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SHARP BOUNDS FOR EXPECTATIONS OF SPACINGS
FROM DECREASING DENSITY AND

FAILURE RATE FAMILIES

Abstract. We apply the method of projecting functions onto convex
cones in Hilbert spaces to derive sharp upper bounds for the expectations of
spacings from i.i.d. samples coming from restricted families of distributions.
Two families are considered: distributions with decreasing density and with
decreasing failure rate. We also characterize the distributions for which the
bounds are attained.

1. Introduction. Let X1, . . . ,Xn be i.i.d. random variables with com-
mon cumulative distribution function (cdf) F , mean µ, finite variance σ2

and quantile function given by
F−1(u) = sup{x : F (x) ≤ u}, 0 ≤ u < 1.

We write X1:n, . . . ,Xn:n for order statistics and consider spacings, that is,
differences of consecutive order statistics, Rj:n = Xj+1:n − Xj:n, 1 ≤ j ≤
n−1. Spacings are widely used in goodness-of-fit tests, quality control prob-
lems and characterizations of distributions. For a deeper discussion of their
properties and applications we refer the reader to Pyke [10].

Moriguti [8] presented sharp upper bounds for spacings in the class of
distributions with finite variance, expressed in σ units. López-Blázquez [6]
derived bounds for the expectations of Xj+k:n − Xj:n in σj:n−k =
(VarXj:n−k)1/2 units for general distributions with finite second moments
and for discrete distributions of N points [7]. Danielak and Rychlik [3] ob-
tained bounds in the classes of distributions with decreasing density on
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the average (DDA for brevity) and decreasing failure rate on the average
(DFRA). Bounds for arbitrary differences Xk:n − Xj:n, 1 ≤ j < k ≤ n,
expressed in different scale units generated by various central absolute mo-
ments of the parent distribution of a single observation are presented in
Danielak [2].

In this paper we present sharp upper bounds for the expectations of
spacings, in σ units, when the parent distribution F belongs to the class of
distributions with decreasing density (DD) or with decreasing failure rate
(DFR). Let U and V denote the distribution function of standard uniform
distribution and standard exponential distribution, respectively. We say that
F belongs to the class DD if F−1U = F−1 is convex on (0, 1). Similarly F
belongs to the class DFR if F−1V is convex in (0,∞). These two classes can
be treated together as a family of distributions F such that F−1W is convex
on the support of W, where W = U, V. We then say that F succeeds W in
convex order (F �c W ), a notion introduced for continuous life distributions
by van Zwet [14].

Denote the density function and the cdf of the ith order statistic from
the standard uniform sample of size n by

fi:n(x) = nBi−1,n−1(x), Fi:n(x) =
n∑

k=i

Bk,n(x),

respectively, where

Bi,k(x) =
(
k

i

)
xi(1− x)k−i, 0 ≤ x ≤ 1, i = 0, . . . , k, k = 0, 1, . . . ,

are Bernstein polynomials. Using the representation

EFXi:n =
1�

0

F−1(x)fi:n(x) dx,

and setting rj:n = fj+1:n − fj:n, we obtain

EFRj:n =
1�

0

[F−1(x)− µ]rj:n(x) dx.(1.1)

Changing variables in (1.1) we get

EFRj:n =
d�

0

[F−1W (x)− µ]rj:nW (x)w(x) dx,(1.2)

where W is an absolutely continuous cdf with density w, support [0, d) =
[0, dW ) and a finite variance. The last integral can be treated as the inner
product in the real Hilbert space H = L2([0, d), w(x)dx) of square inte-
grable functions on [0, d) with respect to the weight function w. Applying
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the Schwarz inequality to (1.2) and noting that

‖F−1W − µ‖W = σ,

we obtain the bound
EFRj:n ≤ σ‖rj:nW‖W ,(1.3)

which is attained iff the two factors of the integrand in (1.2) are propor-
tional. If F is an arbitrary cdf with finite variance and F �c W , then the
transformation F−1W − µ defines a family of functions

