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THE RELAXATION OF THE SIGNORINI PROBLEM
FOR POLYCONVEX FUNCTIONALS
WITH LINEAR GROWTH AT INFINITY

Abstract. The aim of this paper is to study the unilateral contact con-
dition (Signorini problem) for polyconvex functionals with linear growth at
infinity. We find the lower semicontinuous relaxation of the original func-
tional (defined over a subset of the space of bounded variations BV ({2))
and we prove the existence theorem. Moreover, we discuss the Winkler uni-
lateral contact condition. As an application, we show a few examples of
elastic-plastic potentials for finite displacements.

1. Introduction. Let {2 be a bounded, open, connected set of class C!
in R3. The aim of this paper is to study the polyconvex functional

(1.1) u— Sj(:c,Vu,Adj Vu,det Vu)dz € RU {o0}
0

with unilateral contact conditions, where j : £2 x (R3*3 x R33 x R) —
R U {00} is a convex normal integrand, as considered in [3], [15] and in [12,
Chapter 8, p. 232], and u is the displacement field. Adj Vu is the matrix
of cofactors of Vu (cf. [3] and [15]). Note that Vu, AdjVu and det Vu
govern the deformations of line, surface and volume elements, respectively.
We are going to establish the lower semicontinuous (l.s.c.) relaxation of the
functional (1.1), with unilateral contact conditions.

The motivation for this research is the necessity to study the polyconvex
functionals encountered in deformational plasticity (for finite displacements).
Polyconvex functionals have been investigated in [3], [15], [16], [17], [19] and
[5] but without considering the unilateral contact conditions in the case of
functionals with linear growth at infinity.
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Here we establish the Ls.c. relaxation of the functional (1.1), defined on
a subset of the space of bounded variations BV ({2).

The existence theorem in nonlinear elasticity is given in [3] (see also [20]).

Dal Maso and Sbordone [9] prove the lower semicontinuity of a polycon-
vex functional with linear growth. However, the functional they consider is
defined on the Sobolev space W1 (2, R").

A geometric approach to the existence theorem for polyconvex functionals
with linear growth at infinity is shown in [15]-[17|. In those papers it is
proved that the minimum of a polyconvex functional belongs to the smallest
sequentially closed set containing the graphs of certain C'-mappings, given
by transfinite induction (see [16]). In our paper, the solution is the limit of
a simple sequence of C'' functions in the weak* topology.

We find a new, explicit form of the relaxed functional a **, unknown to
the authors of [15].

Quasiconvex functionals defined on the BV (§2) space have been investi-
gated in [1], [2], [6], [14], but for normal integrands linear with respect to Vu.
Therefore those papers do not describe polyconvex problems, where the nor-
mal integrand depends non-linearly on Adj Vu or det Vu. In [7] quasiconvex
functionals defined on BV ({2) are considered, but with coercive conditions
on the boundary and with the normal integrand satisfying the linear growth
conditions.

Note that the unilateral contact conditions considered here are not coer-
cive.

In this paper we extend the method of [5], where unilateral contact con-
ditions are not considered. We take an alternative approach to that in [5].
We find the l.s.c. relaxation of the functional with linear growth at infinity
and with unilateral contact conditions (the Signorini and Winkler problems).
Moreover we prove the existence theorem.

In Section 3 we give examples of potentials which describe the deforma-
tional model of an elastic-plastic body under finite displacement. The func-
tional j4, defined in Example 3, has linear growth at infinity and depends
nonlinearly on both Vu and Adj Vu.

2. Some basic definitions and theorems. Throughout this work (2
denotes a nonempty, bounded, open, connected subset of R?, with boundary
of class Ct. C(£2,R™) denotes the space of R™-valued continuous functions
on {2, while Cy(£2,R™), or simply Cp, stands for the space of continuous
functions which are zero on 9f2. The space C.(£2,R™), or simply C., is the
space of R™-valued continuous functions with compact supports. The nota-
tion M, (£2, R™), or M, stands for the space of R™-valued, Radon bounded
regular measures on (2, equipped with the norm || - ||y, (2,rm)-
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Moreover, we will use one of the duality pairs (M, C¢) or (M, Cp), where
M, is the space of regular measures. For g = (g1,...,9m) € C(£2,R™) and
= (g, ) € Mp(£2,R™), we write

Sg = E:Swm

=10

Finally, £°(£2,R™), stands for the set of y-measurable functions from (2
into R™.

The scalar product of z,z* € R™ is denoted by z - z* = Z z'z and the
scalar product of w,w* € R™*™ = E™ by w : w* = ij w”ww, Where E™
is the space of real m X m matrices.

Let X be a vector space, and 7 C 2% a linear topology on X (or a norm
on X). Then [X, 7] denotes the topological space and [X, 7]* its dual space.
If F: X — RU{oo} is a function defined on X, then F* denotes its polar
function (cf. [12]). For an arbitrary set C'in X, I¢(+) stands for its indicator
function (Ic(z) =0if x € C and I¢(z) = 400 if 2 ¢ C).

We also need the following notations. Let V' be a metric space. Then
By (Z,r) is the closed ball in V' with center = and radius r. The notation
cly(Z) stands for the closure of the set Z C V in the topology of V', while,
analogously, clj.(Z) is the closure of Z in the norm || - [|. In our paper we
take ||[e;]|lrm = Y i~ |ei| for [e;] € R™. The tensor product is denoted by ®.

We define the following Banach spaces (see [18], [23] and [24]):

BV (2,R?) = {u e LY (2,R?) | Vu € M,(2,E*)},

Ou;  Ou, —
51_7( ) <6x]+8 z>€Mb(Q)’ 27]_17273}

BDunz{ueL%QR%

with the natural norms
ou;

@1)Wva—HuMﬂ+§:
ij J 1M,

PROPOSITION 1 (see [18], [23]). Let BV (£2) and Ll(&Q,R?’) be endowed
with their respective norm topologies. Then there exists a continuous surjec-
tive linear trace operator v from BV (£2) onto L'(0§2,R?) such that v(u) =
ujgq for all u € BV (2)N C(2,R3).

