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A PIEZOELECTRIC CONTACT PROBLEM

WITH NORMAL COMPLIANCE

Abstract. We consider a mathematical model which describes the static
frictional contact between a piezoelectric body and an insulator foundation.
We use a nonlinear electroelastic constitutive law to model the piezoelectric
material and the normal compliance condition associated to a version of
Coulomb’s friction law to model the contact. We derive a variational formu-
lation for the model which is in the form of a coupled system involving the
displacement and the electric potential fields. Then we provide the existence
of a weak solution to the problem and, under a smallness assumption, its
uniqueness. We also study the dependence of the solution on the contact
conditions and derive a convergence result.

1. Introduction. The piezoelectric phenomenon represents the cou-
pling between the mechanical and electrical behavior of a class of materi-
als, called piezoelectric materials. In simplest terms, when a piezoelectric
material is squeezed, an electric charge collects on its surface; conversely,
when a piezoelectric material is subjected to a voltage drop, it mechanically
deforms. Many crystalline materials exhibit piezoelectric behavior. A few
materials exhibit the phenomenon strongly enough to be used in applica-
tions that take advantage of their properties. These include quartz, Rochelle
salt, lead titanate zirconate ceramics, barium titanate, and polyvinylidene
flouride (a polymer film).

On a nanoscopic scale, the piezoelectric phenomenon arises from a non-
uniform charge distribution within a crystal’s unit cells. When such a crystal
is mechanically deformed, the positive and negative charge centers displace
by differing amounts. So while the overall crystal remains electrically neu-
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tral, the difference in charge center displacements results in an electric po-
larization within the crystal. Electric polarization due to mechanical input
is perceived as piezoelectricity.

Piezoelectric materials are used extensively as switches and actuary in
many engineering systems, in radioelectronics, electroacoustics and measur-
ing equipment. General models for elastic materials with piezoelectric effects
can be found in [11, 12, 13, 20] and more recently in [1, 5, 19]. Currently,
there is a considerable interest in frictional contact problems involving piezo-
electric materials (see for instance [2, 9] and the references therein). However,
there exists virtually no mathematical results about contact problems for
such materials and there is a need to expand the emerging Mathematical
Theory of Contact Mechanics to include the coupling between the mechan-
ical and electrical properties.

The aim of this paper is to study the process of frictional contact be-
tween a piezoelectric body which is acted upon by volume forces and
surface tractions, and an obstacle, the so-called foundation. We assume
the process is static and the properties of the body are electroelastic; we
model the contact with normal compliance associated to a general version
of Coulomb’s law of dry friction. The normal compliance contact condi-
tion was introduced in [10] and used in a large number of papers (see
for instance [3, 6, 7, 16] and the references therein). We derive a varia-
tional formulation of the model which consists in a system coupling a vari-
ational inequality for the displacement field and a variational equation for
the electric field. Then we provide the existence of a unique weak solu-
tion to the model and we study its continuous dependence on the con-
tact conditions. The results obtained in this paper extend part of the re-
sults obtained in [14] where the analysis of a frictional contact problem
with normal compliance for nonlinear elastic materials was provided. In-
deed, in comparison with the problem in [14], the novelty of this paper
consists in the fact that here we take into account the piezoelectric prop-
erties of the material, which leads to a new and interesting mathematical
model.

Following this introduction, the rest of the paper is structured as follows.
The model of the contact process of the piezoelectric body is presented in
Section 2. In Section 3 we list the assumptions on the problem data, derive
the variational formulation of the problem and state our main existence and
uniqueness result, Theorem 3.1. The proof of the theorem is presented in
Section 5. It is carried out in several steps, based on an abstract result for
quasivariational inequalities that we recall in Section 4. Finally, in Section 6
we study the dependence of the solution on the contact conditions and derive
a convergence result, Theorem 6.1.
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2. Problem statement. We consider the following physical setting.
An electroelastic body occupies a bounded domain Ω ⊂ R

d, d = 2, 3, with
a smooth boundary ∂Ω = Γ . The body is submitted to the action of body
forces of density f0 and volume electric charges of density q0. It is also sub-
mitted to mechanical and electric constraints on the boundary. To describe
them, we consider a partition of Γ into three measurable parts Γ1, Γ2, Γ3,
on the one hand, and on two measurable parts Γa and Γb, on the other
hand, such that measΓ1 > 0, measΓa > 0, and Γ3 ⊆ Γb. We assume that
the body is clamped on Γ1 and surface tractions of density f2 act on Γ2.
On Γ3 the body is in frictional contact with an insulator obstacle, the so-
called foundation. We model the contact with normal compliance and a
static version of Coulomb’s law of dry friction. We also assume that the
electrical potential vanishes on Γa and a surface electric charge of density
q2 is prescribed on Γb. We denote by S

d the space of second order sym-
metric tensors on R

d or, equivalently, the space of symmetric matrices of
order d. Also, below ν represents the unit outward normal on Γ while “ · ”
and ‖ · ‖ denote the inner product and the Euclidean norm on R

d and S
d,

respectively.
With the assumptions above, the problem of equilibrium of the electroe-

lastic body in frictional contact with a foundation is the following.