C0
W =

{
g ∈ CW :

d�

0

g(x)w(x) dx = 0
}
,(1.4)

where
CW = {g ∈ H : g is nondecreasing and convex} .(1.5)

In general, the functions rj:nW are neither nondecreasing nor convex. In
order to derive sharp bounds for (1.3) we apply the projection method pre-
sented in Gajek and Rychlik [4]. For a thorough justification and numerous
applications we refer the reader to Rychlik [12]. Below we only briefly sketch
some basic ideas. Observe that (1.4) is a convex cone in the Hilbert space H.
We need to replace a fixed function rj:nW by its projection onto (1.4) de-
noted by P 0

W rj:nW. The norm of the projection is the optimal bound in
σ units, which is achieved by F such that F−1W − µ is proportional to
P 0
W rj:nW . Note that (1.5) is a translation invariant convex cone: g ∈ CW

implies that g + c ∈ CW for any real c. Due to the following lemma (cf.
Rychlik [11]) we can replace the original projection problem by a simpler
one of finding the projection PW rj:nW of the function rj:nW onto (1.5).

Lemma 1. Let H =L2([0, d), w(x)dx) with � d0 w(x) dx = 1 and C be a
translation invariant convex cone in H. If the projection Ph of an arbitrary
h ∈ H onto C exists, then

d�

0

Ph(x)w(x) dx =
d�

0

h(x)w(x) dx.(1.6)

As � d0 rj:nW (x)w(x) dx = 0, we have P 0
W rj:nW = PW rj:nW , and finally

the bound
EFRj:n ≤ σ‖PW rj:nW‖W

is sharp and is attained by a unique F satisfying

F−1W (x)− µ
σ

=
PW rj:nW (x)
‖PW rj:nW‖W

.(1.7)

In Section 2 we describe the shape of the projection in terms of three
parameters and determine them. Section 3 contains the main results of the
paper. The proofs (quite long) are given in Section 4.
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2. The projection problem. We present assumptions on the projected
functions h = rj:nW chosen so as to cover the cases W = U, V .

(A) Let h be a bounded, twice differentiable function on [0, d) such that
h(0) = 0, limx↗d h(d) ≥ 0 and � d0 h(x)w(x) dx = 0, where w is a pos-

itive weight function satisfying � d0 w(x) dx= 1. Moreover, we assume
that h is decreasing on (0, a), convex increasing on (a, b), concave in-
creasing on (b, c) and decreasing on (c, d) for some 0 < a < b < c ≤ d.

The lemma below describes the behavior of the functions rj:nW in [0, d) for
W = U, V.

Lemma 2.

(a) Let W = U. The function r1:2 is linear increasing. If n ≥ 3, then
r1:n is first concave increasing , then decreasing ; for 2 ≤ j ≤ n − 2
the function rj:n is decreasing , convex increasing , concave increasing
and decreasing ; and rn−1:n is first decreasing , then convex increasing.
Moreover , rj:n has a unique zero in (0, 1) at θ = j/n.

(b) Let W = V. The function r1:2V is concave increasing. If n ≥ 3, then
r1:nV is first concave increasing , then decreasing ; for 2 ≤ j ≤ n− 2
the function rj:nV is decreasing , convex increasing , concave increas-
ing and decreasing ; and rn−1;nV is first decreasing , then convex in-
creasing and ultimately concave increasing. The function rj:nV has
a unique zero in (0,∞) at θ = − ln(1− j/n).

It follows that rj:nW satisfies (A) for W = U, 2 ≤ j ≤ n− 2 and W = V,
2 ≤ j ≤ n− 1. From now on we assume that h satisfies (A). It follows that
h has exactly one zero θ ∈ (a, c) and the sign of h at the inflection point b
may be arbitrary.

The following lemma describes the shape of the projection of an arbitrary
function h satisfying (A) onto the convex cone (1.5).