The trace v : BV (2) — L'(0£2,R3) is a surjection, since the trace from
WHL(02,R3) to L1 (062, R?) is a surjection.

In this paper, 2 and 2; are bounded open connected sets of class C*
in R3 such that £2 CC (2. The Lebesgue and Hausdorff measures on {2
and 0f2 are denoted by dx and ds, respectively. The Hausdorff measure ds
multiplied by a real constant equals the 2-dimensional Lebesgue measure (on
the hyperplane R?).

; HHHBD-—Hquf+§:H€w )b -
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ASSUMPTION 1 (cf. [4]). K : 2 — 2B xE*xR jg a multifunction with
convex closed values. Moreover, there exists z € C'(£2,E® x E* x R) such
that z(x) € K(z) for every z € (2, and the following conditions hold:

(i) if z € CY(N2,E? x E? x R) and z(z) € K(x) for dr-almost every
(dz-a.e.) x € £2, then z(y) € K(y) for every y € §2;

(ii) for every y € 2 and every w € K(y) there exists z € C1(2, E® x
E3 x R) such that z(y) = w and z(z) € K(z) for every x € £2.

Conditions (i) and (ii) are equivalent to the condition that for every y € (2,
(22)  K(y) = {aly) | 7 € C(TE x B x R),
z(x) € K(x) for dz-a.e. x € 2}.

DEFINITION 1 (cf. [12, Chapter 8, p. 232]). Let j* : 2 x (E*> x E3 x R) —
R U {oco} be a convex, nonnegative, normal integrand, i.e.:

(a) E3 x E3 xR > w* — j*(x, w*) is convex and Ls.c. for dr-a.e. ¥ € §2;

(b) there exists a Borel function j* : 2 x (E* x E? x R) — RU {oc} such
that j*(x,-) = j*(z,) for dz-a.e. x € 2.

We also assume that
(2.3) {w* € B} x B3 xR | j*(z,w") < 0o} = K(z)
for dz-a.e. x € (2.
ASSUMPTION 2. There exist constants k, 71 > 0 such that
(2.4) j (x,w*) <k, Vw" € Bpaypsxr(0,71), for dz-a.e. x € (2,

where Bpsygsyxr(0,71) is the closed ball in E? x E3 x R with center 0 and
radius 7 (in the finite-dimensional space all norms are equivalent). Moreover,
we assume that for every 7 > 0 there exists ¢; < oo such that

(2.5) sup{ Sj*(ac,w*)d:c w* € L(02,E? x E3 x R),
[0
[W*|| oo (B3 xE3xR) < T and w*(z) € K(x) for dr-ae. z € Q} < cp.

By (2.2)-(2.4),

Bpsymsxr(0,71) C K(x), V€ £2.

The Legendre—Fenchel transform of j* is given by

J 7 (x,z,p,t) =sup{z:z" +p:p" +tt" — 7 (x,2%, p", t") |

z* € B3, p* € B3, t* € R}
for dz-a.e. x € £2 and every (z,p,t) € E? x E3 x R. Moreover, the functional
§: 92 x (E3xE?x R) — RU {oo} is defined by
j(x,z,p,t) = j*(x,2,p,t) for de-ae. x € 2, Y(z,p,t) € B3 x E3 x R.
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In view of (2.4),
(2.6) (2, p,t) > eri(|zl[gs + [plles + [¢]) — &

for every (z,p,t) € E? x E?> x R and da-a.e. x € {2. Here c is a positive
constant (cf. the definition of || - [|gsxs = || - ||g3). Since j* is a nonnegative
function, we observe that

(2.7) 0> j(z,0,0,0) for dz-a.e. x € (2.
Let joo : 2 x E? x E3 x R — R U {co} be defined by
Joo(®,2,p,t) =sup{z: 2" +p: p* + " — [(y)(2", p", ") |
z* ¢ B3, p* € B3 t* € R}
for (z,z,p,t) € 2 x E3 x E3 x R. Then
oo, 0,) > era(2llgs + [Dllgs + ), ¥(z,2,p,t) € T x EY x B? x R,
where ¢ is a positive constant (cf. the definition of || - ||gs).

DEFINITION 2. For every u € BV(£2,R3), i € M,(£2,E?) and u €
M, (£2,R), we define

(2-8) [(w, 2, 1)l ps gy = |lullBv + [[2lla, (2,£2) + |1llne, (2,R)
where || ft|ng, (0,r3) = Z?] 12:5|lm, (2,r) and fi;; are the components of .

DEFINITION 3. For every w® e C(2,E3), w! € Cy(2,E3), w? € Cy(2,R),
u € BV(2,R?), i € My(2,E3) and p € My(£2,R) we define a bilinear
functional by

(2'9) ((‘y(u),Vu,ﬁ,u), (wovwl’w2)>P3BV = S wO :Vu+ S wl : /7'
0 0
+fwtn— | B) - y(wds,
0 o2

where B(w’) = w? - v on 92 and v is the exterior unit normal to 952.

Let I's, I'y, Iy and Iy (with Iy = 'y and I'sU Ty = [s U Iy — I'1) be
Borel subsets of 92 such that I'NIy =0 =IyNly, ["'NIs=0= 1Ny,
IoNnIywy =0 =IwnNnIsand I'sUIy UILUIy = 0f2. Moreover, let
ds(int Fo) = dS(fo), dS(iIlt Fs) = dS(fS) and dS(int Fw) = ds(fw)

On the boundary I's we have the Signorini contact condition v(x) -
~(u)(x) < 0for ds-a.e. z € I's (see [11]). This means that we have a potential
function hg : I's x E3 — R U {cc} defined by

1 3 . =
(2.10) hs(x,y) = { oo if Yo7 yi = try <0,
0  otherwise,

for x € I's, where y = —v ®@ y(u) (cf. [4]). In (2.10), hg depends only on y.