Problem P . Find a displacement field u : Ω → R
d, a stress field σ :

Ω → S
d, an electric potential ϕ : Ω → R and an electric displacement field

D : Ω → R
d such that

σ = Fε(u) − ET E(ϕ) in Ω,(2.1)

D = Eε(u) + βE(ϕ) in Ω,(2.2)

Div σ + f0 = 0 in Ω,(2.3)

div D = q0 in Ω,(2.4)

u = 0 on Γ1,(2.5)

σν = f2 on Γ2,(2.6)

σν = −pν(uν − g) on Γ3,(2.7)






‖στ‖ ≤ pτ (uν − g),

στ = −pτ (uν − g)
uτ

‖uτ‖
if uτ 6= 0

on Γ3,(2.8)

ϕ = 0 on Γa,(2.9)

D · ν = q2 on Γb.(2.10)

In (2.1)–(2.10) and below, in order to simplify the notation, we do not
indicate explicitly the dependence of various functions on the spatial variable
x ∈ Ω∪Γ . Equations (2.1) and (2.2) represent the electroelastic constitutive
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law of the material in which F is a given nonlinear function, ε(u) denotes the
small strain tensor, E(ϕ) = −∇ϕ is the electric field, E represents the third
order piezoelectric tensor, ET is its transposed and β denotes the electric
permittivity tensor. Details of the linear version of the constitutive relations
(2.1) and (2.2) can be found in [1, 2]. Equations (2.3) and (2.4) represent
the equilibrium equations for the stress and electric displacement fields,
respectively, (2.5) and (2.6) are the displacement and traction boundary
conditions, respectively, and (2.9), (2.10) represent the electric boundary
conditions.

We now provide some comments on the frictional contact conditions (2.7)
and (2.8) in which we are specially interested. Condition (2.7) represents
the normal compliance contact condition in which σν and uν are the normal
stress and the normal displacement, respectively, pν is a given function, and
g represents the initial gap between the potential contact surface Γ3 and the
foundation, measured along the direction of the outward normal ν. When
positive, uν−g represents the penetration of the surface asperities into those
of the foundation. Condition (2.8) represents the associated Coulomb’s law
of dry friction in which στ is the tangential stress, uτ denotes the tangential
displacement and pτ is a given function. According to (2.8) the tangential
shear cannot exceed the maximum frictional resistance pτ (uν − g), the so-
called friction bound. Moreover, when sliding commences, the tangential
shear reaches the friction bound and the shear opposes it. Frictional contact
conditions of the form (2.7), (2.8) have been used in various papers (see for
instance [4, 16] and the references therein).

3. Variational formulations and main result. In this section we
list the assumptions on the data, derive a variational formulation for the
contact problem (2.1)–(2.10) and state our main existence and uniqueness
result, Theorem 3.1. To this end we need to introduce some notation and
preliminary material.

We recall that the inner products and the corresponding norms on R
d

and S
d are given by

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u,v ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 ∀σ, τ ∈ S
d.

Here and everywhere in this paper i, j, k, l run from 1 to d, summation over
repeated indices is implied and the index that follows a comma represents
the partial derivative with respect to the corresponding component of the
spatial variable, e.g. ui,j = ∂ui/∂xj .

Everywhere below we use the classical notation for Lp and Sobolev spaces
associated to Ω and Γ . Moreover, we use the notation L2(Ω)d, H1(Ω)d,
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H and H1 for the following spaces:

L2(Ω)d = {v = (vi) | vi ∈ L2(Ω)},

H1(Ω)d = {v = (vi) | vi ∈ H1(Ω)},

H = {τ = (τij) | τij = τji ∈ L2(Ω)},

H1 = {τ ∈ H | τij,j ∈ L2(Ω)}.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with
the canonical inner products given by

(u,v)L2(Ω)d =
\
Ω

u · v dx, (u,v)H1(Ω)d =
\
Ω

u · v dx+
\
Ω

∇u · ∇v dx,

(σ, τ )H =
\
Ω

σ · τ dx, (σ, τ )H1
=
\
Ω

σ · τ dx+
\
Ω

Div σ · Div τ dx,

and the associated norms ‖·‖L2(Ω)d , ‖·‖H1(Ω)d , ‖·‖H and ‖·‖H1
, respectively.

Here and below we use the notation

∇v = (vi,j), ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i) ∀v ∈ H1(Ω)d,

Div τ = (τij,j) ∀τ ∈ H1.

For every element v ∈ H1(Ω)d we also write v for the trace of v on Γ
and we denote by vν and vτ the normal and tangential components of v

on Γ given by vν = v · ν, vτ = v − vνν.

Let now consider the closed subspace of H1(Ω)d defined by

V = {v ∈ H1(Ω)d | v = 0 on Γ1}.

Since meas(Γ1) > 0, the following Korn inequality holds:

(3.1) ‖ε(v)‖H ≥ cK‖v‖H1(Ω)d ∀v ∈ V,

where cK > 0 is a constant which depends only on Ω and Γ1. On the space V
we consider the inner product given by

(3.2) (u,v)V = (ε(u), ε(v))H

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1)
that ‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V . Therefore (V, ‖ · ‖V )
is a real Hilbert space. Moreover, by the Sobolev trace theorem, and (3.1)
and (3.2), there exists a constant c0 depending only on the domain Ω, Γ1

and Γ3 such that

(3.3) ‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V.

