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LUKASZ STETTNER (Warszawa )

DISCRETE TIME RISK SENSITIVE PORTFOLIO
OPTIMIZATION WITH CONSUMPTION AND
PROPORTIONAL TRANSACTION COSTS

Abstract. Risk sensitive and risk neutral long run portfolio problems with
consumption and proportional transaction costs are studied. Existence of
solutions to suitable Bellman equations is shown. The asymptotics of the risk
sensitive cost when the risk factor converges to 0 is then considered. It turns
out that optimal strategies are stationary functions of the portfolio (portions
of the wealth invested in assets) and of economic factors. Furthermore an
optimal portfolio strategy for a risk neutral control problem is nearly optimal
for a risk sensitive portfolio cost functional with risk factor close to 0.

1. Introduction. Assume we are given a discrete time market with m
risky assets. Denote by S;(t) the price of the ith asset at time ¢. Assume that

) P =G+ &+ D),

where (2(t)) € R? is a Markov process with transition operator P(z(t), dy)
describing the evolution of economic factors, ({(¢)) stands for a sequence
of i.i.d. random variables, independent of (z(¢)), and ( is a given positive
function such that the mapping z — ((z,€) is continuous for £ > 0. Denote
by X~ (t) the wealth process at time t before consumption and possible
transactions, and by X () the wealth process after possible transactions. Let
7; (t) be the portion of the wealth process invested in the ith asset at time
t before consumption and possible transactions, and 7;(¢) the portion of the
wealth located in the ith asset after transactions at time ¢t. We shall say
that 7(t) = (m1(t),...,™m(t))T (where T stands for transpose) and similarly
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7~ (t) form portfolios at time ¢ after and before consumption and possible
transactions. Denote by «(t) the portion of capital consumed at time ¢. Let
SO={(v1,...,vm)t i >0, 37" v <1} and S = {(v1,...,vm)" € SO
>, v; = 1}. For given m € SY let
-
g(m) = (91(7), ..., gm(m))", where g;(7) = =m—-
Zj:l T

After a change of portfolio from 7 to 7’ the wealth X is diminished by
c(7 — m)X, where T is a certain element of S (we shall see in Lemma 1
that it is unique) such that 7’ = g(7) and for v € S° — SY (the algebraic
difference)

(2) c(v) =Y i)+ )
i i=1

=1

with 0 < c},c? < 1. Given a portfolio 7 and wealth X we can consume a
portion « of the portfolio and change the portfolio to 7. Since our consump-
tion has to be compensated by suitable selling of assets there should exist 7

such that

m
(3) X(cF-m+a)=X-X) 7
=1
and g(7) = «’. Consequently, given m we can consume a portion a and

afterwards choose 7’ if and only if there is 7 € S° such that

(4) Y FiteFE-m)ta=1
=1

where

(5) 7' = g(7).

In general for given 7 and «a, not all 7’ € S are admissible. In what follows
we shall assume that we are allowed to consume only a part of the available
wealth, i.e. there is a A > sup g c(—m) such that

(6) 0<a<l-A
Given 7,7’ € S and «a € [0, A] define the function
(7) FT™(8) := 6 + (67 — 7) + ov.

LEMMA 1. There is a unique continuous function e : Sx.Sx[0, A] — [0, 1]
such that for 7,7" € S and o € [0, A] we have

(8) FT™ (e(m, 7', a)) = 1.

Furthermore e is bounded away from 0.
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Proof. Notice that the function Fj s continuous, strictly increasing
and FT™ (0) = ¢(—7) + o < 1, while ™ (1) = 1+ ¢(n —7) +a > 1.
Therefore there is a unique e(m,n’, «) satisfying (8). It remains to show
continuity of e. Let 7™, #'", a™ be such that 7" — 7, 7' — 7/, " — «.
Since S is compact there are subsequences, for simplicity denoted by n, such
that e(7™, 7", ") — a as n — oo. If a # e(m, 7', «), then by continuity of
F we have 1 = Fg:’”,n(e(wn,ﬂ’”,a")) — Fg’w/(a), and consequently a =
e(m, 7', ), a contradiction. Assume now that e is not bounded away from 0.
Then there are 7,7’ € S and « € [0, A] such that e(w, 7', a) = 0. Therefore
Fg’wl(O) = ¢(—m) + a = 1, which contradicts (6). =

Consequently, given an initial wealth process X ~ (¢) and portfolio 7 (¥)
at time ¢ under (6) we choose a consumption portion a(t) from [0, A] and any
post transaction portfolio w(t) € S. Then, as a result of transaction costs

and consumption our wealth process is diminished to X (t), where following
(3) and (4) we have

(9) X(t) = e(m (t),m(t), o(t)) X (¢).
Furthermore
(10) X (t+1) =) 4“?();(”52-(75 +1)
i=1 v
= X)) _m(t)Gi(2(t+1),&(t+ 1))
i=1