Lemma 3. Let C∗ ⊂ CW be the class of functions of the form

g∗(x) =





h(α), 0 ≤ x < α,

h(x), α ≤ x < β,

λ(x− β) + h(β), β ≤ x < d,

(2.1)

for some a ≤ α < β ≤ b and λ ≥ h′(β), or

g∗(x) =
{
γ, 0 ≤ x < β,

λ(x− β) + γ, β ≤ x < d.
(2.2)

for λ ≥ 0 and γ ∈ R. Then for any g ∈ CW there exists a function g∗ ∈ C∗
such that

‖h− g∗‖ ≤ ‖h− g‖.
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Lemma 4. Let h : (0, d]→ R be given by

h(β) =
� β0 h(x)w(x) dx

� β0 w(x) dx
.

Then

(i) h(d) = 0 and h(β) < 0 for any β ∈ (0, d),
(ii) there exists a unique α ∈ (a, θ) such that

h(α) = h(α),(2.3)

the function h is decreasing with h > h in (0, α], and h is increasing
with h < h in (α, d).

We introduce the following notations:

(2.4)

λ1(β) =
� dβ(x− β)[h(x)− h(β)]w(x) dx

� dβ(x− β)2w(x) dx
,

Y (β) = λ1(β)− h′(β),

Z(β) =
d�

β

[h(x)− λ1(β)(x− β)− h(β)]w(x) dx.

Proposition 1. Assume that α satisfies (2.3). If the set

Y ={β ∈ (α, b) : Y (β) ≥ 0 and Z(β) = 0}
is not empty, then

PWh(x) =





h(α), 0 ≤ x ≤ α,
h(x), α < x ≤ β,
h(β) + λ(x− β), β < x < d,

(2.5)

for β = β∗ = sup{β ∈ Y} and λ = λ1(β∗). Otherwise,

PWh(x) = −h(β)
[

(x− β)I[β,d)(x)

� dβ(x− β)w(x) dx
− 1
]

(2.6)

for the greatest 0 < β ≤ α satisfying

(2.7)
d�

β

h(x)w(x) dx
[ d�

β

(x− β)2w(x) dx−
( d�

β

(x− β)w(x) dx
)2]

=
β�

0

w(x) dx
d�

β

(x− β)w(x) dx
d�

β

(x− β)h(x)w(x) dx.
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3. Main results. Sharp upper bounds for EFRj:n, 2 ≤ j ≤ n− 2, and
F belonging to the class DD are presented in the following

Proposition 2. Let X1, . . . ,Xn be i.i.d. random variables with decreas-
ing density , cdf F, finite EFX1 = µ and VarF X1 = σ2. Put

(3.1) Y1(x) =
j−2∑

m=1

fm:n+2(x) +
[
1 +

(n− j + 3)!
3(n− j)!

]
fj−1:n+2(x)

+
[
1 + (n− j + 2)(n− j + 1)

(1
2 − 2

3(n− j)
)]
fj:n+2(x)

+
[
1 + (n− j + 1)(n− j)

(
−1

2 + 1
3(n− j − 1)

)]
fj+1:n+2(x),

(3.2) Z1(x) = −
j−1∑

m=1

fm:n+2(x) +
[1

6(n− j + 2)(n− j + 1)− 1
]
fj:n+2(x)

−
[1

6(n− j + 1)(n− j − 4) + 1
]
fj+1:n+2(x).

If
Y1(α) > 0, Z1(α) < 0 < Z1(y),(3.3)

where α = (j − 1)/(n− 1) and y is the smallest positive zero of (3.1), then

EFRj:n
σ

≤ B = B(j, n)(3.4)

for

B2 = α[fj+1:n(α)− fj:n(α)]2(3.5)

+
(n!)2

(2n− 1)!