We also introduce the spaces

W = {ψ ∈ H1(Ω) | ψ = 0 on Γa},

W1 = {D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω)}.
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Since meas(Γa) > 0, the following Friedrichs–Poincaré inequality holds:

(3.4) ‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W,

where cF > 0 is a constant which depends only on Ω and Γa. On the space
W we consider the inner product given by

(ϕ, ψ)W =
\
Ω

∇ϕ · ∇ψ dx

and let ‖ · ‖W be the associated norm. It follows from (3.4) that ‖ · ‖H1(Ω)

and ‖ · ‖W are equivalent norms on W and therefore (W, ‖ · ‖W ) is a real
Hilbert space. Moreover, the space W1 is a real Hilbert space with the inner
product

(D,E)W1
=
\
Ω

D · E dx+
\
Ω

div D · div E dx,

where div D = (Di,i), and with the associated norm ‖ · ‖W1
.

In the study of the mechanical problem (2.1)–(2.10) we assume that

(3.5)


















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










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








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









































(a) F : Ω × S
d → S

d.

(b) There exists MF > 0 such that

‖F(x, ξ1) −F(x, ξ2)‖ ≤MF‖ξ1 − ξ2‖

∀ξ1, ξ2 ∈ S
d, a.e. x ∈ Ω.

(c) There exists mF > 0 such that

(F(x, ξ1)) − (F(x, ξ2)) · (ξ1 − ξ2) ≥ mF‖ξ1 − ξ2‖
2

∀ξ1, ξ2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x 7→ F(x, ξ) is Lebesgue measurable on Ω,

for any ξ ∈ S
d.

(e) The mapping x 7→ F(x,0) belongs to H.

(3.6)















(a) E : Ω × S
d → R

d.

(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τ ij) ∈ S
d, a.e. x ∈ Ω.

(c) eijk = eikj ∈ L∞(Ω).

(3.7)







































(a) β : Ω × R
d → R

d.

(b) β(x,E) = (βij(x)Ej) ∀E = (Ei) ∈ R
d, a.e. x ∈ Ω.

(c) βij = βji ∈ L∞(Ω).

(d) There exists mβ > 0 such that βij(x)EiEj ≥ mβ‖E‖2

∀E = (Ei) ∈ R
d, a.e. x ∈ Ω.
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(3.8)























































(a) pr : Γ3 × R → R+ for r = ν, τ.

(b) There exists Lr > 0 such that

|pr(x, u1) − pr(x, u2)| ≤ Lr|u1 − u2|

∀u1, u2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x 7→ pr(x, u) is measurable on Γ3,

for any u ∈ R.

(d) pr(x, u) = 0 ∀u ≤ 0, a.e. x ∈ Γ3.

(3.9) f0 ∈ L2(Ω)d, f2 ∈ L2(Γ3)
d.

(3.10) q0 ∈ L2(Ω), q2 ∈ L2(Γb), q2 = 0 a.e. on Γ3.

(3.11) g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3.

We make some comments on the assumptions (3.5)–(3.11).
First, we note that the condition (3.5) is satisfied in the case of the linear

elastic constitutive law σ = Fε(u) in which

(3.12) Fξ = (fijklξkl),

provided that fijkl ∈ L∞(Ω) and there exists α > 0 such that

fijkl(x)ξkξl ≥ α‖ξ‖2 ∀ξ = (ξi) ∈ S
d, a.e. x ∈ Ω.

To provide examples of nonlinear constitutive laws which satisfy (3.5),

for every tensor ξ ∈ S
d we denote by tr ξ the trace of ξ and be ξD the

deviatoric part of ξ given by

tr ξ = ξii, ξD = ξ −
1

d
(tr ξ)Id,

where Id ∈ S
d represents the identity tensor. Let K denote a nonempty

closed convex set in S
d and let PK represent the projection mapping on K.

We also consider a fourth order symmetric and positive definite tensor A :
S

d → S
d and take

(3.13) F(ξ) = Aξ +
1

λ
(ξ − PKξ) ∀ξ ∈ S

d,

where λ is a strictly positive constant. Using the properties of the pro-
jection mapping it is straightforward to see that the elasticity operator F
defined by (3.13) satisfies condition (3.5). Constitutive laws of the form
σ = Fε(u) with F given by (3.13) have been considered in many papers (see
e.g. [8], [15, p. 97] and [18, p. 68]). In most of them the convex set K is de-
fined by K = {ξ ∈ S

d | G(ξ) ≤ k} where G : S
d → R is a convex continuous

function such that G(0) = 0 and k > 0. Another example of nonlinear elas-
tic equations which satisfies condition (3.5) is provided by nonlinear Hencky
materials (see [4] for details).
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Next, as shown in (3.6) and (3.7), the piezoelectric operator E as well as
the electric permittivity operator β are assumed to be linear, have measur-
able bounded components denoted eijk and βij , respectively, and, moreover,
β is symmetric and positive definite. Recall also that the transposed ten-
sor ET is given by ET = (eT

ijk) where eT
ijk = ekij , and the following equality

holds:

(3.14) Eσ · v = σ · ET v ∀σ ∈ S
d, v ∈ R

d.