On the boundary Iy we consider the Winkler unilateral contact condi-
tion, given by the potential hyy : Iy x E> — R U {00}, defined by

1
(2.11) oy (2, y) = {

sap(z)(try)? iftry <O,
0 otherwise,
for every x € Iy, where y = —v ® v(u), ap € L*°(I'w,R) and ag(z) > 0
for ds-a.e. x € I'yy (see [21]).
In what follows, we consider a functional F' : C*(£2, R3) — RU{oo} given
by

(212)  F(w) = - | g-uds+ | Iea_oy(—v®@u)ds
I Iy
+ S hs(z,—v ®u)ds + S hw(x,—v ®@u)ds
Fs FW
+ | j(2, Vu, Adj(Vu), det(Vu)) da,
2

where W — I1,g5-0y (W) is the indicator function of the set {v®@u € veR? |
v ®u=0}.

ASSUMPTION 3. There exists g € C(§2,E?) such that og-v =g on I,
oo=0on Iy UIg and (o9(x),0,0) € K(x) for every z € (2.

For an elastic-plastic material, the functional F describes the total energy
of a body occupying the given subset {2 of R?, and subjected to the bound-
ary force g on I7. The body is clamped on [, meaning that the Dirichlet
condition u = 0 holds on Iy. Moreover, the Signorini contact condition on
I's and the Winkler contact condition on I'y, are assumed.

The extension F of F to C1(2,R?) x L}(2,E3) x L1(2,E3) x L' (2, R)
is given by
(213)  F(upg.z,p,t)=— | g-uds+ | Ijuga_oy(—v @ u)ds

Iy Ty
+ S hs(z,—v ®@u)ds + S hw(z,—v ®@u)ds + S j(x,z,p,t)dz.
I's I'y 0
A bilinear form between CH(2,R3) x L' (£2,E3) x LY(2,E?) x L'(£2,R) and
C(£2,E3) x Co(£2,E3) x Co(2,R) is
0

(2.14) ((ujp0,2,pst), (W0, wh w?)) = S w' i zdr+ S w!:pdx
Q Q
+ S w2t da — S WO (v ujo0) ds,
0 00

where u € C'(2,R?), z € L'(2,E?), p € L'(2,E%), t € L'(,R), w° €
C(02,E3), w! € Co(2,E3) and w? € Cy(2,R).
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We mention that the dual functional F*: C(£2, E3) x Co(£2, E3) x Co(£2, R)
— R U {oo} is defined by
(215) ﬁ*(w07w17w2) = SUP{«U\E)QvZ?Pyt)a (w07w17w2)>_ﬁ(uw(hzap?t) ‘

(w,z,p,t) € CL(2,R3) x LY (02, E3) x L}(02,E3) x L'(2,R)}
for (w°, w!,w?) € C(92, E3) x Co(£2,E3) x Co(£2,R).

The bidual functional F** : BV (£2) x My(£2, E3) x M(2,R) — RU {oo}
is given by
(2.16)  F**(y(u), Vu, fi, 1) = sup{ (7(0), Y, i, 1), (&, !, %)) pagy

—F (w? wh w?) | W € C(2,E?), w' € Cy(2,E?), w? € Co(2,R)}
for (w, 1, 1) € BV (£2) x My(92,E3) x My(£2,R).

DEFINITION 4. For ¢ > 0 we define a subset P(?BV(_Q) of BV (£2,R3) x
Mi,(£2,E?) x M(£2,R) to consist of (u, fz, p1) for which ||(u, &, )|l ps gy < g
and for which there exists a sequence {u, },eny C C1(£2,R?) such that

|(un, Adj Vu,,det Vuy,)||pspy < ¢q, VYneN,
and moreover
u, —u in [ - |z,
Vu, — Vu weak* in M, (§2, E?),
Adj(Vu,) = weak* in My(2,E3),
det Vu, — p weak™ in M(£2,R),
where My (§2,E3) = C(2,E3)* (cf. [10, Theorem VI.7.2]).

We say that {u,}nen C BV(£2,R?) converges to u € BV (£2,R3) in the
topology (2.18) if

(2.17)

u u in | - ,
o fuou il

Vu, — Vu weak* in M,(£2, E3).
Furthermore, a sequence {(uy, ft,,, ty,) }nen C P;’BV(Q) is said to converge
o (u,p,p) € P(?BV(Q) in the topology (2.18)—(2.19) if
[, — [ weak® in My(£2,[E3),
{,u,n — p weak® in M (2, R)
and {u, }nen converges to u in the topology (2.18).

(2.19)

DEFINITION 5. Let

3
(2.20)  A(z) = {wo € E? ‘ Z (W")ij(v@u); >0
ij=1
for all u such that v-u < 0}

for ds-a.e. x € I's U I'yy (cf. [4, Section 4.6]).