= X7t C(2(t+ 1), (¢ + 1)).
and
(11) T (t+1) = g(m(t) o C(2(t +1),&(t + 1)),
with
(m(t) o C(2(t +1),&(t + 1)) = mi(H)Gi(2(t + 1), &(t + 1)).
Therefore for t =1,2,...,

t—1
(12) X~ (1) = X (0) [ [ e(m™(n), w(n), a(n))m(n)" ((2(n + 1), &(n + 1)).
n=0

In this paper we are interested in maximizing the following two cost
functionals: the risk sensitive long run cost

18) I} .. (aln),x(n))
t—1

| _
=liminf I By o {(X7(0) gh(a(n)m}
and the risk neutral long run cost
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(14)  Jx- .2 (a(n),m(n))

t—1
:= liminf EEXf i { In X (t) + Zlnh(a(n))}
t—oo t =
n=0
over all admissible, i.e. adapted to available information, sequences «(n) €
[0, 4] and 7(n) € S, where h is a given continuous function taking positive
values, expressing the correction to our terminal utility function that cor-
responds to the consumption rate, and ~ is a negative risk factor. Notice
following [1] and [2] that the cost functional J7 measures average growth of
portfolio plus its variance with a negative weight . Moreover by (12) the
cost functionals (13) and (14) are of the form
t—1
(15) Ty (aln).x(n) = lminf ~ By { [][r(an)
Xz~ ’ t X~ ,z,m

) t—o0
v n=0

x e(n™(n),m(n), a(n))m(n)" ((2(n +1),€(n + 1))]”}

and
t—1

(16) Ty n (aln), 7(m) = limind - By .o { 3" nlh(a(n)
n=0

x e(n™(n), w(n),a(n))m(n)"¢(2(n+1),&(n + 1))]}-

Risk sensitive portfolio optimization has been the subject of intensive
studies in a number of papers (see [1], [2], [7], [10] and [13]). The case with
proportional transaction costs was studied in [2] and [13]. In [2] the result
was formulated under the assumption of the existence of a nice solution to
a suitable Bellman equation. In [13] a more general model was considered in
which the factors were allowed to depend on the same random disturbance
(&£(t)). However, consumption was not taken into account and a technical
assumption concerning an obligatory diversification of portfolio was imposed.

In this paper we allow consumption and have no restrictions on the choice
of portfolio. On the other hand, we assume that the factors are independent
of the disturbances (£(t)). Risk neutral control with proportional transaction
costs was also considered in [9], where the case with ({(¢)) of the form of
a sequence of i.i.d. random variables (without economic factors (z(t))) was
studied. Some remarks concerning relaxation of ergodic assumptions imposed
on the factor process (z(t)) as well as allowing the same disturbances in the
evolution of asset prices and economic factors are given in Section 5.

2. Risk neutral Bellman equation. We shall assume that

(UE) sup sup (P(z,A)—P(Z,A)=r<1
2,2/ €R4 AcB(R?)



and
R? x S5 (z,7) — f(z,7) := E[ln(xT¢(2,£(1)))]

is continuous and bounded.

We can now solve the Bellman equation corresponding to the risk neu-
tral cost functional (14). As we show below the optimal value of this cost
functional is a function of the current value of the portfolio process 7~ (n)
and the factor process (z(n)) and does not depend explicitly on the wealth
process. We have the following

THEOREM 1. Assume that the transition operator P is continuous in
variation topology, i.e. for x, — x the measures P(xy,-) converge to P(x,-)
in variation norm. Then there is a continuous bounded function w : R% x S
— R and a constant A such that

(17)  w(z,m)+ A= sup [Inh(a) + Ine(r, 7', )
agl0,1-A], w'eS

+ EAn(x'T¢(2(1), ()} + Ex{w(2(1), g(n" 0 ((2(1),£(1))))}].
The constant X\ is an optimal value of the cost functional (14), and the strat-
€gy
(@(z(t), 7 (1)), w(2(t), 7 (1)),

where & and 7 are Borel measurable selectors for which the supremum in
(17) is attained, is optimal.