{(
2j
j

)(
2n− 2j − 2
n− j − 1

)
[F2j+1:2n−1(β)− F2j+1:2n−1(α)]

− 2
(

2j − 1
j

)(
2n− 2j − 1
n− j − 1

)
[F2j:2n−1(β)− F2j:2n−1(α)]

+
(

2j − 2
j − 1

)(
2n− 2j
n− j

)
[F2j−1:2n−1(β)− F2j−1:2n−1(α)]

}

+ (1− β)
{1

3λ
2(1− β)2 + λ(1− β)[fj+1:n(β)− fj:n(β)]

+ [fj+1:n(β)− fj:n(β)]2
}
,

with β being the smallest positive zero of (3.2) and

λ = λ1(β)

=
1− Fj+1:n+1(β)− n−j+1

2(n+2) [(n− j)fj+1:n+2(β)− (n− j + 2)fj:n+2(β)]
1
3(1− β)3(n+ 1)

.

Equality holds in (3.4) for
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(3.6) F (x)

=





0,
x− µ
σ

<
rj:n(α)
B

,

r−1
j:n

(
x− µ
σ

B

)
,

rj:n(α)
B

≤ x− µ
σ

<
rj:n(β)
B

,

x− µ
σλ

B − rj:n(β)
λ

+ β,
rj:n(β)
B

≤ x− µ
σ

<
λ(1− β) + rj:n(β)

B
,

1,
x− µ
σ
≥ λ(1− β) + rj:n(β)

B
.

If (3.3) fails, then

EFRj:n
σ

≤ fj+1:n+1(β)
β(n+ 1)

√
1 + 3β

3(1− β)
(3.7)

for β being the smallest positive solution to

(3.8)
n− j + 1

6
[4(j + 1)fj+2:n+3(x) + (n− j + 2)fj+1:n+3(x)]

=
j+1∑

m=1

mfm+1:n+3(x).

Equality holds in (3.7) for

F (x) =





0,
x− µ
σ

< a1,

β+
1
2

(1−β)2
(

1+
x−µ
σ

√
1 + 3β
3(1−β)

)
, a1 ≤

x−µ
σ

< a2,

1,
x− µ
σ
≥ a2,

(3.9)

with

a1 = −
√

3(1− β)
1 + 3β

, a2 =
1 + β

1− β

√
3(1− β)
1 + 3β

.

Distributions (3.6) and (3.9) are not absolutely continuous. The former
has a jump of size α at the left end of its support, then is the inverse function
of a nondecreasing polynomial, and has a right uniform tail. The cdf (3.9) is
a mixture of an atom and a cdf of uniform distribution. However, it is easy
to find sequences of absolutely continuous Fk �c U, k → ∞, which attain
the bounds asymptotically.

For j = 1, n = 2 the bound derived by Plackett [9] is optimal and is
attained by a uniform distribution belonging to the class DD. If j = 1,
n ≥ 3, then the projection is a linear function (cf. Danielak [1]) of the form
PUr1:n(x) = 2(2x− 1)/(n+ 1) and EFR1:n/σ ≤ 2

√
3/(n+ 1). The bound is

attained for the uniform distribution on
[
µ−
√

3σ, µ+
√

3σ
]
. If j = n− 1,

then the optimal bound coincides with that obtained in the class of arbitrary
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distributions with finite variance (see Danielak [2]). In this case the bound
(3.4) is sharp and becomes an equality for the cdf (3.6) with β = 1.

We now turn to the case when F belongs to the class DFR. Assume that
2 ≤ j ≤ n− 1.

Proposition 3. Let X1, . . . ,Xn be i.i.d. random variables with decreas-
ing failure rate, cdf F , finite EFX1 = µ and VarF X1 = σ2. Put

Y2(x) =
1

n− j

j−2∑

m=1

fm:n+2(x)+
[

1
n− j+

2(n−j+2)!
(n− j)!