Conditions (3.8) are assumed to be valid for both pν and pτ , i.e. for
r = ν, τ . An example of a normal compliance function pν which satisfies
conditions (3.8) is pν(u) = cνu+ where cν ∈ L∞(Γ3) is a positive function,
the stiffness coefficient, and u+ = max {0, u}. The choices pτ = µpν and
pτ = µpν(1 − δpν)+ in (2.8), where µ ∈ L∞(Γ3) and δ ∈ L∞(Γ3) are posi-
tive functions, lead to the usual or modified Coulomb’s law of dry friction,
respectively (see [4, 16, 17] for details). Here µ represents the coefficient of
friction and δ is a small positive material constant related to the wear and
hardness of the contact surface. We note that if the function pν satisfies con-
dition (3.8) then it follows that the function pτ also satisfies this condition,
in both the examples above. Therefore, we conclude that our results below
are valid for the corresponding piezoelectric frictional contact models.

Assumptions (3.9) represent regularity assumptions on the densities of
volume forces and surface tractions while (3.10) are regularity assumptions
on the densities of volume and surface electric charges; the last part of this
assumption, q2 = 0 on Γ3, is a compatibility condition which is needed be-
cause the foundation is supposed to be insulator. Finally, assumptions (3.11)
describe the properties of the gap function g.

We now turn to the variational formulation of Problem P and, to this
end, we introduce further notation. Let h : V × V → R be the functional

(3.15) h(u,v) =
\

Γ3

pν(uν − g)vν da+
\

Γ3

pτ (uν − g)‖vτ‖ da ∀u, v ∈ V

and consider the elements f ∈ V and q ∈W given by

(f ,v)V =
\
Ω

f0 · v dx+
\

Γ2

f2 · v da ∀v ∈ V,(3.16)

(q, ψ)W =
\
Ω

q0ψ dx−
\
Γb

q2ψ da ∀ψ ∈W.(3.17)

Note that the definitions of f and q follow by using Riesz’s representation
theorem, since the linear functionals

v 7→
\
Ω

f0 · v dx+
\

Γ2

f2 · v da, ψ 7→
\
Ω

q0ψ dx−
\
Γb

q2ψ da

are continuous on the spaces V and W , respectively. Also, note that by
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assumptions (3.8)–(3.11) it follows that the integrals in (3.15)–(3.17) are
well defined.

Using integration by parts, it is straightforward to see that if (u,σ, ϕ,D)
are sufficiently regular functions which satisfy (2.3)–(2.10) then

(3.18) (σ, ε(v) − ε(u))H + h(u,v) − h(u,u) ≥ (f ,v − u)V ∀v ∈ V,

(3.19) (D,∇ψ)L2(Ω)d + (q, ψ)W = 0 ∀ψ ∈W.

We plug (2.1) in (3.18), (2.2), in (3.19) and use the notation E = −∇ϕ
to obtain the following variational formulation of Problem P , in terms of
the displacement and electric potential fields.

Problem PV . Find a displacement field u ∈ V and an electric potential

field ϕ ∈W such that

(3.20) (Fε(u), ε(v) − ε(u))H + (ET∇ϕ, ε(v) − ε(u))L2(Ω)d

+ h(u,v) − h(u,u) ≥ (f ,v − u)V ∀v ∈ V,

(3.21) (β∇ϕ,∇ψ)L2(Ω)d − (Eε(u),∇ψ)L2(Ω)d = (q, ψ)W ∀ψ ∈W.

Our main existence and uniqueness result which we establish in Section 5
is the following.

Theorem 3.1. Assume (3.5)–(3.11) hold. Then:

1) Problem PV has a solution (u, ϕ) ∈ V ×W .

2) There exists L0 which depends only on Ω, Γ1, Γ3, F , β such that if

Lτ +Lν < L0 then Problem PV has a unique solution (u, ϕ) ∈ V ×W
which depends Lipschitz continuously on (f , q) ∈ V ×W .

A quadruple (u, σ, ϕ, D) of functions which satisfy (2.1), (2.2), (3.20)
and (3.21) is called a weak solution of the piezoelectric contact problem P .
We conclude by Theorem 3.1 that, under the assumptions (3.5)–(3.11), the
piezoelectric contact problem (2.2)–(2.10) has a weak solution (u,σ, ϕ,D)
such that u ∈ V and ϕ ∈ W . Moreover, it is easy to see that σ ∈ H1 and
D ∈ W1. The solution is unique and depends Lipschitz continuously on the
data f0, f2, q0 and q2, when Lν + Lτ is sufficiently small.

4. An abstract existence and uniqueness result. To prove Theo-
rem 3.1 we shall use an abstract existence and uniqueness result on quasi-
variational inequalities that we recall in what follows, for the convenience of
the reader.

Everywhere in this section X will be a real Hilbert space endowed with
the inner product (·, ·)X and the associated norm ‖ · ‖X . We denote by “⇀”
the weak convergence on X. Let A : X → X be a monotone operator,
j : X × X → R and f ∈ X. With these data we consider the following
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quasivariational inequality: find x ∈ X such that

(4.1) (Ax, y − x)X + j(x, y) − j(x, x) ≥ (f, y − x)X ∀y ∈ X.

In order to solve (4.1) we assume that A is strongly monotone and Lip-
schitz continuous, i.e.

