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MONOTONICITY OF THE PERIOD FUNCTION FOR SOME

PLANAR DIFFERENTIAL SYSTEMS.

PART II: LIÉNARD AND RELATED SYSTEMS

Abstract. We are interested in conditions under which the two-dimen-
sional autonomous system

ẋ = y, ẏ = −g(x) − f(x)y,

has a local center with monotonic period function. When f and g are
(non-odd) analytic functions, Christopher and Devlin [C-D] gave a simple
necessary and sufficient condition for the period to be constant. We pro-
pose a simple proof of their result. Moreover, in the case when f and g
are of class C3, the Liénard systems can have a monotonic period func-
tion in a neighborhood of 0 under certain conditions. Necessary conditions
are also given. Furthermore, Raleigh systems having a monotonic (or non-
monotonic) period are considered.

1. Introduction. The Liénard equation

(1) ẍ+ f(x)ẋ+ g(x) = 0,

or its equivalent two-dimensional form

(2) ẋ = y, ẏ = −g(x) − f(x)y,

holds an important place in the theory of dynamical systems. Several prob-
lems have been considered by authors studying this equation, including ex-
istence, boundedness, uniqueness, and multiplicity of periodic solutions and
related questions.

We assume g(0) = 0, so that the origin is a critical point for the equiva-
lent two-dimensional problem (2).
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One of the goals of this paper is to study the conditions under which
system (2) has a center of constant period (or, alternatively, for which (1)
has a non-isolated periodic solution with locally constant period).

Recently, significant results on the isochronicity problem have been pre-
sented, [S], [C-D]. Our results on the Liénard system are an attempt to
classify the isochronous systems of a significant infinite-dimensional family
of planar polynomial systems.

The notations ′ = d/dx and ′′ = d2/dx2 will be used throughout.

The next result has been proved by Christopher, Devlin, Lloyd and Saba-
tini in the analytic case.

Proposition 1. Let f and g be analytic odd functions of x with xg(x)>0
in a neighborhood of the origin. Then system (2) has an isochronous center

at the origin if and only if g′(0) > 0 and

(∗) g(x) = g′(0)x+
1

x3

(x\
0

ξf(ξ) dξ
)2
.

If f(x) and g(x) are odd functions of class C1, then (∗) is a sufficient
condition for the origin to be isochronous.

In [A-F-G] several cases of non-odd polynomial Liénard systems (2) are
considered. It is proved, in particular, that 0 is not an isochronous center
when f and g do not satisfy (∗).

Moreover, it is conjectured that the assumption that f and g are odd
functions is superfluous.

In this direction, Proposition 1 has been generalized by Christopher and
Devlin [C-D]:

Proposition 2. System (2) with f and g analytic such that f(0) =
g(0) = 0 and g′(0) = 1 has an isochronous center at the origin if and only if

(3) g = ss′
(

1 +
1

s4

(x\
0

s(ξ)f(ξ) dξ
)2

)
,

where s(x) solves the functional equation

(4) F (x− 2s(x)) = F (x), s(0) = 0, s′(0) = 1.

where F (x) =
Tx
0 f(t) dt. In particular , if f(x) or g(x) is odd , then (2) has

an isochronous center at the origin if and only if f(x) is odd and

(∗) g(x) = x+
1

x3

(x\
0

ξf(ξ) dξ
)2
.

This latter result was first proved by Sabatini [S] for Liénard systems
which are not necessarily analytic.
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Results of this paper can be viewed as a contribution to the proof of the
above conjecture.

Let us formulate our main results:

1) We propose (in Section 2) an alternative simpler proof of the above
Proposition 2.

2) Moreover, we study (in Section 3) the monotonicity of the period
function T for system (2) when f and g are of class C3. The inequality

g′(0)g(3)(x) − 5

3
g′′(x)2 − 2

3
f ′(x)2g′(0) 6= 0

implies the monotonicity of the period function T in a neighborhood of 0.

We deduce in particular that:

(a) If f and g are of class C3 and g(3)(0) > 0, then g′(0)g(3)(0)− 5
3 g

′′(0)2−
2
3g

′(0)f ′(0)2 = 0 and f ′(0)g′′(0) − g′(0)f ′′(0) = 0 are necessary conditions
for the center 0 to be isochronous.

(b) If g(x) = x and f ′(0) 6= 0 then the period function is increasing in a
neighborhood of 0.

(c) When f and g are of class C4 and g′(0)g(3)(0)− 5
3g

′′(0)2− 2
3g

′(0)f ′(0)2

= 0 we establish other necessary conditions for the center 0 of the Liénard
system (2) to be isochronous.

2. A generalization of Christopher and Devlin. As mentioned in
the introduction, Christopher and Devlin [C-D] generalized Proposition 1
and proved a classification theorem for isochronous centers for Liénard sys-
tems of the form

(2) ẋ = y, ẏ = −g(x) − f(x)y,

The proof of Proposition 2 consisted in rewriting system (2) in a normal
form using the function derived from the complex separatrices of the system
at the origin.

Below we give another proof of that result, by reducing the system to the
type considered by Sabatini. For completeness, we present parts of Sabatini’s
result needed for the proof.