]
fj−1:n+2(x)(3.10)

+
[

1
n− j + (n− j + 1)[1− 4(n− j)]

]
fj:n+2(x)

+
[

1
n− j + (n− j)[2(n− j)− 3]

]
fj+1:n+2(x),

Z2(x) = −
j−1∑

m=1

fm:n+1(x) + [(n− j)(n− j + 1)− 1] fj:n+1(x)(3.11)

+ [(n− j)(2− n+ j)− 1]fj+1:n+1(x).

If

Y2(α0) > 0, Z2(α0) < 0 < Z2(y),(3.12)

where α0 = (j−1)/(n−1) and y is the smallest positive zero of (3.10), then

EFRj,j+1:n

σ
≤ B = B(j, n)(3.13)

for

(3.14) B2 = β0r
2
j:n(α0) + (1− β0)[2λ2 − 2λrj:n(β0) + r2

j:n(β0)]

+
(n!)2

(2n− 1)!

{(
2j
j

)(
2n− 2j − 2
n− j − 1

)
[F2j+1:2n−1(β0)− F2j+1:2n−1(α0)]

− 2
(

2j − 1
j

)(
2n− 2j − 1
n− j − 1

)
[F2j:2n−1(β0)− F2j:2n−1(α0)]

+
(

2j − 2
j − 1

)(
2n− 2j
n− j

)
[F2j−1:2n−1(β0)− F2j−1:2n−1(α0)]

}
,

where β0 is the smallest positive zero of (3.11) and

λ = λ1(V −1(β0)) =
1

2(1− β0)

{
1

n− j

j+1∑

m=1

fm:n+1(β0)

−(n− j)fj+1:n+1(β0) + (n− j + 1)fj:n+1(β0)
}
.
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The bound (3.13) is achieved for

F (x) =





0,
x− µ
σ

< a1,

r−1
j:n

(
x− µ
σ

B

)
, a1 ≤

x−µ
σ

<a2,

V

(
x−µ
σλ

B − rj:n(β0)
λ

+ V −1(β0)
)
,

x− µ
σ
≥ a2,

(3.15)

with a1 = rj:n(α0)/B, a2 = rj:n(β0)/B.
If (3.12) does not hold , then

EFRj,j+1:n

σ
≤ fj+1:n+1(%)

%(n+ 1)

√
1 + %

1− %,(3.16)

where % is the smallest positive solution to
j+1∑

m=1

m

n− j fm+1:n+2(x) = (n− j + 1)fj+1:n+2(x) + 2(j + 1)fj+2:n+2(x).

The bound (3.16) is attained for

(3.17) F (x)

=





0,
x− µ
σ
≤ −

√
1− %
1 + %

,

V

(
(1− %)

[
x− µ
σ

√
1 + %

1− % + 1
]

+ V −1(%)
)
,

x− µ
σ

> −
√

1− %
1 + %

.

The cdf (3.15) has a jump of size α0 = (j − 1)/(n− 1) at the left end of
its support, then is the inverse function of a nondecreasing polynomial, and
finally has an exponential tail. The cdf (3.17) is a mixture of an atom and an
exponential distribution. If j = 1, n ≥ 2, then PV r1:nV (x) = (x−1)/(n−1)
and EFR1:n/σ ≤ 1/(n−1). The bound is attained for the exponential distri-
bution with location and scale parameters equal to µ−σ and σ, respectively.

4. Proofs. We shall frequently apply the following lemma:

Lemma 5. The number of zeros of a linear combination of Bernstein
polynomials

W (x) =
m∑

k=0

akBk,m(x), x ∈ (0, 1),(4.1)

does not exceed the number of sign changes of the sequence a0, . . . , am. The
initial and final signs of (4.1) in (0, 1) are identical with the signs of the
first and last nonzero elements of a0, . . . , am, respectively.

The proof of the former statement, known as variation diminishing prop-
erty of Bernstein polynomials, can be found in Schoenberg [13], and of the
latter was presented in Gajek and Rychlik [5].
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We also use the formulae below (with the convention that Bl,m(x) = 0
for l > m or l < 0):

(4.2)

xBl,m(x) =
l + 1
m+ 1

Bl+1,m+1(x),

(1− x)sBl,m(x) =
(m− l + s)!m!

