≥ v(c,W 1

T )} = {(A2 − σ2)W̃ 2
T ≥ w(c, W̃ 1

T )},

where

v(c, x) := ln
(
cS2

0e
(α2− 1

2
σ2
2−B)T−A1x(S1

0e
(α1− 1

2
σ2
1)T+σ1x −K)

)
,

w(c, x) := ln
[
cS2

0e
(r− 1

2
σ2
2−B+A1

α1−r
σ1

+A2
α2−r
σ2

)T−A1x(S1
0e

(r− 1
2
σ2
1)T+σ1x) −K)

]
.

By (4.31) and (4.37) we have

Ψ1(c) = P (Ac | S1
T ≥ K)P (S1

T ≥ K) + P (Ac | S1
T < K)P (S1

T < K)
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= P
(
(A2 − σ2)W 2

T ≥ ln(cS2
0e

(α2− 1
2
σ2
2−B)T−A1W 1

T (S1
T −K))

∣∣W 1
T ≥ a1

)
· P (W 1

T ≥ a1) + P (W 1
T < a1)

=
+∞�

a1

P
(
(A2 − σ2)W 2

T ≥ v(c,W 1
T )
∣∣W 1

T = x
)
fW 1

T
(x) dx+ Φ

(
a1√
T

)
.

The conditional distribution is given by

L((A2 − σ2)W 2
T |W 1

T = x) ∼ N(m(x), σ(x)),

where m(x), σ(x) are given by (4.29). Hence

Ψ1(c) =
+∞�

a1

Φ

(
m(x)− v(c, x)√

σ(x)

)
fW 1

T
(x) dx+ Φ

(
a1√
T

)
.

To avoid technicalities assume that A2 6= σ2. We have

Ψ2(c) = e−rT Ẽ[S2
T (S1

T −K)+1Ac ]

= e−rT Ẽ[S2
T (S1

T −K)+1Ac | S1
T ≤ K]P̃ (S1

T ≤ K)

+ e−rT Ẽ[S2
T (S1

T −K)+1Ac | S1
T > K]P̃ (S1

T > K)

= e−rT Ẽ[S2
T (S1

T −K)1Ac | S1
T > K]P̃ (S1

T > K).

By (4.31) and (4.37) we have

Ψ2(c) = e−rT Ẽ[S2
0e

(r− 1
2
σ2
2)T+σ2

fW 2
T (S1

0e
(r− 1

2
σ2
1)T+σ1

fW 1
T −K)

· 1{(A2−σ2)fW 2
T≥w(c,fW 1

T )} | W̃
1
T > ã1]P̃ (W̃ 1

T > ã1)

= e−rT
+∞�

ã1

Ẽ[S2
0e

(r− 1
2
σ2
2)T+σ2

fW 2
T (S1

0e
(r− 1

2
σ2
1)T+σ1

fW 1
T −K)

· 1{(A2−σ2)fW 2
T≥w(c,fW 1

T )} | W̃
1
T = x]f̃fW 1

T
(x) dx

= C1

+∞�

ã1

eσ1x
+∞�

w(c,x)

e
σ2

A2−σ2
y
f̃
(A2−σ2)fW 2

T |fW 1
T=x

(y) dy f̃fW 1
T
(x) dx

− C2

+∞�

ã1

+∞�

w(c,x)

e
σ2

A2−σ2
y
f̃
(A2−σ2)fW 2

T |fW 1
T=x

(y) dy f̃fW 1
T
(x) dx.

with C1 := e−rTS1
0S

2
0e

(2r− 1
2
σ2
1−

1
2
σ2
2)T , C2 := e−rTKS2

0e
(r− 1

2
σ2
2)T . From (4.30)

we have L̃((A2 − σ2)W̃ 2
T | W̃ 1

T = x) = N((A2 − σ2)ρx, T (1− ρ2)(A2 − σ2)2)
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and hence

Ψ2(c) = C1

	+∞
ã1

eσ1x
	+∞
w(c,x) e

σ2
A2−σ2

y+
(y−(A2−σ2)ρx)2

2T (1−ρ2)(A2−σ2)2 dy f̃fW 1
T
(x) dx√

2πT (1− ρ2)(A2 − σ2)2

− C2

	+∞
ã1

	+∞
w(c,x) e

σ2
A2−σ2

y+
(y−(A2−σ2)ρx)2

2T (1−ρ2)(A2−σ2)2 dy f̃fW 1
T
(x)dx√

2πT (1− ρ2)(A2 − σ2)2
.

4.2.2. Quanto foreign. The payoff is of the form

H =
(
S1
T −

K

S2
T

)+

, K > 0.