Proof of Proposition 2. Let us recall briefly some basic results on isochro-
nous Liénard systems. Any isochronous family of periodic orbits surrounds
a unique non-degenerate critical point of center type. We shall assume that
(2) linearizes to a non-degenerate center at the origin. A translation of this
critical point does not modify the form of system (2). Scaling the x-axis pre-
serves the isochronicity of the center. Therefore, without loss of generality,
we may choose f and g such that

g(0) = 0, g′(0) = 1, f(0) = 0.
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It can be shown that if (2) has an isochronous center, then necessarily
g(x) has x = 0 as its only zero. Moreover, if we suppose in addition g′′(0) = 0
then necessarily f ′′(0) = 0.

Concerning the existence of a center, a result of Cherkas [C] shows that
system (2) has a center if and only if there exist polynomials A and B such
that the integrals

F (x) =

x\
0

f(t) dt, G(x) =

x\
0

g(t) dt

satisfy
F (x) = A(M(x)), G(x) = B(M(x)),

for a polynomial M(x) = x2 + · · · . In particular, if g(x) (and f(x)) are odd
then M = x2.

Let us define s = s(x) such that

F (x− 2s(x)) = F (x), s(0) = 0, s′(0) = 1.

The case M = x2 holds if and only if s(x) = x. The same holds true if we
replace F by any analytic function M = x2 + · · · for which F = χ(M) for
some analytic function χ. If g is odd then M = x2.

Following [C-D], if the non-constant term of the lowest degree of the
power series of F (x) is even then the function s(x) defined in (4) is clearly
unique and analytic in a neighborhood of x = 0. So, we assume F ′′(0) 6= 0.

From the defining equation for s, we find that

F (x) = F (x− 2s(x)) = F (x− 2s(x) − 2s(x− 2s(x)))

so that, by uniqueness of the solution of F (x) = F (y(x)) with y′(0) = 1,

x = x− 2s(x) − 2s(x− 2s(x)),

and hence

(5) x(−s) = x(s) − 2s.

We thus have x = s+ φ(s), where φ is even in s.

Now, (4) and (5) imply that F (x) = F̃ (s) for some even analytic func-

tion F̃ . We can also take G(x) = G̃(s) for some analytic function G̃, and
scale system (2) by dx/ds to get

(6) ds/dt = y, dy/dt = −g̃(s) − f̃(s)y,

where

f̃ =
dF̃

ds
, g̃ =

dG̃

ds
.

Then (6) is a Liénard system with f̃(s) an odd analytic function. When g̃ is
odd, then the origin of (6) is a center by symmetry in the y-axis. According
to the argument of Cherkas [C], if g̃ is not odd then (6) cannot have a center.
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Thus, systems (2) and (6) have a center at the origin if and only if g̃ is
an odd function of s. Moreover,

g̃(s) = g(x)(1 + φ′(s)), f̃(s) = f(x)(1 + φ′(s)).

By Proposition 1, since f̃(s) and g̃(s) are odd, system (6) has an isochronous
center at 0 if and only if

(7) g̃(s) = g̃′(0)s+
1

s3

(s\
0

σf̃(σ) dσ
)2
.

An easy calculation yields g̃′(0) = g′(0) = 1 and after a change of variables

g̃(s) = (1 + φ(s))g(x) = s+
1

s3

(s\
0

σf(ξ)(1 + φ′(σ)) dσ
)2
.

Here σ = s(ξ), (1 + φ′(σ)) dσ = dξ, and hence

(1 + φ(s))g(x) = s+
1

s3

(x\
0

s(ξ)f(ξ) dξ
)2
.

So, by Proposition 1, system (6) has an isochronous center at 0 if and only
if

(3) g = ss′
(

1 +
1

s4

(x\
0

s(ξ)f(ξ) dξ

)2)
.

Now consider the transformation of (6) given by Y = y + sN(s) with

N =
1

s2

s\
0

σf̃(σ) dσ,

an odd polynomial in s, which brings system (6) to the form

ṡ = Y − sN(s), Ẏ = −s− Y N(s) +K(s),

where K(s) = s + s−3(
Ts
0 σf̃(σ) dσ)2 − g̃, which is odd in s. In polar coor-

dinates θ̇ = −1, which means that K(s) = 0 if and only if the center of
(6) (and hence of (2)) is isochronous (the converse holds by (7) and Propo-
sition 1). However, this is just condition (∗) above. Changing back to the
original coordinates, we get condition (3). The proposition is thus proved.

3. Monotonicity of the period function for Liénard equations

3.1. Preliminary results. Consider

(1) ẍ+ f(x)ẋ+ g(x) = 0
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with g(0) = 0. Thus, x ≡ 0 is a trivial solution, and the origin is a singular
point of the equivalent system

(2)

{
ẋ = −y,
ẏ = −g(x) − f(x)y,

where f, g are functions of class Ck, k ≥ 1.
Suppose 0 is a center of (2), and let γ0 be the central region, the open

connected set covered by cycles surrounding the center. These periodic tra-
jectories may be parametrized for example by choosing their initial values
in the segment (0, π) on the x-axis, x(0) = c.

Recall that T : γ0 → R is the function defined by associating to every
point (x, 0) ∈ γ0 the minimum period of the trajectory starting at (x, 0),
and reaching the negative x-axis. T is the period function and is constant on
cycles. We say T is increasing (resp. strictly increasing) if, for every couple
of cycles γ1 and γ2 with γ1 included in γ2, we have T (γ1) ≤ T (γ2) (resp.
T (γ1) < T (γ2)).

