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ESTIMATION OF THE PARAMETERS
OF GUMBEL AND BURR DISTRIBUTIONS IN TERMS
OF kTH RECORD VALUES

Abstract. The minimum variance linear unbiased estimators (MVLUE),
the best linear invariant estimators (BLIE) and the maximum likelihood
estimators (MLE) based on m selected kth record values are presented for
the parameters of the Gumbel and Burr distributions.

1. Introduction and preliminaries. We say that a random variable
X has the Gumbel distribution with parameters p and o if
(1) F(x) = e_e_(w_“)/a, reR;, —oco<pu<oo, o>0.

We say that a random variable X has the Burr distribution with parameters
W, o, 8 and A if

g

“A
@) F(:C)Zl—ﬂA(ﬂer “) e
—o<pu<oo, >0, >0, A>0.

From the Burr distribution we get the generalized Pareto distribution (A =
B =a"!) and the Lomax distribution (8 = 1).

In [1] and [2] various estimators of the scale parameter o and the location
parameter p for various classes of distributions (Gumbel distribution, power
distribution, Weibull distribution, Rayleigh distribution, logistic distribu-
tion, Pareto distribution) based on record values were given. The Bayesian
estimators of the Gumbel parameters i and ¢ in terms of lower record values
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and kth lower record values were furnished in [6] and [9]. Moreover, estima-
tors for location and scale parameters were given in terms of generalized
order statistics (cf. [3]-[5]).

We give the maximum likelihood (MLE), best linear invariant (BLIE),
and minimum variance unbiased (MVLUE) estimators of the parameters
and o for the Gumbel and Burr distributions using the kth lower and upper
record values. The use of record values to construct estimators was discussed
in [1] and [2]. Some of those results are generalized in this paper.

We recall the concept of kth upper and lower record values (cf. [7], [11]).
Let {X,,, n > 1} be a sequence of independent identically distributed random
variables with a cumulative distribution function F' and a probability density
function f. The jth order statistic of a sample (Xi,...,X,,) is denoted by
Xjm. For a fixed k > 1 we define the sequence {Uy(n), n > 1} of kth upper
record times as follows:

Up(1) =
Ug(n+1) = min{j > Ux(n) : Xjj10-1 > X (n)vp(n)+h-1, 1> 1.

The sequence {YTE'“), n > 1} with v,R = XUy (n):Uy(n)+k—1 18 called the
sequence of kth upper record values of {X,, n > 1}. For k = 1 we have
the sequence {Y,gl),n > 1} of upper record values. The probability density
function of (Yl(k), e erk)) is given by

(3) fyl(k)77YTSk) (:El, e 7:BTL)
x;) _
e H ) (1 Py @), < <
0 otherwise.

Hence the probability density functions of Yn(k) and (Y, T,(l ),Y(k)), m < n,
have the following forms:

fyo (@) = gy (Il = F@)" (1= @) fa), n>1,

and
Fr 3o (@:8) = Ty (In(1 = F(&) = (1 = P(y)" "

(It = F@)™ IS (= P ) o<y nz 2

Now we define the sequence {Lg(n), n > 1} of kth lower record times:
Li(1) =1,
Li(n+1) =min{j > Ly(n) : Xp.r, ()y+h-1 > Xpijrh-1}, n =1



The sequence {Zq(f), n > 1} with zF = XLy (n)+k—1, is called the sequence
of kth lower record values of {X,, n > 1}. The probability density function
of (ZM ..., Z{¥) has the form

@) fum  gw(@,... 2n)
n—1
f(z:) k—1
" F n njs n
_Jk 11 F(xl)( ()" f(mgn), x1< <
0 otherwise.

Hence the pdf’s of Zy(Lk) and (Zr(,f), Zy(Lk)), m < n, are as follows:
k,TL
(n—1)!
kTL
= In(F(z)) — In(F(y)))" "
fr00 400 (2,) (m = 1)i(n —m = 1)!( n(F(z)) — In(F(y)))

fpo (@) = (—In(F(@)" Y (F@)* f@), n=1,

(P L Fa)p), sy nze,
respectively.