(4.2)



























(a) There exists m > 0 such that

(Ax1 −Ax2, x1 − x2)X ≥ m‖x1 − x2‖
2
X ∀x1, x2 ∈ X.

(b) There exists M > 0 such that

‖Ax1 −Ax2‖X ≤M‖x1 − x2‖X ∀x1, x2 ∈ X.

The functional j : X ×X → R satisfies

(4.3) j(η, ·) : X → R is a convex functional onX, for all η ∈ X.

Keeping in mind (4.3) it is well known that there exists the directional
derivative of j with respect to the second argument given by

(4.4) j′2(η, x; y) = lim
λ↓0

1

λ
[j(η, x+ λy) − j(η, x)] ∀η, x, y ∈ X.

We now formulate some conditions on j and we recall that the m below
represents the positive constant defined in (4.2).

(4.5)



















For every sequence {xn} ⊂ X with ‖xn‖X → ∞

and every sequence {tn} ⊂ [0, 1] one has

lim inf
n→∞

[

1

‖xn‖2
X

j′2(tnxn, xn;−xn)

]

< m.

(4.6)



















For every sequence {xn} ⊂ X with ‖xn‖X → ∞

and every bounded sequence {ηn} ⊂ X one has

lim inf
n→∞

[

1

‖xn‖2
X

j′2(ηn, xn;−xn)

]

< m.

(4.7)















For any sequences {xn} ⊂ X and {ηn} ⊂ X such that

xn ⇀ x ∈ X, ηn ⇀ η ∈ X and for every y ∈ X one has

lim sup
n→∞

[j(ηn, y) − j(ηn, xn)] ≤ j(η, y) − j(η, x).

(4.8)

{

There exists α < m such that

j(x, y) − j(x, x) + j(y, x) − j(y, y) ≤ α‖x− y‖2
X ∀x, y ∈ X.

For the quasivariational inequality (4.1) we have the following result.
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Theorem 4.1. Let (4.2)–(4.3) hold. Then:

1) Under the assumptions (4.5)–(4.7) there exists at least one element

x ∈ X which solves (4.1).
2) Under the assumptions (4.5)–(4.8), problem (4.1) has unique solution

x = xf which depends Lipschitz continuously on f with the Lipschitz

constant (m− α)−1.

Theorem 4.1 has been obtained in [14] and therefore we do not provide
the details of the proof here. We just specify that the proof was obtained
in several steps and it is based on standard arguments of elliptic variational
inequalities and topological degree theory.

5. Proof of Theorem 3.1. The proof of Theorem 3.1 will be carried
out in several steps. To present it we consider the product space X = V ×W
together with the inner product

(5.1) (x, y)X = (u,v)V + (ϕ, ψ)W ∀x = (u, ϕ), y = (v, ψ) ∈ X

and the associated norm ‖ · ‖X . Everywhere below we assume that
(3.5)–(3.11) hold.

We use again Riesz’s representation theorem to define the operator A :
X → X by the formula

(5.2) (Ax, y)X = (Fε(u), ε(v))H + (β∇ϕ,∇ψ)L2(Ω)d

+ (ET∇ϕ, ε(v))H − (Eε(u),∇ψ)L2(Ω)d

∀x = (u, ϕ), y = (v, ψ) ∈ X,

and we extend the functional (3.15) to a functional j defined on X × X,
that is,

(5.3) j(x, y) = h(u,v) ∀x = (u, ϕ), y = (v, ψ) ∈ X.

Finally, we consider the element f ∈ X given by

(5.4) f = (f , q) ∈ X.

We start with the following equivalence result.

Lemma 5.1. The couple x = (u, ϕ) is a solution to Problem PV if and

only if

(5.5) (Ax, y − x)X + j(x, y) − j(x, x) ≥ (f, y − x)X ∀y ∈ X.

Proof. Let x = (u, ϕ) ∈ X be a solution to Problem PV and let y =
(v, ψ) ∈ X. We use the test function ψ−ϕ in (3.21), add the corresponding
equality to (3.20) and use (5.1)–(5.4) to obtain (5.5). Conversely, let x =
(u, ϕ) ∈ X be a solution to the quasivariational inequality (5.5). We take
y = (v, ϕ) in (5.5) where v is an arbitrary element of V and obtain (3.20);
then we take successively y = (v, ϕ+ψ) and y = (v, ϕ−ψ) in (5.5), where ψ
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is an arbitrary element of W ; as a result we obtain (3.21), which concludes
the proof.

Notice that the quasivariational inequality (5.5) derived in Lemma 5.1 is
of the form (4.1). Therefore, in order to apply the abstract result provided
by Theorem 4.1, we start with the study of the the properties of the operator
A given by (5.2).

Lemma 5.2. The operator A : X → X is strongly monotone and Lip-

schitz continuous.