REMARK 1. Since
3 3

1
E wij(V®u)ij:§tYWtf(V®u)+ E :“’z'[y)'(’”@u)i?
i,j=1 t,j=1

where the deviator part of w is given by w?” = w — %(trw)zs and 9§ is the
Kronecker delta, it follows that

(2.21) Ap={w € B | trw? <0, (WP =0} C A(z)

for ds-a.e. x € I's U I'y. The functional A% : I's x E3 — RU{oo} is given by
0 ifw’ e A(z),

oo otherwise,

22) o) =suply so” — hs(ey)} = {
y

for every (z,w") € I's x[E3. Similarly, the functional h}y, : Iy x E3 — RU{occ}
is given by

(2.23) R (x, w?) = sup{y : w® — hy(z,y)}
y
1 (1. o\
= ifwde A
2a0($)<3trw> if w’ € A(x),
s otherwise,

for every (z,w") € Iy x E3, where A(x) is defined by (2.20).
THEOREM 2. The functional F** defined by (2.16) satisfies

(224)  F™(y(w),Vu,fi,p) = — | g y(u)ds
I
+ | ooz, —v @ 7(1),0,0)ds + | (h§ + Ix)*(z,—v ® ¥(u),0,0) ds
I I's

+ S (hy + Ix)" (z, —v ® ¥(u),0,0) ds + S J(z, (Vu)g, g, itg) dx

Ty 1)
. d<vu)8 dﬁs
+ Joo (ZL‘, ~ ) ~ )
}2 d’(vusay’snus)’ d|(vu87“svﬂs)|
dii

2 d|(Vus, fg, i
d|<Vus,us,uS>|> I )

for every (u,p,pn) € P;’BV(Q) and every q > 0, where p = p,dxr + pg,
= padr+pg and Vu = (Vu).dx + (Vu)s are the Lebesgue decompositions
of i, 1 and Vu into absolutely continuous and singular parts with respect
to dx. Here |(Vus, pig, f1s)| is the total variation measure associated with

(Vug, fug, i), i-e. for every (Vus, fi,, f1,)-measurable subset 2 of £2 we have
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(Vug, g 1)l () = sup { [ Vs + § & i, + [ o,
Q 19} 9
(107¢) € 00(97]}33)7 ¢ € CO(QaR)v Hg%X(HSOWHC(Q)) < 17

max(|6; o) < Llidlow < 1}-

The function (b + Ic)* : 2 x E3 x E3 x R — R U {o0} is given by
(225)  (hg+Ic) (@ —v@(), 0,0) = sup{—w® : (v@(w) — hj(z, &)
(w°,0,0) € K(z) C E® x E3 x R}

for every u € BV and ds-a.e. © € I's (see (2.22)). Similarly, the function
(Byy + Ix)* : 2 x E3 x E3 x R — RU {oc} is given by

(2.26)  (hjy+1x)*(z, —v@7(u),0,0) = sup{—w’ : (v@y(u))=hjy (z,°) |
(w°,0,0) € K(z) C E® x E3 x R}

for every u € BV and ds-a.e. z € Iy (cf. (2.23)). Moreover, F** is Ls.c. in
the topology (2.18)—(2.19).

REMARK 2. Under assumption (2.27) we can find an explicit form of
(he + Ic)* and (hyy + Ix)* in (2.24) (see (2.29) and (2.31)). Indeed, let

(2.27) {(@°,0,0) e B3 x B3 xR | trw® <0, ()P =0} C K(x)

where (w?)? is the deviator part of w® (cf. (2.21)). Then by (2.21) and (2.22)
we obtain

Ap C A(z) N {w® | (W°,0,0) € K(x)} C A(x)
and
(2.28)  hg(z,—v®@u) = sup{-w’: (rou)|w’ec AL}
< (hg + Ix)*(z, —v ® u,0,0) < h5'(z, —v @ u)
for ds-a.e. x € I's and every u € R3. Because hg > hg" we have
(2.29)  hg(z,—v®@u) = (hg+ Ix)"(z,—r ®u,0,0) = h§(z,—v @ u)

for ds-a.e. x € I's and every u € R3.
In a similar way, by (2.23), we get

hiy (2, ") + Lay (w°) > By (2, 0%) + Tiwo | (w0,0,0)ex (@)} (@°) = hip (2, w?)
for ds-a.e. € Iy, every w” € E3, and
(2.30)  hw(z,—v®@u) =sup{-w’: (v@u) - hjy(z,w’) |’ c AL}
< (hyy + Ix)*(z, —v ®u,0,0) < hjj(z, —v @ u)

for ds-a.e. x € I'ly and every u € R3. Because hyy > hi;; we have
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(231) (e, —v @) = (hiy + Ix) (z,~v © 1,0,0) = hij (v, —v @ u)
for ds-a.e. x € Iy and every u € R3,

REMARK 3. We do not prove in this paper that F** is the largest l.s.c.
minorant (in the topology (2.18)—(2.19)) less than F'. We find only the bidual
functional F** to the extension F of F.

DEFINITION 6. We say that F** is coercive if the following condition
holds:

if ||(um7ﬁmvﬂm)||PgBV — 00 then F**(Vumaﬁ’mvum) — 0
for every {(uma ﬁm)um)}meN C ZZil P;BV(Q)

THEOREM 3. Assume that ds(Iy) > 0 and F** is coercive. Then there
exist go > 0 and (o, i, p1g) € Pa BV (£2) such that

(2.32)  F**(y(u), Vg, Fg, o)

= inf {ﬁ**(’y(u),Vu,ﬁ,u ‘ u, [, [t) ZP3BV }

Below we study the properties of the space Pq?’BV(Q) and we prove
Theorems 2 and 3.

3. Relaxation of the unilateral contact conditions. Here we find
the l.s.c. relaxation of our polyconvex functional with unilateral contact con-
ditions. Moreover, we prove the existence theorem.

DEFINITION 7. The sequence {u,},en C BV (§2,R3) converges to u° €
BV (£2,R®) in the topology (3.1) if
(3.1) So-: (Vu, — Vu°) — S o:(vey, —u’))ds—0

02 of?
for every o € C(£2,E?).