2. The least-squares estimators of ;1 and o using kth record
values. The use of order statistics in the estimation of parameters was pre-
sented in [8]. Our approach to the estimation of the location and scale pa-
rameters p and o of a variate X whose distribution depends on only these
two parameters is based on the kth record values.

Let {X,,, n > 1} be a sequence of independent observations of X and

Xn — K

X, = , n=1,2...,
o

denote the standardized variants which may be regarded as independent
observations of the standardized variate

X—p
—.

*X:

Let Yl(k)7 e ,Yn(q,k) be the first m of the kth upper record values from {X,,,

n > 1} and Z{k), ceey ng) be the first m of the kth lower record values. Then
k

k) _ z" —

y® Y n g 2 ey
g g

are the sequences of kth upper and lower record values based on {*X,,, n>1}.



Write
=BV, &=ErzY),
Wit = Var[*Yi(k)]’ i = Var[*Zi(k)],
wij 1= Cov[*yi(k)7*yj(k)]’ hij = COV[*Z(k),*Z(,k)L L mii< i

i J
Reverting now to the original observations we have
EY,"] = p+ oo, EZM] = u+ ot
(5) Var[Yi(k)] = 02w;j, Var[Zi(k)] = o2y,

Cov[y;, v = 2wy, Covlz, 2] = o2y,

We see that E[Yi(k)] (resp. E[Zl(k)]) are linear functions of the parameters
w and o with known coefficients «; (resp. §;), and Var[Yi(k)] = 0wy; (resp.
Var[Zi(k)] = o%y;) and Cov[Yi(k),Yj(k)] = o%w;; (resp. Cov[Zi(k),Zj(.k)] =
021%-) are known up to a scale factor o2. The least-squares theorem of Gauss
and Markov (cf. [13]) will be applied to derive the unbiased linear estimators
of ;1 and o with minimal variance. We write the above results (5) in matrix
form, as follows:

(6) EY =pl+oa, EZ=ul+o¢,

where Y is the (column) vector of the Yi(k) and Z is the vector of the Zz-(k), a
the vector of the a;, &€ the vector of the &, and 1 a vector with unit elements.
The equation (6) can be written as follows:

(7) EY =p®, EZ-=p0O,
where p is the m X 2 matrix (1, a) or (1, &) and ®’ = (u, o). The variance

matrices of the Yi( ) and Zi( ), i.e. the matrices of variances and covariances,
are

(8) V(Y) =oc’w, V(Z) =0,

where w and v are the m x m symmetric positive-definite matrices of all the
wi;j and 1);;. From the theorem of Gauss and Markov the required estimators

01, 02 of the vector ® are given by
9) 01 = (p'Qp)~'p'QY, 6= (p'¥p) 'p'VZ,

where Q@ = w~! and ¥ = 4!, The variance matrices of the estimates are
(P'2p) 102, (p'Tp)~'o? where

1’01 1'Q«
1'Qa o'Qa

!/

pQp =

, %1 1'W¢
, p¥p=| | , )
1/PE ¢W¢



the elements of these matrices being, of course, scalars. The inverses of these
matrices are

a'Qa —-1'Qa
10« 1’01

1

/ -1_ =
(p'Qp) =X

1

/ —1
, (P'¥p) ~

&g —1'w¢
-1'w¢ 1w1 |’
where A is the determinant of the matrix p’Qp or p’¥p, respectively.
Inserting the above quantities in (9) we get
g1 = —a'TY, jio=—-€7YZ,
(10) , pa = ¢
o1 = 1/FY, o9 = 1/TZ,

where I' and Y are the symmetric matrices defined by

Q1o — al')Q (1¢ — £1)T

F — T =
A ’ JAN
The variance and covariance of these estimates are given by
'Q '
Var(fi) = 02"&0‘, Var (i) = o 5;,
. 191 ~ 1'¥1
(11) Var(c) = o2 N Var(a3) = o2 N
PN 1'Q B 1'®
Cov(fi1,01) = —0? Aa, Cov(fiz, 02) = —0* AE'