Proof. Consider two elements x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ X. Using
(5.2) we have

(Ax1 −Ax2, x1 − x2)X = (Fε(u1) −Fε(u2), ε(u1) − ε(u2))H(5.6)

+ (β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2)L2(Ω)d

+ (ET∇ϕ1 − ET∇ϕ2, ε(u1) − ε(u2))H

− (Eε(u1) − Eε(u1),∇ϕ1 −∇ϕ2)L2(Ω)d

and, since it follows by (3.14) that (ET∇ϕ, ε(u))H = (Eε(u),∇ϕ)L2(Ω)d for
all x = (u, ϕ) ∈ X, we find

(Ax1 −Ax2, x1 − x2)X

= (Fε(u1)−Fε(u2), ε(u1)−ε(u2))H +(β∇ϕ1−β∇ϕ2,∇ϕ1−∇ϕ2)L2(Ω)d .

We now use (3.5) and (3.7) to see that there exists c1 > 0 which depends
only on F , β and Ω such that

(5.7) (Ax1 −Ax2, x1 − x2)X ≥ c1(‖u1 − u2‖
2
V + ‖ϕ1 − ϕ2‖

2
W )

and, keeping in mind (5.1), we obtain

(5.8) (Ax1 −Ax2, x1 − x2)X ≥ c1‖x1 − x2‖
2
X .

In the same way, using (3.5)–(3.7), after some algebra it follows that
there exists c2 > 0 which depends only on F , β and E such that

(Ax1 −Ax2, y)X ≤ c2(‖u1 − u2‖V ‖v‖V + ‖ϕ1 − ϕ2‖W ‖ψ‖W

+ ‖ϕ1 − ϕ2‖W ‖v‖V + ‖u1 − u2‖V ‖ψ‖W )

for all y = (v, ψ) ∈ X. We use (5.1) and the previous inequality to obtain

(Ax1 −Ax2, y)X ≤ 4c2‖x1 − x2‖X‖y‖X ∀y ∈ X

and, taking y = Ax1 −Ax2 ∈ X, we find

(5.9) ‖Ax1 −Ax2‖X ≤ 4c2‖x1 − x2‖X .

Lemma 5.2 is now a consequence of inequalities (5.8) and (5.9).

Next we investigate the properties of the functional j given by (5.3),
(3.15). We first remark that j satisfies condition (4.3). Moreover, we have
the following results.
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Lemma 5.3. The functional j satisfies conditions (4.5)–(4.7).

Proof. Let η = (w, ξ), x = (u, ϕ) ∈ X and let λ ∈ ]0, 1]. Using (5.3) and
(3.15) it results that

j(η, x− λx) − j(η, x) = −λ
\

Γ3

pν(wν − g)uν da− λ
\

Γ3

pτ (wν − g)‖uτ‖ da

and, since pτ ≥ 0 a.e. on Γ3, we deduce that

j(η, x− λx) − j(η, x) ≤ −λ
\

Γ3

pν(wν − g)uν da.

Therefore, by (4.4) we obtain

(5.10) j′2(η, x;−x)≤−
\

Γ3

pν(wν − g)uν da ∀ η= (w, ξ), x= (u, ϕ)∈X.

Now consider sequences {xn} = {(un, ϕn)} ⊂ X and {tn} ⊂ [0, 1] such
that ‖xn‖X →∞. From (3.8) and (3.11) it follows that pν(tnunν−g)(unν−g)
≥ 0 a.e. on Γ3 and therefore (5.10) yields

j′2(tnxn, xn;−xn) ≤ −
\

Γ3

gpν(tnwnν − g) da ∀n ∈ N.

Thus, since g ≥ 0 and pν ≥ 0 a.e. on Γ3, we deduce that

j′2(tnxn, xn;−xn) ≤ 0 ∀n ∈ N

and we conclude that j satisfies the assumption (4.5).
Now consider sequences {xn} = {(un, ϕn)} ⊂ X and {ηn} = {(wn, ξn)}

⊂ X such that

‖ηn‖X ≤ c ∀n ∈ N,(5.11)

‖xn‖X → ∞,(5.12)

where c > 0. Using (5.10) and (3.8) we obtain

j′2(ηn, xn;−xn) ≤
\

Γ3

pν(wnν − g)|unν| da ≤ Lν

\
Γ3

|wnν − g| |unν | da

≤ Lν(‖wnν‖L2(Γ3) + ‖g‖L2(Γ3))‖un‖L2(Γ3)

for all n ∈ N. Using now (3.3) and (5.11) in the previous inequality yields

(5.13) j′2(ηn, xn;−xn) ≤ Lνc0(c0c+ ‖g‖L2(Γ3))‖xn‖X ∀n ∈ N.

Thus, from (5.12) and (5.13) we deduce that j satisfies the assumption (4.6).
Finally, let {xn} = {(un, ϕn)} ⊂ X and {ηn} = {(wn, ξn)} ⊂ X be

such that xn ⇀ x = (u, ϕ) ∈ X and ηn ⇀ η = (w, ξ) ∈ X. Using the
compactness property of the trace map and (3.8) it follows that

unν → uν , ‖unτ‖ → ‖uτ‖ in L2(Γ3),

pr(wnν − g) → pr(wν − g) in L2(Γ3) (r = ν, τ).
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Therefore, we deduce that

j(ηn, y) → j(η, y) ∀y ∈ X and j(ηn, xn) → j(η, x), as n→ ∞,

which shows that the functional j satisfies the condition (4.7).

Lemma 5.4. The functional j satisfies the inequality

(5.14) j(x, y) − j(x, x) + j(y, x) − j(y, y)

≤ c20(Lν + Lτ )‖x− y‖2
X ∀x, y ∈ X.