DEFINITION 8. The sequence {(Un,fy, ;) }lnen C  P:BV(2) C
BV (£2,R?) x M,(£2,E3) x M,(£2,R) converges to (u®, fi°, u°) P3BV(£2)
in the topology (3.1)—(3.2) if
(3.2) {ﬁn — 1" weak* in M,(£2,E?),

. py, — 10 weak® in M, (2, R),
and {u,}nen converges to u’ in the topology (3.1).

In [18] it was proved that a closed ball in BV (£2,R?) is compact in the
norm || - |1, or in LL (§2,R3) topology.

loc

PROPOSITION 4 (cf. [5]). Ewvery ball cly.,, Bpv(0,7) in BV (£2,R?),
closed in the norm || - || By, is compact in the topology (3.1).
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Proof. We proceed in several steps.
Step 1. The space BV (£2,R?) is isomorphic to
(3.3) Ay = {uc BV(1,R?) | u(z) = 0 for da-a.e. z € 2y — 02},
the isomorphism being given by A; > ur uj, € BV (£2,R3). We say that

a sequence {Up}nen C BV(§21,R3) converges to u € BV (1,R3) in the
topology (3.4) if

(3.4) { o i [| - flz1(e, me),

Vi, — Vu weak® in M, (21, E3).
We first show that the closed ball cl| .| .., By (o, r3)(0,7), endowed with the
topology (3.4), is compact.

Indeed, since {uy, }nen C clj.|,, By (o, r3)(0,7), it follows that {u, },en
C el zp Bep(021)(0,7) (see [23, pp. 143-145]). In view of the compactness
theorem for BD((2;) (see e.g. [23, Chapter 2, Theorem 2.4]) the injection of
[BD(21), || - ||sp] into [LY(£21,R3), || - || 1] is compact. Hence, there exists a
subsequence {u,, }men of {u,}nen and a field ug € L'(£21,R3) such that
Up,, — Ug in H . |’L1(91,R3)-

Step 2. By [10, Theorem V.5.1], a closed ball in M (£2,R), endowed with
the weak* topology, is metrizable.
Indeed, let {¢,, }men be a countable dense subset of [Co(£2,R), ||-||¢] and

o0

_ 1 1§ 0m (11 — po)]
ms i) = D g T T, ooir — 11)

for wy, uy € My(£2,R). It is easy to verify that o is a metric, since {¢,, }men
is dense in Cp(£2,R). The topology induced by p is weaker than the weak*
M, (£2,R) topology on CIH'”Mb B, (2,r)(0, ). Since the other set endowed with

the weak* M, ({2, R) topology is compact, the topology induced by ¢ on it
coincides with the weak™ M (2, R) topology (cf. [13, Corollary 3.1.14]).

Step 3. The sequence {Vuy,, }men is bounded in || - |[ag, (o, m3)- By [10,
Theorem V.5.1], Cl”'HMb Bug, (0,,13)(0,7) endowed with the weak™ topology is

metrizable (see Section 2). Since it is compact, there exists a subsequence
{Vunmp }pen and p € M (£21, E?) such that

(3.5) Vu,, —p  weak® in My(£2,,E).
Moreover, in = Vug in the distributional sense, because

S o:Vu,, =-— S (div o) -up,, dr Vo€ CHy,E3).
Ql Ql
Step 4. In this step, we prove that |[ug| gy (o, r3) < 7 Indeed, by Step 1,

lim [[up,, 21 (2 r3) = 190l L1 (2 R3)-



Thus for every § > 0, there exists ps € N such that for every p > ps,

?_ lim Hunmp HLl + 6 Z Sup{HvunmP HMb(QL]E?’) ‘ p € N’ p > p(S}

= sup Sup{ S w: Vunmp

w € Co(21,E%), max |wijllcy(,) < 1}
P>ps 0 I

= sup{ sup S w:Vuy,,, ‘ w € Co(21,E3), max lwijllco(an) < 1}
pP>Ps o 4J

> sup { lijr)n S w:Vuy,, ‘ w € Co($21,E3), n}z}x lwijllcoar) < 1}

1

= sup{ S w Vl.lo ‘ w € CD(Ql,E3)7 H}E}XH(’UUHCO(QU < 1}

L021
3
8 ug)q
- Z é .) = [|Vuo|[pg, (2, 52)
i,j=1 Zj 1My (21,R)

(cf. (2.1) and the definition of || - ||g3). Hence we have
r+6 > limlup,, |12 r2) + [[VUollv, (o k)
> [Juoll L1, r3) + [[VUollng, (04 E2)
for every § > 0.
Step 5. Let {up}neny C CIH'”BV BBV(Q,R3)(Oa?) C BV(Q,R?’) and let
{U, }nen C BV (£21, R?) be the extension of {u, },cn to 21, given by
(36) ﬁn|Q = Up, lAln‘Ql_ﬁ = 0,

for every n € N. By Step 1 there exists a subsequence {u,,, }men and U €
BV (§21,R3) such that
(3.7) Up,, =0 in - [0 9,
(3.8) Vi, — Vi  weak® in My(£2;,E?)
and ﬁ\fh—!_? =0 (cf. (3.4), (3.5)).