3. Estimators of parameters for the Gumbel distribution

3.1. Minimum variance linear unbiased estimators (MVLUE)
THEOREM 1. The minimum variance linear unbiased estimators ﬂ(g])\/[

and 38?\4 of the Gumbel parameters p and o based on the observed kth lower

record values z%k), zék)7 o 27(7’;:) are
m—1
ﬁ(Gk])w =28 — (v(m) + Ink) [(m -1t Z z@(k) _ 27(75)}’
(12) . =
a8 = (m 1)1y W W),
=1

The corresponding variances and covariance are

~ v(m) +1nk)? N ~ o
Var(ugg])\/[) =02 (% + mem), Var(ag?/j) = —,

2
(k) ~(k o“(v(m) +1nk
COV(u(G])V[,GG( n)[) = - (v(m) )

(13)

m—1 ’



where
v(l) =7, v@)=vi-1)-G-1)"" i>2,
Vi = R Vii=Viii— (- D72 i>2
where vy is the Euler constant (v = 0.57722).
Proof. We see that
EZ") = p+ Mo, e =k @), i=1..,m,
Var(Zi(k)) = 0—2‘/:1'7
Cov(ZM, ZMy = Var(z), i< (cf 11)).
Let ¥(m x m) = [¢¥] . Then
W=+ (i—1)?2 i=1,...,m—1,
Y = { (1) min(i?, 5%), i#j, [i—j]=1,

07 |7’ _]| > 11
1
mem = (m - 1)2 + x
Vm,m

and

(k
1’\I::<00 ! > 5’@:(11 L)—(m—l)>
Y "“’V,r;';m ) ) "“’V,r;;m 9y

(k) (g(k))2 m—1
/ _ Sm ! _ \5m _ —
§vl = —Vni,m’ &we Vrﬁ,m +m-1, A Vﬁfl,m .

From (10), we see that ﬁg])\/[ and ngj)w are as in (12).

REMARK 1. For £ = 1 we obtain the estimators

m—1
o = 20 = v(m) [(m = )71 Y0 A0 =20,
=1

m—1
5 = (m 17137 20 D
=1

(cf. [1], [2]).

REMARK 2. The Bayesian estimators of the parameters p and o are
given by



(14) m+a—1
(k) m(z(’“) — )+ 8
5 m+a—1 ’
where
(k) — Z ZZ-(k)/m,
=1

and a, 0 > 0 are the parameters of a prior distribution given by

B —B/o
g(u,a)ocwe /8/, —OO<H<O0,0'>O,

(cf. [9]). If @ and (3 in (14) tend to zero, then
(k))

(k) _
ug) = z(k) (v(m) +In k)—m(z cm

m—1
m—1
ag) = (m — 1)_1 Z Zl(k) -
=1

are the estimators ﬁggj)w and ag% given in (12), and the estimators ﬁg) and

3](;) for k = 1 coincide with the estimators in terms of record values (cf. [6]).

3.2. Best linear invariant estimators (BLIE). In this section we present
the best linear invariant estimators for the parameters of the Gumbel dis-
tribution. “Best” is used in the sense of minimum mean squared error and
“invariant” with respect to the location parameter.

THEOREM 2. The best invariant estimators O'gf[)/ and [ ,u, of the location

and scale parameters of the Gumbel distribution (1) based on the first m kth
lower record values (BLIE) are

k (k) (w(m)+Ink ) ) m—1
() gy =l - ot UL A ol
m m
The mean squared errors of ﬁg% and Eg% are
~ In k)? 2
Mse(l)) = o2 | UEREE e ) seE) = 2

where 68324 and ﬂ(g])\/[ are the MVLUE for o and p given by (12).

Proof. Using the method of Mann (cf. [10]) we obtain

ﬁg% —M(G%—G(GMEM(lJrEzz) 1, 1(92 (0134(1+E22)_1,



where Eq11, E19 and Ego are taken from

02 Ei1 Eqs — Var(ﬁg;&) COV(ﬁgﬂZ)\/l, 58?4)
E12 E22 COV(ﬁ%&,ag&) Var (agfj)w) ’
after using (13), i.e.
v(m) + Ink)? . v(m)+1Ink 1
By W ERRE L ) k) 1
m —1 m—1 m—1

Moreover, we have
MSE(i%)) = 0%[Ery — EZ5(1+ E2) 7], MSEGW)) = 0® Ega(1 + Ego) .
REMARK 3. For £ = 1 the best linear invariant estimators are
=) _ =) o vm) o) o) m—1

= -0 =0ay ———
BL am —9%Gm T BL aM

(cf. [6])

3.3. Mazimum likelihood estimators (MLE). We now give the maximum
likelihood estimators for the parameters of the Gumbel distribution.