First, notice that{
S1
T −

K

S2
T

≥ 0
}

= {σ1W
1
T + σ2W

2
T ≥ d}(4.38)

= {σ1W̃
1
T + σ2W̃

2
T ≥ d̃} =: Ω0,

where

d := ln
K

S1
0S

2
0

−
(
α1 + α2 −

1
2
(σ2

1 + σ2
2)
)
T, d̃ := d+ (α1 + α2 − 2r)T,

and

Ac =
{
eA1W 1

T+A2W 2
T+BT ≥ c

(
S1
T −

K

S2
T

)}
(4.39)

= {A1W
1
T + (A2 + σ2)W 2

T ≥ v(c, σ1W
1
T + σ2W

2
T )}

= {A1W̃
1
T + (A2 + σ2)W̃ 2

T ≥ w(c, σ1W̃
1
T + σ2W̃

2
T )},

where

v(c, z) := ln
(
c

S2
0

e(
1
2
σ2
2−α2−B)T (S1

0S
2
0e
α1+α2− 1

2
(σ2

1+σ2
2)T+z −K)

)
,

w(c, z) := ln
[
c

S2
0

e
T ( 1

2
σ2
2−r+A1

α1−r
σ1

+A2
α2−r
σ2
−B)(S1

0S
2
0e

(2r− 1
2
(σ2

1+σ2
2))T+z −K)

]
.

By (4.38) we have

Ψ1(c) = P

(
eA1W 1

T+A2W 2
T+BT ≥ c

(
S1
T −

K

S2
T

) ∣∣∣∣ Ω0

)
P (Ω0)

+ P (eA1W 1
T+A2W 2

T+BT ≥ 0 | Ωc
0)P (Ωc

0)

= P (S2
T e

A1W 1
T+A2W 2

T+BT ≥ c(S1
TS

2
T −K) | Ω0)P (Ω0) + P (Ωc

0),
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As a consequence of (4.39) we obtain

Ψ1(c) = P (A1W
1
T + (A2 + σ2)W 2

T ≥ v(c, σ1W
1
T + σ2W

2
T ) | Ω0)P (Ω0)

+ P (Ωc
0)

=
+∞�

d

P (A1W
1
T + (A2 + σ2)W 2

T ≥ v(c, z) | σ1W
1
T + σ2W

2
T = z)

· fσ1W 1
T+σ2W 2

T
(z) dz + P (Ωc

0).

By (4.30) we have

L(A1W
1
T + (A2 + σ2)W 2

T | σ1W
1
T + σ2W

2
T = z) = N(m(z), σ(z)),

where

m(z) :=
(A1 + (A2 + σ2)ρ)σ1 + (A1ρ+A2 + σ2)σ2

σ2
1 + 2ρσ1σ2 + σ2

2

,

σ(z) := T

{
(A1 + (A2 + σ2)ρ)A1 + (A1ρ+ (A2 + σ2))(A2 + σ2)

−
(
(A1 + (A2 + σ2)ρ)σ1 + (A1ρ+ (A2 + σ2))σ2

)2
σ2

1 + 2ρσ1σ2 + σ2
2

}
,

and thus

Ψ1(c) =
+∞�

d

Φ

(
m(z)− v(c, z)√

σ(z)

)
fσ1W 1

T+σ2W 2
T
(z) dz

+ Φ

(
d√

T (σ2
1 + 2ρσ1σ2 + σ2

2)

)
.

By (4.38) and (4.39) we have

Ψ2(c) = e−rT Ẽ
[(
S1
T −

K

S2
T

)
1Ac

∣∣∣∣ Ω0

]
P̃ (Ω0)

= e−rT Ẽ
[(
S1
T −

K

S2
T

)
1Ac

∣∣∣∣ Ω0

]
P̃ (Ω0)

= e−rT
+∞�

d̃

Ẽ[S1
T1Ac | σ1W̃

1
T + σ2W̃

2
T = z]f̃

σ1
fW 1
T+σ2

fW 2
T
(z) dz

− e−rTK
+∞�

d̃

Ẽ
[

1
S2
T

1Ac

∣∣∣∣ σ1W̃
1
T + σ2W̃

2
T = z

]
f̃
σ1

fW 1
T+σ2

fW 2
T
(z) dz.
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Using (4.28) we find the conditional distributions