We say 0 is an isochronous center if T is constant in a neighborhood
of 0.

Functions f and g are assumed to be C3 on an open interval J con-
taining 0 and to satisfy f(0) = g(0) = 0 and g′(0) > 0. These assumptions
ensure that the origin is a center, so that the period function T is defined.

Multiplication of (1) by α−1/2 (α > 0) does not change the nature (of
monotonicity) of the period but only changes each period by a constant
multiple. More precisely, for any positive real number α equation (1) is
equivalent to

ẍ+
1√
α
f(X)ẋ+

1

α
g(X) = 0

by the scaling x(t) = X(
√
α t).

We are led to a system of the form

(8)





ẋ = − 1

α1/2
y,

ẏ =
1

α1/2
g(x) − 1

α1/2
f(x)y.

3.2. Main theorem.. The following result specifies the behavior of the
period function for the Liénard system in the neighborhood of the center 0.
We need the hypothesis that f and g are of class C3. It allows us to deduce
several interesting corollaries. In particular, we obtain simple conditions for
the monotonicity of T or for the isochronicity of the center.

Theorem 3. Let f, g ∈ C3(J), where J is an open interval containing 0,
and suppose that f(0) = g(0) = 0, g′(0) > 0 and the origin 0 is a center of

(1) ẍ+ f(x)ẋ+ g(x) = 0.
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If

(9) g′(0)g(3)(0) − 5

3
g′′(0)2 − 2

3
f ′(0)2g′(0) 6= 0

then the period function T of equation (1) is monotonic in a neighborhood

of 0. More precisely , if

(9+) g′(0)g(3)(0) − 5

3
g′′(0)2 − 2

3
f ′(0)2g′(0) < 0

then T is increasing in a neighborhood of 0, and if

(9−) g′(0)g(3)(0) − 5

3
g′′(0)2 − 2

3
f ′(0)2g′(0) > 0

then T is decreasing in a neighborhood of 0.

Proof. To establish the asserted conditions, we will give an expansion of
the period function near the center. We will use implicit function techniques.

Since the origin is a center, orbits of solutions starting on the positive
x-axis must be closed. Let (x(t, c), y(t, c)) be a solution other than the origin
of

(10)





ẋ = −
√
g′(0) y,

ẏ =
1√
g′(0)

g(x) − 1√
g′(0)

f(x)y,

with x(0, c) = c and y(0, c) = 0. Suppose c is a positive constant close to 0.
After a certain time close to 2π/

√
g′(0) this solution will go around the

origin and will again intersect the positive x-axis at x(T, c). Consider the
following functions depending on c:

φ(T, c) = x(T, c) − c, ψ(T, c) = y(T, c).

We will solve ψ(T, c) = 0 for T = T (c), a function of c small. Thus, φ is a
function of c. Let Φ(c) = φ(T (c), c). We find that the position of return is
x = c+ Φ(c). Thus, the orbit is closed if and only if

Φ(c) = 0.

We will find the behavior of Φ(c) when c tends to 0 by calculating its first
derivatives at 0. First, we have Φ(0) = 0, T0 = T (0) = 2π/

√
g′(0) and the

partial derivatives of φ and ψ are

φT (T0, 0) = ẋ

(
2π√
g′(0)

, 0

)
= 0, ψT (T0, 0) = ẏ

(
2π√
g′(0)

, 0

)
= 0

φc(T0, 0) = xc

(
2π√
g′(0)

, 0

)
− 1, ψc(T0, 0) = yc

(
2π√
g′(0)

, 0

)
.

Here the subscript c or T denotes differentiation with respect to c or T .
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The derivatives of xc(t, c) and yc(t, c) with respect to t satisfy the Liénard
system

(11)





ẋc = −
√
g′(0) yc,

ẏc =
1√
g′(0)

g′(x)xc −
1√
g′(0)

f(x)yc −
1√
g′(0)

f ′(x)xcy,

with initial conditions xc(T0, c) = 1, yc(T0, c) = 0. According to our hy-
potheses, g(0) = f(0) = 0. If we set c = 0 the system becomes

(12)

{
ẋc(t, 0) = −

√
g′(0) yc,

ẏc(t, 0) =
√
g′(0)xc.

This implies in particular xc(t, 0)=cos(
√
g′(0) t) and yc(t, 0)=sin(

√
g′(0) t).

Thus, φ(T0, 0) = 0 and ψ(T0, 0) = 0.
We now calculate the second derivatives:

φTT (T0, 0) = ẍ

(
2π√
g′(0)

, 0

)
= 0, ψTT (T0, 0) = ẏ′

(
2π√
g′(0)

, 0

)
= 0,

φTc(T0, 0) = ẋc

(
2π√
g′(0)

, 0

)
= 0, ψTc(T0, 0) = ẏc

(
2π√
g′(0)

, 0

)
=

√
g′(0),

φcc(T0, 0) = xcc

(
2π√
g′(0)

, 0

)
, ψcc(T0, 0) = ycc

(
2π√
g′(0)

, 0

)
.