THEOREM 3. The mazimum likelihood estimators ng[)L and ﬁg\lf[)L of the

location and scale parameters of the Gumbel distribution (1) based on the
first m kth lower record values are

(16) ﬁSé?L=z$)+ln<%)[z<“—z<’f>], G4 = 2" — 2B,

m

where
m
(k) _ (k)
z(k) = E z; /m.
i=1
The variance and covariance of the estimators are

Var i) = o (Vi + (" 1)2 (111(%))2)7

m
2 2
~(k m—1\"0o

Proof. Using (4) we see that the likelihood function L based on the kth
record values for the Gumbel distribution has the form

m—1 (k)
LG o12) = (T L8 Y 1P ettt et

i=1 F(Zz(k)) "
k™ zk) — ) — M
:—exp|:—m —kexp( >:|,
g
B L G I 1 L N o))



Hence we get

(k) _ (k)
lnL(ﬂaU|§(k)) =Ink"™—lnc™+ [_m<u) _kexp<_ (M))]a

o o
and
(k) =(k) _ (k) _ (k) _
OlnL(p,olz®™) _ _m m(z u)_kexp a2 —p G P
oo o o2 o o2
(k) (k)
Oln L(p,o|z'%)) :E—Eexp<—<zm :“)) =0.
ou c o o

After standard evaluations we get the maximum likelihood estimators given
by (16). The estimators ﬁS\Z)L and EE\IZ)L are both biased. We see that

~ -1
E(ug\l;)L) =1+ <1/(m) +Ink+ mm In (%))a,

(k m—1
E(Gyy),) =

g.
m

Table 1. The estimators MVLUE, BLIE, MLE and Bayes estimators, based on generated
kth record values, when the population parameters are 0 = 1.0 and u = 2.0

~(k ~(k ~(k ~(k ~(k ~(k ~(k ~(k

k m  Gun  Bear Owmh  fwh  Owy By, Gn AW
1 4 1.4321 2.4929 1.0740 2.9426 1.0740 2.1830 1.2592% 2.2758°
1.2160° 2.2215°

6 0.9375 2.2138 0.7813 2.4804 0.7813 2.0141 0.9554% 2.2442°
0.9609° 2.2538°

2 4 1.1269 2.2117 0.8451 2.3703 0.8451 2.1631 1.0761® 2.1831¢
1.0634°  2.1760°

6 1.3854 2.1541 1.1545 2.3880 1.1545 2.0191 1.2753% 2.0426°
1.2409°  2.0077°

3 4 1.0606 1.9118 0.7954 1.9538 0.7954 1.9736 1.0363% 1.9080°
1.0303% 1.9070°

6 0.7998 2.0632 0.6665 2.1441 0.6665 2.0393 0.8570% 2.0979°
0.8748° 2.1088°

5 4 1.0715 2.2093 0.8036 2.1147 0.8036 2.4086 1.0429% 2.2195%
1.0357°  2.2220°

6 1.3782 1.8780 1.1485 1.9002 1.1485 1.9541 1.2018* 1.8675%
1.2364° 1.8643°

“ When the prior parameters are both equal to 2.0.
® When the prior parameters are both equal to 3.0.



REMARK 4. For k£ =1 we have

A, = 20+ In(m)EV — 2P, 5, =20 -2,

which are the maximum likelihood estimators given in [1] and [2].

3.4. Numerical illustration. In order to illustrate the usefulness of the
estimators discussed in Section 3, simulated kth record sets of sizes m = 4
and 6 for k =1, 2, 3 and 5 from the Gumbel distribution with parameters
o = 1.0 and p = 2.0 are obtained. The MVLUE, BLIE, MLE and Bayesian
estimators of the parameters o and p, given respectively by (12), (15), (16)
and (14) are calculated. Two pairs of prior parameters (o = 2.0, 8 = 2.0)
and (o = 3.0, § = 3.0) are considered here. All the results are presented in
Table 1.