We say that a sequence {,}nen C BV (§2,R?) converges to U in the
topology (3.9)-(3.10) if

(3.9) u, —» U i || Liors),

(3.10) lo: (v, -ve) - | o: (vey@, —1)ds - 0
0 00

for all o € C(£2,E?). Observe that

Viin, = Vi, 0+ v00 (@, o_5) — (@, 0) ds + Vi, 0 o
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where y(1,,,|) and 7(ﬁnm|91—5) respectively stand for the interior and ex-
terior trace of u,,, on 92 (cf. [23], [24]). Hence, by (3.7)—(3.8), {un,, }men
converges to U in the topology (3.9)-(3.10). The sequence {(Vu,,,,v ®
~(Wn,,)) }men of measures on {2 is bounded in || - I, (72,5%)> since {un}nen C
cliisy Bav(nrs)(0,7) and ~ is a continuous trace from [BV,| - [sv] to
[LY(002),| - |1]- By [10, Theorem V.5.1], closed balls in M,(2,E?), en-
dowed with the weak® topology, are metrizable (see Step 2). Thus
cljigv Bev(2rs)(0,7), endowed with the topology (3.9)-(3.10), is metriz-
able, and hence compact (see also Step 4). Notice that the topology (3.1)
is weaker than (3.9)-(3.10), and moreover, (3.1) is a Hausdorff topology.
It is known that, among all Hausdorff topologies, compact topologies are
minimal (see [13, Corollary 3.1.14]). From these observations, it follows that
the closed ball cljj.|,,, By (or3)(0,7), endowed with the topology (3.1), is
compact. m

DEFINITION 9. We say that a sequence {u, },eny C BV (£2,R?) converges
to u’ € BV (2,R3) in the topology (3.11) if

(3.11) {un - in |- 22 ors),

Vu, — Vu® weak* in My(£2, E?).

Furthermore, a sequence {(Wp, fi,,, it,) }nen C P BV (£2) C€ BV (£2,R?) x
M (£2, E3) x My(£2,R) converges to (u°, i°, i) € PSBV(Q) in the topology
(3.11)~(3.12) if

— k* in M (£2,E

py, — 0 weak* in My(£2,R),

and {u,},en converges to u’ in the topology (3.11).
We obtain the following result.

LEMMA 5 (cf. [5]). On every closed ball cly.,,, Bpy(ors)(0,7), the topol-
ogy (3.1) is equivalent to the topology (3.11).

Proof. Consider a sequence {un}nen C clj.,, Bpy(ors)(0,7), and let
{U, }nen € BV (£21,R?) be the extension of {u, },en to £21, given by (3.6).
As seen in the proof of Proposition 4 (Step 5), the convergence of {u, },cn to
u’ € cly.|,, Bpv(ors)(0,7) in the topology (3.1) is equivalent to the conver-
gence of {ﬁn}neN C ClH'HBV BBV(QLRB)(O,?) to u’ € C1||'HBV BBV(Ql,Ri”)(Ov?)

in the topology (3.4), where ﬁ?g = u’ and ﬁ\onl—ﬁ =0.

The set A1 N cly.|,, Bpv(o,r3)(0,7) endowed with the topology (3.4)
is compact (see (3.3) and proof of Proposition 4). The Hausdorff topology



on Ajp, given by

ﬁn — ﬁ in H . HL1(917R3)a
(3.13) X p:Vu, — S w: VUi Ve Co(2,E3),
Q Q

is weaker than the topology (3.4) (cf. (3.3)). Thus, on

Av el gy Bayv(a r2)(0,7),

the topology (3.4) is equivalent to (3.13) (see [13, Corollary 3.1.14]). More-
over, the topology (3.13) on A; is equivalent to the topology (3.11) on
BV (£2), because A; is isomorphic to BV (£2,R3). =

COROLLARY 6. The topology (3.1)—(3.2) is equivalent to the topology
(3.11)—(3.12) on closed balls in BV (£2,R3) x My (£2, E3) x My($2,R).

THEOREM 7. The set P(;’BV(_Q) endowed with the topology (3.11)-(3.12)
[or (3.1)(3.2)] is compact.

Proof. We proceed in several steps.

Step 1. In view of Definition 4, we have
(3.14) Pg’BV(Q) C Cl”'”BV BBV(Q,R3)(07 q)
X L s, Buty(2,89)(0,9) X Cly iy, Buy (2, (0: 9)-

Next, we argue that the closed ball B = clj.j|,,, By (nr3)(0, q) endowed
with the topology (3.11) is metrizable.

Indeed, B endowed with ||-|| ;1 is a Hausdorff topological space. Moreover,
the topology induced by || - || ;1 is weaker than (3.11). Since B endowed with
the topology (3.11) is compact, this topology coincides with the topology
induced by || - ||z1 on B (cf. Proposition 4, Lemma 5 and [13, Corollary
3.1.14]).

Step 2. By Lemma 5 and the previous step, B endowed with the topology
(3.1) is metrizable.

Step 3. By [10, Theorem V.5.1], the closed ball Cl”'HMb Bu,(0,r) (0, q) en-

dowed with the weak* topology is also a metrizable topological space (see
proof of Proposition 4, Step 2). Similarly, by [10, Theorem V.5.1], a closed
bounded ball in M (£2,E?), endowed with the weak* topology, is metrizable.

Step 4. On account of Steps 3 and 4 and of Lemma 5, the set P(;’BV(Q)
endowed with the topology (3.11)-(3.12) (or the topology (3.1)-(3.2)) is
metrizable (cf. Definition 4 and (3.14)). Then we consider a sequence

{(um7 ﬁmv ﬂm)}méN - quBV(Q)
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By (3.14) and Proposition 4, there is a subsequence {um, }pen C BV (£2,R?)
and uy € BV (§2,R?) such that

U, — ug in the topology (3.1) (or (3.11)).
Moreover, by Proposition 4, for every § > 0 we obtain
(3.15) [uol| pv < liminf{|[wm, ||pv | p € N} + 4,
because there exists a subsequence {umpt }en such that U, — Uo in the
topology (3.1) and {u,, }ten C Bpy (0,liminf [[up, ||zy + 6).