The derivatives satisfy the system



ẋcc = −
√
g′(0) ycc,

ẏcc =
1√
g′(0)

[[g′(x) − f ′(x)y]xcc

+ [g′′(x) − f ′′(x)y](xc)
2 − f(x)ycc − 2f ′(x)xcyc].

Setting now c = 0, according to the above initial conditions we get




ẋcc = −
√
g′(0) ycc,

ẏcc =
1√
g′(0)

[g′(0)xcc + g′′(0)(cos(
√
g′(0) t))2

− 2f ′(0) cos(
√
g′(0) t) sin(

√
g′(0) t)].

The solution of the latter system is



ẋcc =
1

6
√
g′(0)

[−3g′′(0) + g′′(0) cos(
√
g′(0) t) + 4f ′(0) sin(

√
g′(0) t)

+ g′′(0) cos(2
√
g′(0) t) − 2f ′(0) sin(2

√
g′(0) t)],

ẏcc =
1

3
√
g′(0)

[g′′(0) sin(
√
g′(0) t) − 2f ′(0) cos(

√
g′(0) t)

+ g′′(0) sin(2
√
g′(0) t) + 2f ′(0) cos(

√
g′(0) t)].
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We deduce from this the values

φcc(T0, 0) = ψcc(T0, 0) = 0.

By a similar method we establish the value of the third derivatives. We find
in particular

φTcc(T0, 0) = ẋcc

(
2π√
g′(0)

, 0

)
= 0,

ψTcc(T0, 0) = ẏcc

(
2π√
g′(0)

, 0

)
=

g′′(0)

2
√
g′(0)

,

φTTc(T0, 0) = ẍc

(
2π√
g′(0)

, 0

)
= −g′(0),

ψTTc(T0, 0) = ẏ′c

(
2π√
g′(0)

, 0

)
= 0,

φccc(T0, 0) = xccc

(
2π√
g′(0)

, 0

)
=

3π

2
√
g′(0)

[
g′′(0)

g′(0)

f ′(0)

2
√
g′(0)

− f ′′(0)

2
√
g′(0)

]
,

ψccc(T0, 0) = yccc

(
2π√
g′(0)

, 0

)

=
π

2
√
g′(0)

[
− f ′(0)2

g′(0)
− 10g′′(0)2

4g′(0)2
+ 9

g(3)(0)

6g′(0)

]
.

From the above calculation, we may write the Taylor expansions of
ψ(T, c) and φ(T, c) near (T0, 0):

φ(T, c) = − g′(0)

2

(
T − 2π√

g′(0)

)2

c+
1

6
φccc(T0 + θ(T − T0), θc)c

3,

ψ(T, c) =

(
T − 2π√

g′(0)

)
c+

g′′(0)

2
√
g′(0)

(
T − 2π√

g′(0)

)
c2

+
1

6
ψccc(T0 + θ(T − T0), θc)c

3,

for some θ such that 0 < θ < 1.

Finally, we return to our problem. Let us solve ψ(T (c), c) = 0 for T as
an implicit function of c. Notice that T (c) → T0 as c→ 0 and by hypothesis
ψ is of class C3. Hence its third derivative at (T0, 0) is such that φccc(T0 +
θ(T − T0)) → ψccc(T0, 0) as c→ 0. Thus,

T (c) =
2π√
g′(0)

− 1

6
ψccc(T0, 0)c2 + o(c3).

Recall the orbit is closed if Φ(c) = φ(T (c), c) = 0. Substituting T = T (c) we
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get

Φ(c) =
1

6
φccc(T0, 0)c3 + o(c3).

Thus, we get the expansion of the period function for c small:

T (c) =
2π√
g′(0)

− π

12
√
g′(0)

[
−f

′(0)2

g′(0)
− 10g′′(0)2

4g′(0)2
+ 9

g(3)(0)

6g′(0)

]
c2 + o(c3),

which leads to the stated condition and proves the theorem.

First, we deduce the following useful consequence:

Lemma 1. Let f ∈ C2(J) and g ∈ C3(J) satisfy f(0) = g(0) = 0,
g′(0) > 0 and the Liénard equation (1). Then a necessary condition for the

origin to be a center of (2) is

f ′(0)g′′(0) − g′(0)f ′′(0) = 0.

Proof. In the proof of Theorem 1, we have given the behavior of the
period near the origin. Φ(c) 6= 0 for small c means there is no closed orbit in
a neighborhood of 0. Indeed, c+ Φ(c) corresponds to the position of return
to the x-axis. Since we have seen

Φ(c) = φ(T (c), c) = −g
′(0)

2

(
T − 2π√

g′(0)

)2

c+
1

6
φccc(T0, 0)c3 + o(c3)

and according to the above expansion of T (c), a necessary condition for the
origin to be a center is

φccc(T0, 0) =
3π

2
√
g′(0)

[
g′′(0)

g′(0)

f ′(0)

2
√
g′(0)

− f ′′(0)

2
√
g′(0)

]
= 0.

This yields the assertion.