4. Estimators of parameters for the Burr distribution

4.1. Minimum variance linear unbiased estimators (MVLUE). Here we
consider the estimation of the location parameter y and scale parameter o
for the Burr distribution when the parameters A\ and § are known. We need
the following

LEMMA 1. Let {X,, n > 1} be a sequence of iid random variables from

the Burr distribution given by (2) and let (Yl(k), e ,Yn(f)) denote a vector of
kth upper record values from {X,}. Write

i =k'\,  di=(kA—1)", e = (kX—2)"

Then

EY,"] = i+ aio,
(17) Var[V;"] = 0%(a; — b;)bi,

Cov[v; 'Y M) = 62(a; — b;)b;,
where a; = [(¢;/d; — 1), a; = Bd;/e; and b; = Be;/d;.

Proof. We consider the Burr distribution in the form

(18) Flz)=1-*@B+x)™, x>0, >0, A>0.
The probability density function is given by

f@) =X B+2)" MY, >0, 5>0, A>0.



Let *Y( ) , *Yn(zk) be the first m of kth upper record values of {*X,,,n > 1}
from the Burr distribution given by (18). Then
B[]

)

= | pkiz-) y[= (BB +y) BB +y) )N B +y)" M) dy,
0

which after substitution ¢ = (8 4 y)~* gives

1kZ
S

xy (k) _
YT

7

(=B + Bt~ YN [=1nt] "1+ dt = 5(% _ 1) _

Then by (5) we have

Similarly it can be shown that

E[*Yi(k)]zzﬁ2<1—2%+ﬂ> fori=1,...,m.

7 €
Thus
Var['V, "] = (a; — bi)by,
and by (5) we obtain
Var[V{®) = o2(a; — bi)b;, i=1,...,m.

Now we know that

B = (2] mevor

SN S N
= (] e Y e
_l’_

(cf. [12, Theorems 2.1 and 3.1]). Hence

e (k) kA 1T kA1
Cof v v = || B R - | 2] v

thus

G N[V = (4 — bi)by,

xy (k) xy (k) _
COV[Y; v}/}]_cidj 2



and by (5),
CovY, Y ¥ = 02(a; — b)b;, ij=1,....m.
(k)

THEOREM 4. The minimum variance linear unbiased estimators [igy,

and 88?\4 for p and o of the Burr distribution, based on the observed kth
(k) (k)

upper record values y; ", ..., ym are

1 k) ~(k
(19) NGM [Zw yz :| (sz/[ = Ed (yg ) - N(G])\/[)v
where

1 e?
= —{Therd; — -+
w11 Do{ o€1a1 1 },

1 e
wu:—{—ﬂ}, i=2,...,m—1,

(20) Dy Ci
1 €m+1
Wiy = ———d1 ;
Dy Cm
m
_ 2 _ €
Do = 6101T0 — €7, TO = C_
i=1 "

with e;, ¢;, d; given in Lemma 1. The variances and covariance of the esti-
mators are
o2 Ip + 61

k To k
Var(ﬂ(G]Q) 252 Dy’ Var(c é]{/[) Dy

21
(21) T — e

Dy

Proof. Let Y' = (Yl(k), e ,Yrﬁf)) be the vector of kth upper record val-
ues. Then

Cov(i®),,5% ) = 628

EY = ul + ao,

where o' = (a1, ..., ;) with o = ((¢;/d; — 1). We note that EY can be
written as

EY =p0O,
where p is the m x 2 matrix (1, &) and ®' = (u,0) (see (7)). The variance
matrix of Y has the form given by (8) with

di Ci

w(m x m) = [wy;] = [(a; — b;)bj], where a; =0 o b = ﬁz.
(2 (2

So we consider the general linear model of Gauss—Markov (cf. [13, pp. 122—
123)).