Step 5. We consider again the sequence { (W, fy,, fi,) }men C P2 BV (£2),
defined in Step 4. There exist a subsequence {(Ly,,, » i, ) Hen C Mp(£2, E3)
x My(£2,R) and (fag, f1g) € Mp(£2, E?) x M, (£2,R) such that

[, — Bo weak™ in My(£2,E%),
Hmy,, — Ho weak™ in My(£2,R).
Moreover, we can assume that for every 5> 0, there exists ¢5 € N such that
(3.16) ¢ —liminf{||luy, |lpy | p € N} +98
> up{ i, I (26 + lttm, Ity | £ € N, £ > £5)

(cf. (2.8) and Definition 4). Similarly to Step 4 in the proof of Proposition 4,
we obtain

(3-17)  sup{lttm,, e, 28%) + [l Iy (2) | £ € N, &> £5}

= sup sup{ S W oy, F S Whip,,
1>t 0 )

@ € Co(2,E%), w € Co(2,R), max(|[@ijllcoe) < 1, lwlleo(e) < 1}

@ € Co(2,E%), w € Co(2,R), max(|[@ijllcoe) < 1 wlleo(e) < 1}

= || ol (2,83) + o llng, (2,8)5

where w;; are the components of w and 4, j € {1,2,3}. Then, by (3.15)—(3.17)
we get

q+26 > |[wollpvars) + 1ol (2,3 + llHollm, (2,r)
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for every 5>0. Hence, we obtain

(3.18) q > l[uoll Bv(ors) + | Bollm, 2,53 + 110, (2,R)
= ||(wo0, 120, po)ll 3 BY
(see also (2.8)).

Step 6. Finally, we show that (ug, fg, pg) € Pg’BV(Q). To this end,

notice that for every ¢ € N there exists a sequence {u:npt }ren C CH02,R3)
such that

[(ur,,,, AdjVuy, - det(uy, ))llpspy <q VT EN,

T

[
mpt

— U, L1 (ors) =0 as 7 — oo,

and moreover

Vuy, = Vuy,  weak™ in My(£2, E3) as 7 — oo,
Adj(Vug, ) = fy,,, weak® in My (2, E3) as 7 — oo,
det Vuy, = — fiy,,, weak™ in M(£2,R) as 7 — 00

(cf. Definition 4). Since P BV (§2) endowed with the topology (3.11)-(3.12)
is metrizable and for every 7.t € N,

(a7, AdjVuy, . det(Vuy, )) € P;BV(£2),
there exists a sequence {uf,fptk been in CH(£2,R3) such that
Iz, AdVuzg, det(Vag, )lppy <g ke N,
luy, —wollzimrs) — 0 ask— oo,
and moreover
Vu:,fptk — Vug weak® in My(£2,E3) as k — oo,
Adj Vu;’;ptk — I weak® in M (2, E3) as k — oo,
det Vu;’;ptk — L weak™ in M(£2,R) as k — oo.

It follows, by Definition 4 and (3.18), that (uo, ftg, i) € P;BV(Q). n

DEFINITION 10 (cf. [8]). A subset Hy of £°(£2,R™),, is said to be PCU-
stable if for any continuous partition of unity ({g,...,(y) with (y,...,(4 €
C>(£2,R) and for every z, ..., zq € Hp, the sum Z?:o ¢;2; is in Hy.

Proof of Theorem 2. The space C!(§2,R3) is PCU-stable. Then, by [8,
Theorem 1] and by [22, Theorem 3A and Proposition 2M], we have, for every
(wo’wlaWQ) € C(QaE3) X OO(QaE?)) X CO('QvR)a
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(3.19) ﬁ*(wo,wl,w2)Esup{SwD:zdx—i—Swl cpdx

Q 2
—i—Swtda:—S 0:(V®u|ag)ds—|—gg-uds
2 o192 I
S Iiygu—o)(—v ®@u)ds — S hs(z,—v ®u)ds
I FS

- S hw(z,—v ®@u)ds — Sj(m,z,p,t) dx ‘
Iy Q

(ngﬂecwﬁkﬁxL%QE%xL%QE%xL%QR@
= Sup{— S wO:(V®u|aQ)ds+ S g-uds
on I

- S Iiygii—oy (—v ®u)ds — X hs(z,—v ®u)ds
FO Fs

_ S hy (2, —v @ u) ds ‘ ue 01((—27]&3)}
I'y

+Sup{Sw0:zdaj+Sw1 :pdﬂj‘—FSthdl‘
(9] (9} (9}

_Sj(xvz7p7t)d$
2

= S I{wo‘wol,,:g}(wo)ds+ S hi(x, w) ds
I I's

(LgﬂeL%QE%xL%QE%xL%QR@

+ S hiy (x, )ds+§ *(r,w?, w! w?) da.
I'yy 02
We can apply [8, Theorem 1], since for u = 0 we have SFI g-uds =0 =
$r, Lveu=oy (—v @ uw)ds, §, hs(z,—~v@u)ds = 0= [, hw(z, —v®u)ds
(see (2.10) and (2.11)). Moreover, by (2.6) and (2.7), {,j7*(x,0,0,0) dz is
finite (cf. [22, Theorem 3A]).

There exists o9 € C(£2,[E3) such that o¢ - v =gon I, 09 = 0 on
Iy UTs and (o¢(x),0,0) € K(x) for every x € (2 (see Assumption 3).
Moreover, inf (o0 41 ,2) F™* < 00, because inequality (2.5) holds.