Proof. Consider first the discounted control problem, the value function
w? of which is a solution to the following Bellman equation:

(18) wP(z,m) = sup Inh(a) + Ine(m, 7', a)
a€l0,1-A],n’eS
+ B:AIn(n"¢(2(1),£(1))}
+ BEAw’(2(1), g(n' o ¢(2(1), £},

with 5 € (0,1). We shall prove that there is a unique continuous bounded
solution to (18). For a continuous bounded v : R? x S — R let

Tgv(z,m) = sup [Inh(a)+ Ine(m, 7', a)
a€l0,1-A],n’eS
+ E{In(7"T¢(2(1),6(1))} + BE{v(2(1), g(7" o ¢(2(1), £(1))))}]-
One can easily verify that under our assumptions the operator T is a con-

traction in the space of continuous bounded functions. Consequently, there
is a continuous bounded function w? which is a solution to (18). Moreover



(19) wﬂ(zl, 1) — w’B(zQ, ) < sup
a€l0,1-A], xS

+ Bz, {In(n¢(2(1),€(1)))} = B {In(r"¢(2(1), (1))}
+ BBz {w’ (2(1), g(n' 0 ((2(1),£(1))))}
- Ezz{wﬁ(2(1)7g(7r’<>6(2(1)75(1))))})>

= S/léps(.[(ﬂ'l) + I1(x") + I11(7")).

<ln e(m, 7, )

e(me, ', )

By (UE),
(20) II(n") < wllw’|lsp,
where ||w?||sp 1= SUp, . wP(z,7) — inf, » wP(z,7), so we have

(ln e(m, 7, a)

1-— B < S
(1= )’ lp < up o)

a€[0,1-A], w1 ,m2,7 €S

+ sup |f(z1,7P) —f(ZQ,ﬂ'p)|> < 00
z1,22€RY
(taking into account that by Lemma 1 the function e is bounded away
from 0). Hence the family
{wP(z,7) —infw?(2,7) : B € (0,1)}
zZ,7

is bounded. By continuity of transition operators (in variation norm) it is
also equicontinuous so that we can use the standard Ascoli-Arzela argument
(see [11]) to take a vanishing discount approach (see [8]). =

3. Risk sensitive Bellman equation. In this section we shall assume
that there is a probability measure p and a positive continuous density
p(z,2") of the transition operator P, ie. for A € B(R?), z € R? we have
P(z,A) =§,p(z,2") u(dz’), and furthermore

!/
(21) sup p(z1,21) =M < o0.

21,21 ,22,25,€RY p(z% Zé)

Notice that this assumption is stronger than (UE). Furthermore by Scheffe’s
theorem (see [12]) the transition operators are continuous in variation topol-
ogy. Additionally we shall assume that there is a § > 0 such that for
v € [=6,0) the mapping (z,7) — E.{(77¢(2(1),£(1)))"} is bounded and
continuous.

In the next theorem we show that optimal strategies for the risk sensitive
cost functional (13) depend on the current value of the portfolio process
m~(n) and the factor process z(n) only (they do not depend on the wealth
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process and this could be already noticed from the form (15) of the cost
functional (13)).

THEOREM 2. For v € [—0,0) there is a bounded continuous function
Wey - R? x S — R and a constant Ay such that

22 Ay = inf Inh | !
(22 wyEmaah = id (k) + ne(r 7, a)

+In B {exp{yIn(7'((2(1), £(1)))
+wy (2(1), g(7" 0 C(2(1),£(1)))) H]-

Moreover \ is the optimal value of the cost functional (13), and the strategy

(@ (2(t), 7 (1)), Ty (2(2), 7 (1)),
where &, and 7., are Borel measurable selectors for which the supremum in

(22) is attained, is optimal.

Proof. We consider first a version of the risk sensitive discounted cost
functional (see [3]). The value function w® corresponding to that control
problem is continuous and is a solution to the following Bellman equation:

(23) wP(z,m,7) = ae[o,lijl/f],n/esh(ln h(a) + Ine(m, 7', a))

+In B, {exp{yIn(7""¢(2(1),£(1)))

+w?(2(1), g(n' 0 ((2(1),£(1))), B) -
Therefore by (21),

(24)  wP(z1,m1,7) — 0P (22, m2,7) < sup IHM
a€l0,1-A],n’eS 6(772771-7&)
1 B ey (e C((1),61)

B, {exp{yIn(7"T((2(1),£(1)))
+wﬁ(Z(l),g(W'04(2(1),5(1))),5W)}}>
+wf(2(1),9(" o ¢(2(1),£(1))), B7)}}

< sup In 76(7&,7’( ) +In M
a€0,1-A],n’eS 6(7T2,7T,,Oé)

Consequently, for fixed Z € R and 7 € S the family
{@°(z,m,7) == w’(z,m,7) =0’ (2,7,7) : v € [-6,0)}
is bounded, i.e. there is a constant L (independent of 7) such that
@’ (z,7,7)| < L.