Here the linear unbiased estimators with minimum variance ©’ = (7, 5)
of @', using the Gauss-Markov theorem (cf. [13]) can be written as follows:

(22) e = <E> = (B'B)"'B'U =WY,

g

where U := (T')"'Y, B := (T')"!p, T is the matrix such that w = T'T
and W := (B'B)"'B/(T")~! (cf. [13]), i.e.

(23) W — [wn w12 ... Wim

wo1 w22 ... Wam,

Since w is positive definite, there exists an m x m matrix T such that w =
TT'. Using Cholesky’s decomposition of w we get

tin 0 ... 0

> 7,

tij:(), iI>4, 1=2,...,m.

Hence (T”)~! has the form

[ain 0 0 0 |
) a1 a2 0O 0 0
n—1 _
L 0 0 0 Am,m—1 OGmm |
where

dl (&) dl €;

a1 — L L Qi — L L

11 ﬂ 1 ) 2 ﬂ Civ

aii—1 :_% %7 1=2,...,m
(A

Then we have E(U) = B® with

(25) B — bi1 bo1 ... bma
bia b ... bma |’



where

d1 (&) 1 €;
bi=2 /2 ba=—— 8 i=2,... m,
11 3 o il 3 o ? ) y M
bi2: E? Z:17 , M
Ci
Therefore
Th —
| T TG
26 B'B)™' =
( ) ( ) Dy Ty — e To—l—@% ’
B 32

where Ty = Y"1 | ¢;/ci, and Dy = e1c1Tp — €3.
From (24)-(26) we get the elements of W in (20) as follows:

11 Dy oe1di o | wlz—DD o [ 1=2,....,m—1,

. 1 d €m+1
wlm——D— 1 c
0 m
diwy;
wgl—ﬂ—dlwn Wy = — 1 1z7 ’L—Q, ,m.
B B B

and by (22) we get the estimators (19).
The variance and covariance of the estimators are given by (cf. [13,
p. 124))
Var(®') = 0*(B'B) !,
which by (25) proves (21).
COROLLARY 1. When « is known, the minimum variance linear unbiased

estimators for the parameters of the generalized Pareto distribution with the
probability density function

1 _ —(1+a™1)
) @) =1 (1+a"2") ez
o o

—oco < u<oo,0>0,a>0,

in terms of kth record values, are given by

~(k " k (k i N
o8) A= [T, 88 = k- - a®),
=1



where

{TO (k—22)(k—a) (k- 2a)2}’

W= Do o? ko
wli:—%%, 1=2, ,m—1,
Wi = = 3 e (£ = 200",

Dy =" ;220‘ (KTp — k +2a], Tp= i:; (k _ICQO‘)i.

The variances and covariance of the estimators are given by

2
k o Tp ~(k o T + (=2
) Var(u(G])V[) 2 QDO’ Var(U(G])w) o #,
29
T, — k=2a
Cov(figa Tens) = 0204_10137&-
0

We obtain these estimators from (19) when A = 3 = o~ L.

REMARK 5. For k = 1 the estimators ﬁg& and Ggf]{/l coincide with those

given by Ahsanullah (cf. [2]).

COROLLARY 2. When A is known, the minimum variance linear unbiased
estimators for the parameters of the Lomazx distribution with the probability
density function

Y ) —(A+1)
(30) f($)=;<1+ - ) , T>u;  —oo<u<oo, o>0, A>0,

in terms of kth record values are as follows:

~(k) ~(k k ~(k
o =[Sl o= ol - il

1 e2
= —{Therd; — L
w11 Do{ 0€1a1 c1 }7

1 .
wli:—{—e‘“}, i=2,. . ..m—1,

where

Dy Ci
1 €m+1
Wim = ———d1 )
Dy Cm
e

2 7

Do =eiciTy—ey, Tp= o
1



The variances and covariance of the estimators are

Var(il,) = o g(;
(32) Var(agf]@) o? To+ el ,
Dy
~(k) (k) 9 To —er

Cov(figh, Tan) =0 Dy

We obtain these estimators from (19) when (= 1.

REMARK 6. The estimators ,L/Z(Gk])w and 38?\4 for kK = 1 were given by

Ahsanullah in [2].

4.2. Best linear invariant estimators (BLIE). We now consider the best
invariant estimators for parameters of the Burr distribution when the pa-
rameters A\ and § are known. “Best” is used in the sense of minimum mean
squared error and “invariant” with respect to the location parameter.