L̃(W̃ 1
T , A1W̃

1
T + (A2 + σ2)W̃ 2

T | σ1W̃
1
T + σ2W̃

2
T = z) = N2(M1(z), Σ1(z)),

L̃(W̃ 2
T , A1W̃

1
T + (A2 + σ2)W̃ 2

T | σ1W̃
1
T + σ2W̃

2
T = z) = N2(M2(z), Σ2(z)),

where M1(z),M2(z), Σ1(z), Σ2(z) are determined by (4.29). As a conse-
quence,

Ψ2(c) = e−rTS1
0e

(r− 1
2
σ2
1)T

+∞�

d̃

+∞�

−∞

+∞�

w(c,z)

eσ1xF 1(x, y) dy dx f̃
σ1

fW 1
T+σ2

fW 2
T
(z) dz

− e−rT K
S2

0

e−(r− 1
2
σ2
2)T

+∞�

d̃

+∞�

−∞

+∞�

w(c,z)

e−σ2xF 2(x, y) dy dx f̃
σ1

fW 1
T+σ2

fW 2
T
(z) dz,

where F 1, F 2 stand for the density functions of the two-dimensional normal
distributions N2(M1(z), Σ1(z)), N2(M2(z), Σ2(z)) respectively.

4.3. Outperformance option. The problem is studied for

H = (max{S1
T , S

2
T } −K)+, K > 0.

Notice that

{eA1W 1
T+A2W 2

T+BT ≥ c(S1
T −K)} = {A2W

2
T ≥ v1(c,W 1

T )}(4.40)

= {A2W̃
2
T ≥ w1(c, W̃ 1

T )}

{eA1W 1
T+A2W 2

T+BT ≥ c(S2
T −K)} = {A1W

1
T ≥ v2(c,W 2

T )}(4.41)

= {A1W̃
1
T ≥ w2(c, W̃ 2

T )},

where

v1(c, x) := ln
[
cS1

0e
(α1− 1

2
σ2
1)T+σ1x

]
−A1x−BT,

v2(c, y) := ln
[
cS2

0e
(α2− 1

2
σ2
2)T+σ2y

]
−A2y −BT,

w1(c, x) := ln
(
ce
−A1x+(A1

α1−r
σ1
−B)T (S1

0e
(r− 1

2
σ2
1)T+σ1x −K)

)
+
α2 − r
σ2

T,

w2(c, y) := ln
(
ce
−A2y+(A2

α2−r
σ2
−B)T (S2

0e
(r− 1

2
σ2
2)T+σ2y −K)

)
+
α1 − r
σ1

T.

By (4.31)–(4.33) we have

Ψ1(c) = P (eA1W 1
T+A2W 2

T+BT ≥ c(S1
T ∨ S2

T −K)+)
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= P (eA1W 1
T+A2W 2

T+BT ≥ c(S1
T −K) |W 1

T ≥ a1, σ1W
1
T − σ2W

2
T ≥ b)

· P (W 1
T ≥ a1, σ1W

1
T − σ2W

2
T ≥ b)

+ P (eA1W 1
T+A2W 2

T+BT ≥ 0 |W 1
T < a1, σ1W

1
T − σ2W

2
T ≥ b)

· P (W 1
T < a1, σ1W

1
T − σ2W

2
T ≥ b)

+ P (eA1W 1
T+A2W 2

T+BT ≥ c(S2
T −K) |W 2

T ≥ a2, σ1W
1
T − σ2W

2
T < b)

· P (W 2
T ≥ a2, σ1W

1
T − σ2W

2
T < b)

+ P (eA1W 1
T+A2W 2

T+BT ≥ 0 |W 2
T < a2, σ1W

1
T − σ2W

2
T < b)

· P (W 2
T < a2, σ1W

1
T − σ2W

2
T < b).

By (4.40), (4.41) we have

Ψ1(c) = P (A2W
2
T ≥ v1(c,W 1

T ) |W 1
T ≥ a1, σ1W

1
T − σ2W

2
T ≥ b)

· P (W 1
T ≥ a1, σ1W

1
T − σ2W

2
T ≥ b) + P (W 1

T < a1, σ1W
1
T − σ2W

2
T ≥ b)

+ P (A1W
1
T ≥ v2(c,W 2

T ) |W 2
T ≥ a2, σ1W

1
T − σ2W

2
T < b)

· P (W 2
T ≥ a2, σ1W

1
T − σ2W

2
T < b) + P (W 2

T < a2, σ1W
1
T − σ2W

2
T < b).

Let m1(y, z),m2(x, z), σ1(y, z), σ2(x, z) be the means and variances of the
conditional distributions

L(A1W
1
T |W 2

T = y, σ1W
1
T − σ2W

2
T = z) = N(m1(y, z), σ1(y, z)),

L(A2W
2
T |W 1

T = x, σ1W
1
T − σ2W

2
T = z) = N(m2(x, z), σ2(x, z)),

given by (4.29). Then

Ψ1(c) =
+∞�

a1

+∞�

b

Φ

(
m2(x, z)− v1(c, x)√

σ2(x, z)