Proof. Let x = (u, ϕ), y = (v, ψ) ∈ X. From (5.3), (3.15) and (3.8) it
follows that

j(x, y)− j(x, x) + j(y, x)− j(y, y) =
\

Γ3

(pν(uν − g)− pν(vν − g))
(

vν − uν

)

da

+
\

Γ3

(pτ (uν − g) − pτ (vν − g))(‖vτ‖ − ‖uτ‖) da

≤
\

Γ3

|pν(uν − g) − pν(vν − g)| |vν − uν | da

+
\

Γ3

|pτ (uν − g) − pτ (vν − g)| | ‖vτ‖ − ‖uτ‖ | da

≤ (Lν + Lτ )‖u − v‖2
L2(Γ3)d .

Using now (3.3) and (5.1) in the previous inequality we deduce (5.14).

We now have all the ingredients to prove the theorem.

Proof of Theorem 3.1. 1) Lemmas 5.2 and 5.3 allow us to use the ab-
stract results provided by the first part of Theorem 4.1. We find that the
quasivariational inequality (5.5) has a solution x = (u, ϕ) ∈ X and, using
Lemma 5.1, we deduce that (u, ϕ) is a solution to Problem PV which satisfies
(u, ϕ) ∈ V ×W .

2) Let L0 = c1/c
2
0 where c1 and c0 are defined by (5.8) and (3.3), re-

spectively. Clearly L0 depends only on Ω, Γ1, Γ3, F , β. Now assume that
Lν + Lτ < L0. Then there exists α ∈ R such that c20(Lν + Lτ ) < α < c1.
Using (5.14) and (5.8) we see that the functional j satisfies condition (4.8).
Therefore, by the second part of Theorem 4.1, Lemma 5.1 and (5.4), prob-
lem PV has a unique solution (u, ϕ) ∈ V × W which depends Lipschitz
continuously on (f , q) ∈ V ×W .

6. A continuous dependence result. In this section we study the
dependence of the solution to Problem PV on perturbations of the normal
compliance functions pν and pτ . To this end we suppose in what follows that
the assumptions (3.5)–(3.11) hold. For every α > 0, let pα

r be a perturbation
of pr which satisfies (3.8) with the Lipschitz constant Lα

r , r = ν, τ . Also, we
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assume that

(6.1) there exists L∗ < L0 such that Lν +Lτ ≤ L∗, L
α
ν +Lα

τ ≤ L∗ ∀α > 0,

where L0 is defined in the second part of Theorem 3.1, i.e. L0 = c1/c
2
0 . We

introduce the functional hα obtained from h by replacing pν and pτ with pα
ν

and pα
τ , respectively, and we consider the following variational problem.

Problem Pα
V . Find a displacement field uα ∈ V and an electric poten-

tial field ϕα ∈W such that

(6.2) (Fε(uα), ε(v) − ε(uα))H + (ET∇ϕα, ε(v) − ε(uα))L2(Ω)d

+ hα(uα,v) − hα(uα,uα) ≥ (f ,v − uα)V ∀v ∈ V,

(6.3) (β∇ϕα,∇ψ)L2(Ω)d − (Eε(uα),∇ψ)L2(Ω)d = (q, ψ)W ∀ψ ∈W.

Clearly Problem Pα
V represents the variational formulation of the piezo-

electric contact problem Pα obtained from Problem P when the normal com-
pliance functions pν and pτ are replaced by the perturbed normal compliance
functions pα

ν and pα
τ , respectively. Using (6.1) we deduce from Theorem 3.1

that for each α > 0, Problem Pα
V has a unique solution (uα, ϕα) ∈ V ×W ;

moreover, Problem PV has a unique solution (u, ϕ) ∈ V ×W .

Suppose now that the normal compliance functions satisfy the following
assumptions for r = ν, τ :

(6.4)























There exist ar : R+ → R and br : R+ → R such that:

(a) |pα
r (x, u) − pr(x, u)| ≤ ar(α) |u| + br(α) ∀u ∈ R,

a.e. x ∈ Γ3, for all α > 0.

(b) lim
α→0

ar(α) = 0, lim
α→0

br(α) = 0.

Under these assumptions, we have the following convergence result.

Theorem 6.1. The solution (uα, ϕα) of Problem Pα
V converges to the

solution (u, ϕ) of Problem PV , i.e.

uα → u in V as α→ 0,(6.5)

ϕα → ϕ in W as α→ 0.(6.6)

Proof. Let α > 0. Everywhere below c will represent a positive constant
which may depend on the data and on the solution u but is independent
of α and whose value may change from place to place. From (3.20), (3.21),
(6.2) and (6.3), after some computation, we find that

(6.7) (Fε(uα)−Fε(u), ε(uα)−ε(u))H+(ET∇ϕα−ET∇ϕ, ε(uα)−ε(u))H

≤ h(u,uα) − h(u,u) + hα(uα,u) − hα(uα,uα),

(6.8) (β∇ϕα − β∇ϕ,∇ϕα −∇ϕ)L2(Ω)d

− (Eε(uα) − Eε(u),∇ϕα −∇ϕ)L2(Ω)d = 0.
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We add (6.7) and (6.8), then use (5.6) and (5.7) to obtain

(6.9) c1(‖u
α − u‖2

V + ‖ϕα − ϕ‖2
W )

≤ h(u,uα) − h(u,u) + hα(uα,u) − hα(uα,uα).