(m− l)!(m+ s)!
Bl,m+s(x),

B′l,m(x) = m[Bl−1,m−1(x)−Bl,m−1(x)],
1�

y

Bl,m(x) dx =
1

m+ 1

l∑

s=0

Bs,m+1(y).

Proof of Lemma 2. (a) Let W = U. We have r1:2(x) = 4x − 2. Assume
that n ≥ 3. Using (4.2) we get

r′j:n(x) = n(n− 1)[−Bj−2,n−2(x) + 2Bj−1,n−2(x)−Bj,n−2(x)],

r′′j:n(x) = n(n− 1)(n− 2)

× [−Bj−3,n−3(x) + 3Bj−2,n−3(x)− 3Bj−1,n−3(x) +Bj,n−3(x)].

If 2 ≤ j ≤ n−2, then, by Lemma 5, r′j:n is either first positive, then negative
and ultimately positive (+−+, for brevity) or negative everywhere in [0, 1).
The latter is impossible, because rj:n integrates to 0 in (0, 1) and vanishes
at 0 and 1. Thus, rj:n has first a minimum, then a maximum, and it is
convex and concave about the minimum and maximum, respectively. This
combined with Lemma 5 implies that r′′j:n is −+−+, and our claim follows.
Similar considerations apply to the remaining cases.

(b) Assume that W = V. The function r1:2V (x) = 2(1−2e−x) is concave
increasing on [0,∞). Take n ≥ 3. Defining Cj,m(x) = Bj,mV (x) we get

rj:nV (x) = n [−Cj−1,n−1(x) + Cj,n−1(x)]

and
(rj:nV )′(x) = n(n− 1)e−x[−Cj−2,n−2(x) + 2Cj−1,n−2(x)− Cj,n−2(x)],

(rj:nV )′′(x) =
n(n− 1)
n− 2

e−x{−(n− j + 1)Cj−3,n−2(x)

+ (3n− 3j + 1)Cj−2,n−2(x)− (3n− 3j − 1)Cj−1,n−2(x)

+ (n− j − 1)Cj,n−2(x)}.
Since each Cl,m is a superposition of an increasing function V and a Bern-
stein polynomial, the statement of Lemma 5 holds for linear combinations
of Cl,m as well. Analyzing the signs of (rj:nV )′ and (rj:nV )′′, analogously to
the proof of part (a) we easily obtain the desired conclusions.

Proof of Lemma 3. We show that for any g ∈ CW we can find a function
g∗ ∈ C∗ which is closer to h than g. Our proof starts with the observation
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that it suffices to consider functions g satisfying g(0) < 0. Monotonicity of g
and the fact that g integrates to 0 imply that either g(0) < 0 < limx↗d g(x)
or g(x) = 0 for x ∈ [0, d). We exclude the latter case since there exists a
function that vanishes in [0, θ], is linear increasing in (θ, d) and is a better
approximation to h than the constant 0 (see Gajek and Rychlik [5]). As
max{g, h(a)} is nondecreasing convex and is closer to h than g, it suffices to
restrict our attention to functions g satisfying 0 > g(0) ≥ h(a). Since h− g
is continuous, the set {x ∈ [0, d) : h(x) = g(x)} is closed. It follows that
there exist at most countably many closed intervals (possibly degenerate)
where h = g. Note that it suffices to consider those g for which the set
{h = g} contains at most one nondegenerate interval. Indeed, suppose that
there are at least two such intervals. They must be subsets of [a, b], because
g is nondecreasing convex. If h = g in some [α1, β1] ∪ [α2, β2] with β1 < α2
and h 6= g in (β1, α2) then

g̃(x) =
{
h(x), x ∈ (β1, α2),

g(x), x 6∈ (β1, α2),

is nondecreasing convex and ‖h − g‖ ≥ ‖h − g̃‖, a contradiction. Now we
need to consider two cases:

(I) the set {g = h} contains a nondegenerate interval,
(II) the set {g = h} does not contain any interval.