Using continuity of the density of the transition operator P we easily show
its equicontinuity. Therefore there is a subsequence (3, — 1 and a family
Wi (2, 7) such that W (z, 7, B~ 1) converges uniformly on compact subsets
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to Wy, (z, ). Moreover since by (23),

W (Z,7, ") —w? (7,7 8"y) < sup [B™ My(Inh(q)
a€gl0,1-A],n'eS

+Ine(T, 7', a)) + In Bx{exp{8™ 'y In(x""¢(2(1),£(1))) + L}}]
and

w’(z,7, 87 1) —w’ (7,7, B7y) > reor BT ()

+Ine(m, 7', @) + In E{exp{ ™ 'y In(x""((2(1),£(1))) — L}}],
for a suitably chosen subsequence A (5™) =wP(z,7, " y)—wh (Z,7T, fmy)
converges to A7'. The family {w,(z,7): m =1,2,...} is also bounded and

equicontinuous and there is a subsequence such that w,, converges to w.,
and A" to \,, a solution to (22). m

4. Risk sensitive asymptotics. In this section we are interested in the
limit behaviour of the cost functional J7 when ~ increases to 0. Notice first
that by the Hélder and Jensen inequalities we obtain for v; < v < 0,

(25) T aln).w(n)) < T2 (afn),w(n))
< Jx- 20 (a(n), w(n)).
Assume additionally a kind of nondegeneracy for (:
(ND)  for each z € R? the vector ((z,£(1)) has a positive density on (0, 00)™.
We have
PROPOSITION 1. Under (ND) for Borel measurable functions @ : RY x S

—[0,4] and 7 : R? x S — Sy, where § > 0 and S := {(v1,...,vm)T €8 :
v; >0,i=1,...,m} we have

(26) Ty, - (@(z(n), 7" (n)),7(2(n), 7" (n)))
= Jx- - (@(2(n), 77 (n)), T(2(n), 7 (n)))

as vy increases to 0.

Proof. Since the proof is rather technical we point out the main steps
only. By the assumption we imposed on the control 7 and assumption (ND)
the pair (z(n), 7~ (n)) forms a Markov process satisfying a minorization prop-
erty (see [4]) with an ergodic minorization set C' = K x Sp, where K is a
compact set in R%. Consequently, one can consider the splitting of this pair.
This allows us to study a multiplicative Poisson equation as in [4] correspond-
ing to the random terms depending on (2(n),z(n +1),7(n),{(n+ 1)). To
be more precise: let

(27) q(z, 2,7, &) :=In(h(a(z,7))) + Ine(r, 7 (2, 7),a(z,m))
+In(7(z,7)7¢(Z, §)).



Set
(28)  w(x)

Tcl

- mEx{ exp { > a(z(n), z(n+ 1), 7 (n),£(n + 1) — A (@, f)}}
n=0

with E corresponding to the split Markov process, x = (2,7, z2), 2 € {0,1},
7c, the first hitting time of the set C' x {1} and A\ (@, ) the value of the
risk sensitive cost functional v.J7 corresponding to the control functions @, 7.
Then w is a solution to the Poisson equation

(29)  e“=m) = B {exp{yq(z, 2(1), 7, £(1)) — Ay (@, 7)
+w(z(1),7(1),2*(1))}}.

Finally, we prove a version of Proposition 3 of [6], which shows the con-

vergence of the solutions to the multiplicative Poisson equation (29) to the

solution of an additive Poisson equation and this way implies the convergence
(26). m

REMARK 1. An alternative approach based on the large deviation prin-
ciple as in [5] gives the convergence in (26) for continuous functions @ and
7 only and requires additional assumptions. Notice that assumption (ND) is
rather strong and we in fact need only the existence of an ergodic minoriza-
tion set, as was pointed out in the proof of Proposition 1.

We can now summarize the above results (cf. Theorem 3 of [5]):

COROLLARY 1. If an optimal control T to the risk neutral problem does
not allow eliminating investments in any of the assets, i.e. there is a positive
0 such that 7;(z,7P) > 0 for = € R and 7P € S, then under (ND), A, — A
as vy increases to 0. Furthermore an optimal control for the risk neutral cost
functional is nearly optimal for the risk sensitive functional when 7y is close
to 0.

5. Remarks on assumptions and further extensions. Notice first
that we used a very nice ergodic structure of the factor process (z(n)) (see
assumptions (UE) and then (21)) for clarity of the assumptions and presenta-
tion. Using the methodology of the papers [4] and [5] under some assumptions
we can extend the result to the case when (z(n)) is a Markov process with
the minorization property. A further extension to the case when the factors
depend on the same disturbances, e.g., when z(n + 1) = r(z(n),&(n + 1)),
is nontrivial. When we allow consumption and impose an assumption con-
cerning diversification of portfolio (see [13]) we can use some arguments of
the paper [13]. The general case without this assumption requires additional
technicalities that go beyond the scope of this paper. Notice moreover that it
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was crucial for our approach that consumption rate o was not greater than
1 — A, since by Lemma 1 we were allowed to choose (after transactions) any
portfolio 7’ € S. The case without this assumption is more complicated and
Theorems 1 and 2 may not be true.
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