Note that

h(u,uα) − h(u,u) + hα(uα,u) − hα(uα,uα)

=
\

Γ3

(pν(uν − g) − pα
ν (uα

ν − g))(uα
ν − uν) da

+
\

Γ3

(pτ (uν − g) − pα
τ (uα

ν − g))(‖uα
τ ‖ − ‖uτ‖) da,

which implies that

(6.10) h(u,uα) − h(u,u) + hα(uα,u) − hα(uα,uα)

≤
\

Γ3

[

|pν(uν −g) − pα
ν (uα

ν − g)| + |pτ (uν −g) − pα
τ (uα

ν − g)|
]

‖uα − u‖ da.

For r = ν or τ we use the triangle inequality to obtain

|pr(uν − g) − pα
r (uα

ν − g)| ≤ |pr(uν − g) − pα
r (uν − g)|

+ |pα
r (uν − g) − pα

r (uα
ν − g)|

and, taking into account (3.8) and (6.4)(a), we find

|pr(uν − g) − pα
r (uα

ν − g)| ≤ ar(α)|uν − g| + br(α) + Lα
r |uα

ν − uν |

a.e. on Γ3. We plug the last inequality in (6.10), use (3.3) and, after some
computations, we deduce that

(6.11) h(u,uα) − h(u,u) + hα(uα,u) − hα(uα,uα)

≤ c[aν(α) + aτ (α) + bν(α) + bτ (α)]‖uα − u‖V

+ c20(L
α
ν + Lα

τ )‖uα − u‖2
V .

Now, it follows from (6.1) that c20(L
α
ν +Lα

τ ) ≤ c20L∗ and, therefore, com-
bining (6.9) and (6.11) we find that

(6.12) (c1 − c20L∗)‖u
α − u‖2

V + c1‖ϕ
α − ϕ‖2

W

≤ c
[

aν(α) + aτ (α) + bν(α) + bτ (α)
]

‖uα − u‖V .

On the other hand, the inequality L∗ < L0 and equality L0 = c1/c
2
0 yield

c20L∗ < c1 and therefore it follows from (6.12) that

(6.13) ‖uα − u‖2
V + ‖ϕα − ϕ‖2

W

≤ c[aν(α) + aτ (α) + bν(α) + bτ (α)]‖uα − u‖V ,

which implies that

(6.14) ‖uα − u‖V ≤ c[aν(α) + aτ (α) + bν(α) + bτ (α)].

Theorem 6.1 is now a consequence of (6.14), (6.13) and (6.4)(b).
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We now extend the convergence result of Theorem 6.1 to the weak solu-
tion of the piezoelectric contact problem. To this end we denote by σα and
σ the stress fields defined by

(6.15) σα = Fε(uα) − ET E(ϕα), σ = Fε(u) − ET E(ϕ),

and let the electric displacement fields Dα and D be given by

(6.16) Dα = Eε(uα) + βE(ϕα), D = Eε(u) + βE(ϕ).

It can be shown that σα,σ ∈ H1 and Dα,D ∈ W1. Moreover,

Div σα = Div σ = −f0 in Ω,(6.17)

div Dα = div D = q0 in Ω.(6.18)

Therefore, from (6.15)–(6.18) and the assumptions (3.5)–(3.7) on the oper-
ators F , E and β, we deduce that

‖σα − σ‖H1
≤ c(‖uα − u‖V + ‖ϕα − ϕ‖W ),

‖Dα − D‖W1
≤ c(‖uα − u‖V + ‖ϕα − ϕ‖W ).

It now follows from (6.5), (6.6) that

σα → σ in H1 as α→ 0,(6.19)

Dα → D in W1 as α→ 0.(6.20)

In addition to the mathematical interest in the convergence result (6.5),
(6.6), (6.19) and (6.20), it is of importance in applications since it indicates
that small inaccuracies in the contact conditions lead to small inaccuracies
in the weak solution of the piezoelectric contact problem.
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J. Mécanique 13 (1974), 499–534.



442 M. Sofonea and Y. Ouafik

[9] F. Maceri and P. Bisegna, The unilateral frictionless contact of a piezoelectric body

with a rigid support , Math. Comput. Modelling 28 (1998), 19–28.
[10] J. A. C. Martins and J. T. Oden, Existence and uniqueness results for dynamic

contact problems with nonlinear normal and friction interface laws, Nonlinear Anal.
11 (1987), 407–428.

[11] R. D. Mindlin, Polarisation gradient in elastic dielectrics, Int. J. Solids Structures
4 (1968), 637–663.

[12] —, Continuum and lattice theories of influence of electromechanical coupling on

capacitance of thin dielectric films, ibid. 4 (1969), 1197–1213.
[13] —, Elasticity, piezoelasticity and crystal lattice dynamics, J. Elasticity 4 (1972),

217–280.
[14] D. Motreanu and M. Sofonea, Quasivariational inequalities and applications in fric-

tional contact problems with normal compliance, Adv. Math. Sci. Appl. 10 (2000),
103–118.

[15] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birk-
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