)
fW 1

T ,σ1W 1
T−σ2W 2

T
(x, z) dz dx

+
a1�

−∞

+∞�

b

fW 1
T ,σ1W 1

T−σ2W 2
T
(x, z) dz dx

+
+∞�

a2

b�

−∞
Φ

(
m1(y, z)− v2(c, y)√

σ1(y, z)

)
fW 2

T ,σ1W 1
T−σ2W 2

T
(y, z) dz dy

+
a2�

−∞

b�

−∞
fW 2

T ,σ1W 1
T−σ2W 2

T
(y, z) dz dy.
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By (4.31)–(4.33), (4.40), (4.41) we have

Ψ2(c) = e−rT Ẽ((S1
T ∨ S2

T −K)+1Ac)

= e−rT Ẽ((S1
T −K)1Ac | S1

T ≥ K,S1
T ≥ S2

T )P̃ (S1
T ≥ K,S1

T ≥ S2
T )

+ e−rT Ẽ((S2
T −K)1Ac | S2

T ≥ K,S1
T < S2

T )P̃ (S2
T ≥ K,S1

T < S2
T )

= e−rT Ẽ((S1
T −K)1{A2

fW 2
T≥w1(c,fW 1

T )} | W̃
1
T ≥ ã1, σ1W̃

1
T − σ2W̃

2
T ≥ b̃)

· P̃ (W̃ 1
T ≥ ã1, σ1W̃

1
T − σ2W̃

2
T ≥ b̃)

+ e−rT Ẽ((S2
T −K)1{A1

fW 1
T≥w2(c,fW 2

T )} | W̃
2
T ≥ ã2, σ1W̃

1
T − σ2W̃

2
T <b̃)

· P̃ (W̃ 2
T ≥ ã2, σ1W̃

1
T − σ2W̃

2
T < b̃).

Let m1(y, z), σ1(y, z) and m2(x, z), σ2(x, z) denote the means and variances
of the conditional distributions

L̃(A1W̃
1
T | W̃ 2

T , σ1W̃
1
T − σ2W̃

2
T ) = N(m1(y, z), σ1(y, z)),

L̃(A2W̃
2
T | W̃ 1

T , σ1W̃
1
T − σ2W̃

2
T ) = N(m2(x, z), σ2(x, z)).

Finally we obtain

Ψ2(c) = e−rT
+∞�

ã1

+∞�

b̃

(S1
0e

(r− 1
2
σ2
1)T+σ1x −K)Φ

(
m2(x, z)− w1(c, x)√

σ2(x, z)

)
· f̃fW 1

T ,σ1
fW 1
T−σ2

fW 2
t
(x, z) dz dx

+ e−rT
+∞�

ã2

b̃�

−∞
(S2

0e
(r− 1

2
σ2
2)T+σ1y −K)Φ

(
m1(y, z)− w2(c, y)√

σ1(y, z)

)
· f̃fW 2

T ,σ1
fW 1
T−σ2

fW 2
t
(y, z) dz dy.

4.4. Spread option. The payoff is of the form

H = (S1
T − S2

T −K)+, K > 0.

For any y ∈ R,

{S1
T − S2

0e
(α2− 1

2
σ2
2)T+σ2y −K ≥ 0} = {W 1

T ≥ e(y)},(4.42)

where

e(y) :=
1
σ1

(
ln
[

1
S1

0

(S2
0e

(α2− 1
2
σ2
2)T+σ2y)

]
−
(
α1 −

1
2
σ2

1

)
T

)
.
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Then

Ψ1(c) = P (eA1W 1
T+A2W 2

T+BT ≥ c(S1
T − S2

T −K)+)

=
+∞�

−∞
P (eA1W 1

T+A2W 2
T+BT ≥ c(S1

T − S2
T −K)+ |W 2

T = y)fW 2
T
(y) dy

=
+∞�

−∞
P (eA1W 1

T+A2W 2
T+BT ≥ c(S1

T − S2
T −K),W 1

T ≥ e(y) |W 2
T = y)

· fW 2
T
(y) dy

+
+∞�

−∞
P (eA1W 1

T+A2W 2
T+BT ≥ 0,W 1

T < e(y) |W 2
T = y)fW 2

T
(y) dy

=
+∞�

−∞
P (eA2y+BT eA1W 1

T − cS1
0e

(α1− 1
2
σ2
1)T eσ1W 1

T ≥ −c(S2
T +K),

W 1
T ≥ e(y) |W 2

T = y)fW 2
T
(y) dy

+
+∞�

−∞
P (W 1

T < e(y) |W 2
T = y)fW 2

T
(y) dy.