(I) Suppose that h = g on some [α, β] ⊂ [a, b], α < β. We are going to
show that there exists a function g̃ of the form (2.1), closer to h than g. Take
an arbitrary ξ ∈ [α, β] and denote by h1 the nondecreasing function closest
to h|[0,ξ] taking value h(ξ) at ξ, and by h2 the nondecreasing convex function
closest to h|[ξ,d) such that h2(ξ) = h(ξ). We are now in a position to show
that h1 is either constantly h(ξ), or for some a ≤ η < ξ, constantly h(η) on
[0, η] and equal to h on [η, ξ], and h2 is continuous and equal to h on [ξ, ν]
and increasing linear on [ν, d) for some ν ∈ [ξ, d]. Note that h1 is convex,
and so it is the best approximation of h|[0,ξ] in the class of nondecreasing
convex functions. Furthermore, the function

g̃(x) =
{
h1(x), x ∈ [0, ξ],

h2(x), x ∈ (ξ, d),

is nondecreasing and convex, satisfies (2.1) and is closer to h than g.
Now, our goal is to find the nondecreasing function P1h closest to h|[0,ξ].

Applying the modification of the Moriguti method of obtaining greatest con-
vex minorants, presented in Rychlik [12, Example 3, pp. 14–16], we observe
that either P1h(x) = ζ and ζ > h(ξ), or P1h is constantly h(η) on [0, η] for
some a ≤ η < ξ, and equal to h on [η, ξ]. Only in the latter case the pro-
jection has the required form. We proceed to show that if the former holds,
then the nondecreasing function closest to h|[0,ξ] taking value h(ξ) at ξ is
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constantly h(ξ) on [0, ξ]. Lemma 1 yields
ξ�

0

h(x)w(x) dx =
ξ�

0

P1h(x)w(x) dx = ζ

ξ�

0

w(x) dx.

Any nondecreasing function g such that g(ξ) = h(ξ) can be represented as

g(x) = g0(x) + h(ξ)− g0(ξ),

where g0 is nondecreasing and
ξ�

0

g0(x)w(x) dx =
ξ�

0

h(x)w(x) dx = ζ

ξ�

0

w(x) dx,

and g0(0) ≤ ζ ≤ g0(ξ). Therefore

‖h− g‖2 = ‖h− g0 − [h(ξ)− g0(ξ)]1‖2
= ‖h− g0‖2 − 2[h(ξ)− g0(ξ)](h− g0,1) + [h(ξ)− g0(ξ)]2(1,1).

Combining ‖P1h−h‖ ≤ ‖g0−h‖, (h− g0,1) = 0, and (h−P1h,1) = 0 with
h(ξ) ≤ ζ ≤ g0(ξ) we deduce that

‖h− g‖2 ≥ ‖h− P1h‖2 + [h(ξ)− P1h(ξ)]2(1,1)

= ‖h− P1h− [h(ξ)− P1h(ξ)]1‖2 = ‖h− h(ξ)1‖2.
It follows that the nondecreasing function closest to h|[0,ξ] taking value h(ξ)
at ξ is either constantly h(ξ) on [0, ξ] or constantly h(η) on [0, η] for some
η < ξ, and equal to h on [η, ξ].

It remains to observe that h2 is of the form described above. This was
proved in Lemma 1 of Gajek and Rychlik [5].

(II) Assume now that the set {g = h} does not contain any interval. We
will prove that there exists a function g̃ of the form (2.1) or (2.2) such that
‖h− g̃‖ ≤ ‖h− g‖.