3.3. Remarks. (i) The problem of the monotonicity of the period was al-
ready considered in special cases for a subfamily of Liénard systems, notably
in [C2] and [F-G-G], which considered the system

(13)

{
ẋ = −y +A(x),

ẏ = A′(x),

where A is a smooth function such that A(0) = A′(0) = 0. So, f = −A′

and g = A in our notations. We may verify that for any A(x) = kIi(x) for
i = 1, . . . , 9 and k > 0 (see the notations of [F-G-G, §4.3]) one gets

A′′(0)A(4)(0) − 5

3
(A(3))2(0) − 2

3
A′′3(0) < 0 (resp. > 0).

Thus, this system has an increasing (resp. decreasing) period in the neigh-
borhood of the origin.

(ii) Consider the Liénard equation with linear restoring term

(Ll) ẍ+ f(x)ẋ+ x = 0.
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In [C-G-M] the monotonicity of its period is proved by computing the period
constants in the case where f is analytic.

As a corollary of Theorem 3 one proves the following

Corollary 4. Let f ∈ C1(J) be such that f ′(0) 6= 0 and let the origin

be a center for equation (Ll). Then the period function is increasing in a

neighborhood of 0.

Indeed, if g(x) = x we get

−f
′(0)2

g′(0)
− 5g′′(0)2

2g′(0)2
+ 3

g(3)(0)

2g′(0)
= −f ′(0)2 < 0,

so T is increasing.

3.4. Some corollaries. We deduce from Theorem 3 other consequences,
in particular

Corollary 5. Let f, g ∈ C3(J) satisfy f(0) = g(0) = 0, g′(0) > 0 and

let the origin be a center of (2). If g′′′(0) < 0 then the period function T of

(2) is increasing in a neighborhood of 0.

Indeed, g′′′(0) < 0 implies

−f
′(0)2

g′(0)
− 5g′′(0)2

2g′(0)2
+ 3

g(3)(0)

2g′(0)
< 0.

Corollary 6. Consider the conservative equation ẍ+g(x) = 0 and the

Liénard equations ẍ ± f(x)ẋ + g(x) = 0. Let f, g ∈ C3(J) satisfy f(0) =
g(0) = 0, g′(0) > 0 and let the origin be a center of these equations. If the

period function of ẍ + g(x) = 0 is increasing in a neighborhood of 0, then

so is the period function of ẍ± f(x)ẋ+ g(x) = 0.

Indeed, according to Schaaf’s criterion (see [Ch1]), T increases if 5g′′(x)2

−3g′(x)g3(x) > 0 in a neighborhood of 0. This implies in particular 5g′′(0)2−
3g′(0)g3(0) > 0. Adding f ′(0)2/g′(0) we deduce that

−f
′(0)2

g′(0)
− 5g′′(0)2

2g′(0)2
+ 3

g(3)(0)

2g′(0)
and − 5g′′(0)2 + 3g′(0)g3(0)

have the same sign.

The following is another interesting consequence:

Corollary 7. Consider the conservative equation ẍ+g(x) = 0 and the

Liénard equations ẍ ± f(x)ẋ + g(x) = 0. Let f, g ∈ C3(J) satisfy f(0) =
g(0) = 0, g′(0) > 0 and let the origin be a center of these equations. If

g′′(0) 6= 0 and the center 0 of ẍ± f(x)ẋ+ g(x) = 0 is isochronous then the

period function T of ẍ + g(x) = 0 is strictly decreasing in a neighborhood

of 0.
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This follows from Corollary 6, on account of the fact that g is not a odd
function.

To establish the existence of an isochronous center for the Liénard sys-
tem, it is necessary first to make sure that the period of the associated
conservative system is decreasing at least in a neighborhood of 0. For this,
one will be able to use the different criteria of monotonicity of T .

Corollary 8. Under the same hypotheses on f and g, suppose in ad-

dition g′′(0) 6= 0 and the origin is a center of (1). Then the following condi-

tions on the functions f, g are necessary for equation (1) to have T constant

in a neighborhood of 0:

(i) g(3)(0) > 0,

(ii) f ′(0) = ± 1√
2

√
3g(3)(0) − 5

g′(0)
g′′(0)2,

(iii) f ′′(0) = ± g′′(0)√
2 g′(0)

√
3g(3)(0) − 5

g′(0)
g′′(0)2.

Indeed, it is sufficient to remark that by Corollary 7 the period function
of the equation ẍ + g(x) = 0 has to be decreasing. Then, according to the
criterion of Schaaf it is necessary that 3g(3)(x) − (5/g′(x))g′′(x)2 > 0 in a
neighborhood of 0. Moreover, by Lemma 1, f ′′(0) = (g′′(0)/g′(0))f ′(0) and
we get the second expression.

This result is of interest because we do not need to suppose g(x) odd.

3.5. Other consequences. In fact the Liénard system is equivalent to
another system more convenient to study. We can prove the following, which
agrees with Lemma 2 of [S] for g′(0) = 1:

Lemma 2. Suppose f, g are continuous functions of class Ck, k ≥ 1, on

an interval J containing 0 and f(0) = 0. Let

C(x) =
1

g′(0)
g(x) − 1

g′(0)x3

[ x\
0

sf(s) ds
]2
.

Then the system

(14)





ẋ = y − 1

x
√
g′(0)

x\
0

sf(s) ds,

ẏ = −g(x) − 1

g′(0)x3

[ x\
0

sf(s) ds
]2

− y

x2
√
g′(0)

x\
0

sf(s) ds,

is of class Ck in a neighborhood of 0 and is equivalent to (2).
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Indeed, to see this, define

ψ(x) =
1√
g′(0)

x\
0

sf(s) ds.