THEOREM 5. The best invariant estimators ﬁg]{ and 51(912 of the location

and scale parameters of the Burr distribution (2) based on the first m kth
upper record values (BLIE) are

i _ ) 5w [g_ To—el ] 70 _ 50 Do

BL —FaM To+ Do+ e?]’ TGM T 3 Do+ &
The mean squared errors of ﬁg% and 55312 are
To — e1)?

MSE 2 2|: . ( ,

( ) p p Do(DO + Ty + 6%)

To + €2

MSE(FW) o? ——1

( BL) DO + TO + 6%

where 6\8{"}/] and ﬁgﬂj)w are the MVLUE for o and p given by (19), and Dy =
erc1To — €2, To = > 1% e;/c; with ey = (kA — 2)".

Proof. Using the method of Mann (cf. [10]) we obtain

%) =iy — TonBra(1+E2) 7Y, 5) = 00,1+ E) !,
where Eq1, Ei2 and E22 are taken from
~(k ~(k
52 | B En Var(;gM(GMk Cov(n (G])\/[k i) ’
Ei2 Eg2 COV(M(G’])W?Ué]{/[) Var (E(G])W)
after using (21), i.e
T To—e Ty + €2
Ey = 2 2 Epp = -2 Egy = 21

Dy’ Dy Dy



Moreover, we have

MSE(i%)) = 0?[Bry — B2 (1 + Eg2) 7],  MSE(GW)) = 02 Ega(1 + Egg) ™!
COROLLARY 3. When « is known, the best linear invariant estimators

for the parameters of the generalized Pareto distribution given by (27) in

terms of kth record values have the following form:

_ k—2a
) = 18— 0 3 |
T()—I-D()-i-(k 2a)

T g
T0+D0+(k 2a)

where

k-2« "k —2a)’
D(): o2 [kTg—k-ﬁ-QOf], T0:§< 2 ) ,

and Jé& and u(k) ;ma the Z\kl)VL UE for o and p given by (28). The mean

squared errors of i MBL and o are

_92a)\2
MSE()) = o® - [E_ (To - #2) ]
Do Do(Do+ Ty + (E=22)?)

TO"‘ (k Qa)

MSE(O'( )) o?
BL D0+T0+(k 2a)

REMARK 7. The estimators ,u%,% and ng for k =1 were given in [2].

COROLLARY 4. When A is known, the best linear invariant estimators
for the parameters of the Lomax distribution given by (30) in terms of kth
record values are

k) _ o) ok [ To—er 70 _ 50 Do
Hpr = Ham — %Gm [m} oam To+ Do+ e

The mean squared errors of [ MBL and O'(BL)/ are

MSE(~(k)) 2 E _ (TO — 61)2
Dy  Do(Do+Tp+e€2)]’
To + 6%

MSE(Z31) = o* 5=

where Eg% and ﬁgg])\/[ are the MVLUE for o and p given by (31) and Dy =

6101T0 — e%, To = Zz:l ei/cz- with €1 = (k‘)\ — 2)i.

REMARK 8. The estimators ﬁg’% and Egc% for k = 1 were presented by

Ahsanullah in [2].



4.3. Mazimum likelihood estimators (MLE). The likelihood function L
based on the kth record values for the Burr distribution has the form

m—1
L oly™®) = k’”( 11 %)u PO )
=1 - i

k A\ o k) —u —kX m %(k)_lu -1
i G BN (G

i=1
(see (3)). Hence
(33) InL(p,0,8y™) =Ink™ +InA™ — Ino™

“ u — W =
- Zln(ﬁ—l— Zi) —kz\ln(ﬁ—i— m—)
i—1 g g

Differentiating (33) with respect to o and p leads to

m (k) —1
Y, " — B kA _
2 (“ T) w0

8+ Ym~ — 1
m (k) k) (k) _
o+ Yi - —p (ynv(bk) My
i:lﬂ_l_yi — M ﬁ—i—ym —
o o

When A and § are known, the MLE of ;1 and o can be obtained by numerical
solution of these equations.
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