Let

L(W 1
T |W 2

T = y) = N(m(y), σ(y)).

Then

Ψ1(c) =
+∞�

−∞

�

S(c,y)∩(e(y),+∞)

fW 1
T |W

2
T=y(x) dx fW 2

T
(y) dy

+
+∞�

−∞
Φ

(
e(y)−m(y)√

σ(y)

)
fW 2

T
(y) dy,

where for y ∈ R,

S(c, y) := {x : eA2y+BT eA1x − cS1
0e

(α1− 1
2
σ2
1)T eσ1x

≥ −c(S2
0e

(α2− 1
2
σ2
2)T+σ2y +K)}.

For practical applications it is necessary to find a closed form of the set
S(c, y). In the formulation of the next result we will use the solutions of the
equation

g(x) = −c(S2
0e

(α2− 1
2
σ2
2)T+σ2y +K),(4.43)

where g(x) := eA2y+BT eA1x − cS1
0e

(α1− 1
2
σ2
1)T eσ1x. These solutions can be

found numerically.
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Proposition 4.1. The set S(c, y) is of the following form:

(a) If A1 > σ1 and

(i) g(x̂) ≥ −c(S2
0e

(α2− 1
2
σ2
2)T+σ2y +K) then S(c, y) = (−∞,+∞),

(ii) g(x̂) ≥ −c(S2
0e

(α2− 1
2
σ2
2)T+σ2y + K) then S(c, y) = (−∞, x1) ∪

(x2,+∞), where x1 < x2 are the unique solutions of (4.43).

Above, x̂ stands for 1
σ1−A1

ln
(

A1eA2y+BT

σ1cS1
0e

(α1−
1
2σ

2
1)T

)
.

(b) If A1 = σ1 and

(i) eA2y+BT ≥ cS1
0e

(α1− 1
2
σ2
1)T then S(c, y) = (−∞,+∞),

(ii) eA2y+BT < cS1
0e

(α1− 1
2
σ2
1)T then S(c, y) = (−∞, x0), where x0 is

a unique solution of (4.43).

(c) If A1 < σ1 then S(c, y) = (−∞, x0), where x0 is a unique solution of
(4.43).

Proof. (a) One can check that g has a minimum at the point x̂ and is
decreasing on (−∞, x̂) and increasing on (x̂,+∞). Hence (i) and (ii) follow.

(b) The formulas for S(c, y) follow from the simplified form of the function
g(x) = (eA2y+BT − cS1

0e
(α1− 1

2
σ2
1)T )eA1x.

(c) It can be checked that g is strictly increasing on {x : g(x) < 0} and
limx→+∞ g(x) = −∞. Thus (4.43) has a unique solution and the form of the
set S(c, y) follows.

Now let us determine Ψ2. One can check that for y ∈ R,

{S1
T − S2

0e
(r− 1

2
σ2
2)T+σ2y −K ≥ 0} = {W̃ 1

T ≥ f(y)},(4.44)

where

f(y) :=
1
σ1

(
ln
[

1
S1

0

(S2
0e

(r− 1
2
σ2
2)T+σ2y)

]
−
(
r − 1

2
σ2

1

)
T

)
.

For y ∈ R define

S̃(c, y) := {x : eA1(x−α1−r
σ1

T )+A2(y−α2−r
σ2

T )+BT

≥ c(S1
0e

(r− 1
2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K)}.

Then

Ψ2(c) = e−rT Ẽ[(S1
T − S2

T −K)+1Ac ]

= e−rT
+∞�

−∞
Ẽ[(S1

T − S2
T −K)+1Ac | W̃ 2

T = y]f̃fW 2
T
(y) dy
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= e−rT
+∞�

−∞
Ẽ[(S1

T − S2
T −K)1Ac1{fW 1

T≥f(y)} | W̃
2
T = y]f̃fW 2

T
(y) dy

+ e−rT
+∞�

−∞
Ẽ[(S1

T − S2
T −K)+1Ac1{fW 1

T<f(y)} | W̃
2
T = y]f̃fW 2

T
(y) dy

= e−rT
+∞�

−∞

�

S̃(c,y)∩(f(y),+∞)

(S1
0e

(r− 1
2
σ2
1)T+σ1x − S2

0e
(r− 1

2
σ2
2)T+σ2y −K)

· f̃fW 1
T |fW 2

T=y
(x) dx f̃fW 2

T
(y) dy.

The explicit form of the set S̃(c, y) can be established in the same way as
for S(c, y) in Proposition 4.1.
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