By the de l’Hospital rule we get

lim
x→0

ψ(x)

x2
=

f(0)

2
√
g′(0)

.

One also proves that the function ψ(x)/x2 is differentiable at 0 with deriva-
tive f ′(0)/3

√
g′(0).

Moreover, the function C(x) is obviously differentiable and C ′(0) = 1.

A calculation gives

C ′′(0) =
g′′(0)

g′(0)
− 2

3g′(0)
f(0)f ′(0), C ′′′(0) =

g′′′(0)

g′(0)
− 2

3g′(0)
f ′(0)2.

This proves the regularity of system (4).

Furthermore, let (x(t), y(t)) be a solution of (2); then x(t) is a solution
of (1). Note that for x 6= 0, we get

x

[
ψ(x)

x2

]
′

= x3f(x) − 2xψ(x)

x3
=

f(x)√
g′(0)

− 2
ψ(x)

x2
.

Moreover, by differentiating y = ẋ+ xψ(x)
x2 , we get

ẍ = − 1

g′(0)
g(x) − 1√

g′(0)
f(x)ẋ.

This is equivalent to (1) by scaling the time, here α = g′(0). This yields

x

(
τ√
g′(0)

)
= X(τ).

Since f and g are independent of t, we have f(x) = f(X) and g(x) = g(X).
We then obtain, by differentiating with respect to τ ,

ẍ = −g(X) − f(X)ẋ.

The following result is a version of Theorem 1 of [S] and may be proved
in the same manner.

Proposition 9. Let f ∈ C2(J) and g ∈ C3(J) satisfy f(0) = g(0) = 0,
g′(0) > 0, let the origin be a center of (2), and in addition suppose that

g′′(0) = f ′′(0) = 0. Let C(x) be as defined in Lemma 2. If

(15) C(x) is

{
strictly convex for x ∈ J and x < 0,

strictly concave for x ∈ J and x > 0,
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then T is increasing in a neighborhood of 0; if

(16) C(x) is

{
strictly convex for x ∈ J and x > 0,

strictly concave for x ∈ J and x < 0,

then T is decreasing in a neighborhood of 0; if

(17)
d2

dx2
C(x) ≡ 0 for x ∈ J,

then T is constant in a neighborhood of 0.

Notice that after a change to polar coordinates (r, θ), Sabatini [S] obtains
the following system equivalent to (2):

(18)





ṙ = −
√
g′(0) r cos θ sin θ − rβ(r cos θ) − sin θ C(r cos θ),

θ̇ = − 1√
g′(0)

cos2 θ − sin2 θ − cos θ C(r cos θ) − C ′(0)(r cos θ)

r

= ω(r, θ),

where

β(r cos θ) =
1

r2 cos2 θ

r cos θ\
0

sf(s) ds.

We also observe that from system (2) we get

r2θ̇ = r2ω(r, θ) = −xC(x) − y2,

where ω = dθ/dt so T (r) =
T
[0,2π] dθ/ω.

By Theorem 1 in [S], it is sufficient to prove for example that hypothesis
(9−) implies that ∂ω(r, θ)/∂r ≤ 0 for almost all values θ ∈ [0, 2π].

A calculation gives

∂ω(r, θ)

∂r
=
r cos2 θC ′(r cos θ) − cos θC(r cos θ)

r2
.

Hence

∂ω(r, θ)∂r =
−xC(x) + x2C ′(x)

(x2 + y2)3/2
= x

−C(x) + xC ′(x)

(x2 + y2)3/2
.

Note that (xC ′(x) − C(x))′ = xC ′′(x). Then according to hypotheses,
C ∈ C3(J), and the condition xC ′′(x) ≤ 0 for x ∈ J , which is equivalent to
hypothesis (9−), implies ∂ω(r, θ)/∂r ≤ 0.

In the same way, we prove that the condition xC ′′(x) ≥ 0 for x ∈ J ,
which is equivalent to hypothesis (9+), implies ∂ω(r, θ)/∂r > 0.

We have thus proved that the functions ∂ω/∂r and xC ′′(x) have the
same sign.

In fact, we can see this by another method. A calculation gives

C ′′(0) =
g′′(0)

g′(0)
− 2

3g′(0)
f(0)f ′(0), C ′′′(0) =

g′′′(0)

g′(0)
− 2

3g′(0)
f ′(0)2.
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Then necessarily we have C ′′(0) = 0, since xC ′′(x) 6= 0 (if x 6= 0) implies
the monotonicity of the period. Thus, xC ′′(x) and g′′′(x)− 2

3f
′(x)2 have the

same sign in a neighborhood of 0. This determines the monotonicity of T .

Also, the condition f ′′(0) = 0 turns out to be necessary by Lemma 1.

Remark. Notice that by definition of C(x), f(x) ≡ 0 implies C(x) ≡
g(x)/g′(0). Corollary 5 slightly improves Theorem 3 in [S] since g3(0) < 0
(implying C3(0) < 0) is a sufficient condition for the monotonicity of T
without need to suppose g′′(0) = 0.

Another remark is that the condition g′′(0) = 0 turns out to be necessary
to study various monotonicity conditions of the period function as we have
seen above.