Since the space C(£2, E?) x Cy(£2,E?) x Cy(£2,R) is PCU-stable, we ob-
tain, basing upon the proof of [8, Theorem 1],



(3.20)  F**(y(u),Vu, fi, 1)

= sup{ S[wo (V) +w' s, + w0, — 55 (2,00 wl w?)] do

2
d(vu) wl . dﬁ’s

*H {qus,us,us)\}* '{qus,ﬁs,us)\}
M |~ e )] AT )
— VW wey)ds — | Iuowomeg (@) ds

In In
+ | [0’ (@ () — hE(w®) — Ty (@', w!, w?)] ds

I's
+ S [_wO : (V ®7(u)) - h?/V(x7w0) - IK(x)(wO’wlvw2)] ds

I'y
+ | [0’ (v @) = I (@ w! w?)] ds | W € C(12,EY),

Io

wl e Cy(2,E?), w? e C’O(Q,R)}
= S j(l’, (vu)aa /ja? Ma) dx
(0]

Ny <x d(Vu)s dfi
OO ’ d‘(vu&ﬁsvus)" d’(vusvﬁsvﬂs)”

dpis
d| (Vu& ﬁsv :us)|

— Vg v(wds+ | (h5 + Ix)"(z, —v ® (), 0,0) ds

)d|<Vus,ﬁs,us>|

Iy I's
+ S (h*W+I’C)*<x7 —I/®’7<U),0’0) ds + S ]oo(xa —V®’)’(U),0,0) ds
FW Io

for every (u,p,pn) € P(?BV(_Q) and every ¢ > 0. Finally, F** is Ls.c. in

the topology (3.1)~(3.2) [and in the topology (3.11)—(3.12)], because F** is
a supremum of affine functionals continuous in the topology (3.1)-(3.2) (cf.
Corollary 6). =

Proof of Theorem 3. Because the functional F** is coercive, there exist
go > 0 and a bounded sequence { (W, fhy,; fh,) tmeN C PgOBV(Q) which
minimize F**. By Theorem 7 and metrizability of Pq?’OBV(Q) (cf. proof of
Theorem 7) there exist a subsequence {(Wn,,, By, tin, ) }peN C P3 BV (02)
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and (g, fg, ptg) € P2 BV (£2) such that {(@m,, B, fm,, ) }pen converges to
(uo, g, 11g) in the topology (3.1)—(3.2). In view of (2.9), (3.1), (3.2) and
(2.16) the functional F** is l.s.c. in the topology (3.1)-(3.2) and we obtain
(2.32). =

We specify the vector u in (2.24) as the displacement field.

EXAMPLE 1. Let j(z,z,p,t) = jo(x,2, p) + at? for every (z,p,t) € E3 x
E3 x R and for dz-a.e. x € §2, where o > 0 and jo is a convex, nonnegative
normal integrand. Let Kqo(x) = {(z*,p*) € E? x E? | jj(z,2*,p*) < oo} for
dz-a.e. x € {2, where

js5(x, 2", p*) = sup{z : 2 + p : p* — ja(2,2,p) | (2,p) € B x E*}
for every (z*,p*) € E3 x E3 and for dz-a.e. x € £2. Then
(B + ey (2, v © 7(w),0) = sup{—a" : (v 0 ~(w)) — W5(2") |
(z*,0) € Ko(x) C E3 x E?}
and

(hy + I,)* (2, —v @ ¥(u),0) = sup{—z" : (v ® v(u)) — hyy(z,2") |
(z*,0) € Ka(z) C E? x E3},

where hg and hjj, are given by (2.22) and (2.23). We define
(j2)oo(x,2,p) =sup{z : z° + p : p* — I,y (2", P*) | 2" € E?, p* € E?}
for (z,p) € E3 x E3 and z € £2. Therefore for every (u, i1, 1) € PgBV(Q),

ﬁ**(vuvﬁau) = - S g ’Y(U) ds + S (j2)00<x7 -V ®’Y(U)’0) ds
Fl F()
+ S (h% + Ic,)*(z, —v ® y(u),0) ds + « S p? dx
I's )
+ | (hiy + I,) " (2, —v ® (u), 0) ds
I'w
+ | ol (V)a, i1,) du
2
. d(Vu), dj, _
V)= e g ATy ) AT )

2
if 1 is absolutely continuous with respect to dz and pu € L?(£2,R), and
F**(Vu, p, u) = oo otherwise.

In Example 1 we have dealt with the body whose elastic-plastic potential
is finite even in the case when the volume of the body after compression
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could be reduced to zero. Now (Example 2) we consider a more realistic
case, in which the potential in the case of volume reduced to zero becomes
infinite.

EXAMPLE 2. We assume that the body is clamped on I} (i.e. u = 0
on I}), and on I the boundary force g is prescribed.

Moreover, let the multifunction K satisfy (2.27). Then (2.29) and (2.31)
hold, and the elastic-plastic potential is given by

j3(z, 2z, p) + at? if + >0,
(3.21) j(z,z,p,t) = jg(x,z,p)—ozlt_'_l if —1<t<0,
o ift < —1,

where a, a7 > 0 and j3 is a convex, nonnegative normal integrand such that
(3.22) 0<ay< 1|ir|ninf js(x,z,p)/|z|
zZ|—00

< limsup j3(z,z,p)/|z| < oo

|z|—o0
for ay € R and every (fixed) z € £2, p € E3.

EXAMPLE 3. Let
0(z)(|2* (I35 + Ip*|1§s) if 2* € Bgs(0,1)
Ji(z,z*,p*) = and p* € Bgs(0,1),
s otherwise,
where 6 : {2 — Ris a positive Borel function.Then js(x,z, p) = ji*(z,2z,p) =
sup{z : z" + p: p* — ji(z,2* p*) | |lz*]|gs < 1, ||p*||gs < 1}. The functional

j4 has a linear growth at infinity, but it is not a positive monotonic function.
Define

ja(z,z,p) + at? ift >0,
(3.23) j(z,z,p,t) = j4(3:,z,p)—a1t+1 if -1 <t<0,
00 ift < -1,

where a, a; > 0. The last functional describes a real elastic-plastic material
in the range of finite displacements. Moreover, in (3.23) we can replace j4 by

0(x)(|lz* (155 + Ip*|1§s) if (%) € Bgs(0,1)
Js(x,z",p*) = and p* € Bgs(0,1),

o0 otherwise,

where (z*)P is the deviator part of z* and j5 = ji*.
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