Moreover, when system (2) is isochrone and g′′(0) = 0 then d2

dx2C(x) ≡ 0
implies

C ′′′(0) =
g(3)(0)

g′(0)
− 2

3g′(0)
f ′2(0) = 0,

which is a particular case of Corollary 8.

On the other hand, consider the following function introduced in [S]:

σ(x) = 2x2 1

g′(0)
f(x)

x\
0

sf(s) ds− 4
1

g′(0)

[ x\
0

sf(s) ds
]2

+
x3

g′(0)
[g(x)− xg′(x)].

The following properties are proved in [S, Theorem A, Theorem 2 and Corol-
lary 1]:

Proposition 10. Let f, g ∈ C3(a, b) with f(0) = g(0) = 0 and g′′(0) =
f ′′(0) = 0, the origin being a center of (2). If xC(x) > 0 in a punctured

neighborhood J of 0, then we have:

(1) if σ(x) ≤ 0 for x ∈ J , then T is decreasing in a neighborhood of 0;

(2) if σ(x) ≥ 0 for x ∈ J , then T is increasing in a neighborhood of 0;

(3) if σ(x) ≡ 0 for x ∈ J , then T is constant in a neighborhood of 0.

Notice that while considering the assumption xC(x) > 0 in the case
where g and f are C3, we have g′(0) > 0 and C(x) is C3. Furthermore, σ(x)
and C(x) are related by

σ(x) = −x5 d

dx

(
C(x)

x

)
.

This function may be written in a neighborhood of 0 as

σ(x) = −2x6

[
g(3)(x) − 2

3
f ′(x)2

]
+ · · · .

This imposes an additional condition g′′(0) = 0 which turns out to be nec-
essary since we have seen C ′′(0) = g′′(0) = f ′′(0) by Lemma 1.
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If g′′(0) 6= 0 then d5σ/dx5 = −C ′′(0)/2 6= 0 and the proposition cannot
be applied. Thus, Theorem 3 gives an improvement of that proposition.

3.6. Another necessary condition. In the case where the expression

g′(0)g(3)(0) − 5

3
g′′(0)2 − 2

3
f ′(0)2g′(0)

vanishes it is still possible to establish necessary conditions for the period
function T of the Liénard system to be monotonic.

Indeed, if f and g are at least of class C4 we can re-iterate the procedure
used in the proof of Theorem 3 in order to find the next term of the expansion
of the period T = T (c). Take again the functions φ and ψ and their Taylor
expansions,

φ(T, c) = − g′(0)

2

(
T − 2π√

g′(0)

)2

c+
1

6
φccc(T0, 0)c3 +

1

24
φc4 + o(c4),

ψ(T, c) =

(
T − 2π√

g′(0)

)
c+

g′′(0)

2
√
g′(0)

(
T − 2π√

g′(0)

)
c2

+
1

6
ψccc(T0, 0)c3 +

1

24
ψc4 + o(c4).

We then establish the values of their fourth derivatives. By using implicit
techniques we are able to calculate the expansion of T (c) near the center 0.
Solving ψ(T, c) = 0 for T = T (c) and knowing that T is an even function of
c we may write

T (c) =
2π√
g′(0)

− π

12
√
g′(0)

[
− f ′(0)2

g′(0)
− 10g′′(0)2

4g′(0)2
+9

g(3)(0)

6g′(0)

]
c2 +αc4 +o(c4).

For brevity, we will omit the details (which actually require very long cal-
culations). The coefficient α of c4 in the expansion of T (c) is

α =
π

4332g′7/2

[
−g(4)g′2 + 5f ′2g′′2g′ +

225

8
g′′2g(3)g′

+ 7f ′2g(3)g′2 − 235

16
g′′4 − 13

4
f ′4g′2 − 51

16
g(3)g′2

]

where all the derivatives are evaluated at zero. In particular, when g and f
are odd functions one gets

α =
π

4332g′7/2

[
7f ′2g(3)g′2 − 235

16
g′′4 − 13

4
f ′4g′2 − 51

16
g(3)g′2

]
.

This term is of interest only if the preceding one in the expansion of T
vanishes, i.e.

(Lc) g(3)g′ =
5

3
g′′2 +

2

3
f ′2g′.

In the latter case we may assert the following:
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Theorem 11. Suppose f and g are C4 functions and 0 is a center of

Liénard system (2) such that g(3)g′ − 5
3g

′′2 + 2
3f

′2g′ = 0. Then:

(i) If −3
5g

(4)g′2 + 17f ′2g′g′′2 + g′′4 > 0 then the period function T (c) is

increasing in a neighborhood of 0.
(ii) If −3

5g
(4)g′2 + 17f ′2g′g′′2 + g′′4 < 0 then the period function T (c) is

decreasing in a neighborhood of 0.
(iii) g(3)g′ − 5

3g
′′2 + 2

3f
′2g′ = 0 and −3

5g
(4)g′2 + 17f ′2g′g′′2 + g′′4 = 0 are

necessary conditions for the center 0 to be isochronous.

To verify the monotonicity of T, the following is a practical result when
(Lc) is assumed:

Corollary 12. Under the hypotheses of Theorem 11 suppose in addi-

tion g(3)g′ − 5
3g

′′2 + 2
3f

′2g′ = 0. Then:

(i) If g(4)(0) ≤ 0 then the period function T of (2) is increasing in a

neighborhood of 0.
(ii) If g is a non-odd function then g(4)(0) > 0 is a necessary condition

for (2) to have an isochronous center at 0.

4. The Raleigh systems. In [C2], Chicone considers the differential
equation of the form

ẍ+ F (ẋ) +G(x) = 0

with Dirichlet or Neumann boundary values and F (0) = G(0) = 0. It is
equivalent to the system

(19)

{
ẋ = −y,
ẏ = x− xg̃(x) − yf̃(y).

In the standard Neumann situation the functions f̃ and g̃ are such that
f̃ , g̃ ∈ C2([−a, a]) and satisfy conditions (C) of Chicone’s paper [C2],

(C)

{
(i) f̃(−s) = −f̃(s), g̃(−s) = −g̃(s), for s ∈ [−a, a]
(ii) f̃ ′(s) ≥ 0, g̃′(s) ≥ 0, f̃ ′′(s) ≥ 0, g̃′′(s) ≥ 0, for s ∈ [0, a].

The trajectories of this system are symmetric with respect to the x-axis. So,
it has obviously a center at the origin of the phase plane. Chicone proved
that under the above conditions, the period function is increasing.

The following class of Raleigh equations with linear restoring term may
have an increasing period in a neighborhood of the center 0:

(R) ẍ+ F (ẋ) + x = 0.

Without supposing the hypotheses above, we may prove an analogous
result which also improves Corollary 10 of [S]. We only need to suppose that
F (x) is an even function with F ′′(0) 6= 0, instead of conditions (C). We
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then deduce from Theorem 3 the same result as in [C2] but with a weaker
hypothesis.

Theorem 13. Let F be an analytic even function such that F (0) = 0,
F ′′(0) 6= 0 and the origin 0 is a center of (R). Then the period function T
of equation (R) is increasing in a neighborhood of 0.

Proof. The system

(20)

{
ẋ = −y,
ẏ = x+ F (y),

which is equivalent to (R), has a unique singular point at the origin. By
exchanging the variables and multiplying by −1 we obtain the equivalent
system

(21)

{
ẋ = −y − F (x),

ẏ = x,

which is a Liénard system

ẍ+ f(x)ẋ+ g(x) = 0

with g(x) = x and f(x) = ±F ′(x). Moreover, the origin is clearly a center
since f(x) is odd. The conclusion holds by Theorem 3 since −2

3f
′(0)2g′(0)

< 0.

5. General remarks. Our result (Theorem 3) has the advantage of be-
ing natural and easily applicable. The monotonicity and isochronicity condi-
tions can be verified in an easier way. In particular, the function C(x) can be
reduced to g(x) when f(x) ≡ 0 in a neighborhood of 0. This shows the link
between Theorem 3 and Opial’s monotonicity condition for the period of
conservative systems. More precisely, Opial’s condition requires g′′(0) = 0.
Recall

C ′′(0) = g′′(0) − 2

3
f(0)f ′(0) = 0, C ′′′(0) = g′′′(0) − 2

3
f ′(0)2.

The condition C ′′′(x) < 0 for x ∈ (a, b) ⊂ J implies (9+), and C ′′′(x) > 0 im-
plies (9−) when g is C3 and g′′′(0) < 0 (this requires necessarily C ′′′(0) < 0).

It naturally seems that the function C(x) plays the same role for system
(2) as does g(x) for the conservative system. Indeed, if we take f(x) ≡ 0,
conditions (15) and (16) reduce to xg′′(x) < 0 and xg′′(x) > 0 respectively
(see Proposition 1 of [Ch1]). Notice that the Rothe condition for the mono-
tonicity of the period function,

R(g) = x

[
3g′(x)2 − g(x)g′′(x) − 3

g′(0)2

g′′(0)
g′′(x)

]
≥ 0 (≤ 0),

is more general than xg′′(x) < 0 (and xg′′(x) > 0 respectively).
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We may expect that Theorem 3 can be generalized. That is, C(x) might
be replaced by another more general appropriate function, say D(x), which
itself can be reduced to the Rothe function

3
g′(0)2

g′′(0)
g′′(x) − 3g′(x)2 + g(x)g′′(x)

for the conservative case f(x) ≡ 0.We know its first derivatives. In particular

D(3)(0) = g(3)(0) − 5

3g′(0)
g′′(0)2 − 2

3
f ′2(0).

Therefore the strong condition g′′(0) = 0 will not be required.
We may also expect that the sign of the function

F (x) = g′(x)g(3)(x) − 5

3
g′′(x)2 − 2

3
f ′(x)2g′(x)

determines the global monotonicity of the period function T of the Liénard
system {

ẋ = −y,
ẏ = g(x) − f(x)y.

In the conservative case, the function F (x) reduces to g′(x)g(3)(x)− 5
3g

′′(x)2

which intervenes in the Schaaf condition (see [Ch1, Section 3]). Recall that
the last one is weaker than the Rothe condition.

Moreover, according to Corollary 8 in order to determine the isochronous
centers at the origin for the Liénard system (other than those determined
by [S]) we have to ensure that the associated conservative system has a
decreasing period function.
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