Suppose that there are some a ≤ α < β ≤ b such that g(α) = h(α),
g(β) = h(β) and g(x) < h(x) for x ∈ (α, β). Set

g1(x) =
{
h(x), x ∈ (α, β),

g(x), x 6∈ (α, β).

Obviously, ‖h− g1‖ ≤ ‖h− g‖ and g1 is nondecreasing. If g(α−) < h(α−),
then g′(α) = h′(α). If g(α−) > h(α−), then g′(α) < h′(α). Similarly, the
inequalities g(β+) < h(β+) and g(β+) > h(β+) imply g′(β) = h′(β) and
g′(β) > h′(β), respectively. Consequently, g1 has nondecreasing derivative.
Thus g1 is convex. Note that the set {g1 = h} contains an interval, so we
are in case (I) and can find an approximation of the form (2.1).

• Suppose now that g(a+) ≤ h(a+). Our claim is that there exists a func-
tion g̃ of the form (2.1) which is closer to h than g. As we have assumed
that g(a) ≥ g(0) ≥ h(a), it suffices to consider the case g(a) = h(a). If
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g(a+) = h(a+), which means that g = h on some interval, then we proceed
as in case (I).

Assume then that g(a+) < h(a+). If there exists β ∈ (a, b] such that
g(β) = h(β), then g can be replaced by a function equal to h on some
interval, which leads to case (I). Otherwise, two subcases are possible: either
g crosses h at δ ∈ (b, d), or g runs beneath h in the whole (a, d). But then
d <∞ and we set δ = d.

Let lt denote the tangent line to h at t. The slope of lt continuously
increases in [a, b) and so does the value lt(δ) ranging from la(δ) < h(δ) to
lb(δ) > h(δ). It follows that there exists φ ∈ (a, b) such that lφ(δ) = h(δ).
Set

g̃(x) =





h(a), 0 ≤ x < a,

h(x), a ≤ x < φ,

l(x), φ ≤ x < d.

Obviously g̃ is of the form (2.1), it is nondecreasing and convex, and closer
to h than g.

• Consider the case g(a+) > h(a+). Since g(0) < 0, it follows that there
exists α ∈ [0, a] such that h(α) = g(α). Clearly, there also exists α′ ∈ [a, b]
such that h(α′) = h(α). Note that the constant h(α) is closer to h than g
on [0, α′].

Our next objective is to show that if g(a+) > h(a+) and the set of
degenerate intervals {g = h}∩ (a, b] contains at least two points then one of
the following two cases holds:

1) there exists a function g̃ of the form (2.1) closer to h than g;
2) there are only two such points β < φ, and then g > h on (β, φ) and

g(φ+) < h(φ+).

If h(x) = g(x) for x ∈ {β, φ}, β < φ and g < h on (β, φ), then, as already
shown, g can be replaced by some function of the form (2.1). If h(x) = g(x)
for x ∈ {β, φ} , h(x) 6= g(x) for x ∈ (a, β) and g(β−) > h(β−), g > h on
(β, φ) and g(φ+) > h(φ+), then the function

g1(x) =
{
h(x), x ∈ (β, φ),

g(x), x 6∈ (β, φ),

is closer to h than g, belongs to (1.5) and can be replaced by a function
of the form (2.1), because {g1 = h} contains an interval. Therefore the
inequality g(a+) > h(a+), combined with the assumption that {g = h}
does not contain an interval, implies four cases:

(i) {g = h} ∩ (a, b) = ∅, i.e. g > h on (a, b),
(ii) {g = h} ∩ (a, b) = {φ} and g(φ+) > h(φ+),

(iii) {g = h} ∩ (a, b) = {φ} and g(φ+) < h(φ+),
(iv) {g = h} ∩ (a, b) = {β, φ} and g > h on (β, φ) and g(φ+) < h(φ+).
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If either (i) or (ii) hold, then there are two possibilities:

(a) g ≥ h on the whole (b, d) (g and h may be tangent at some δ ∈ (b, c)),
(b) there exist δ ∈ (b, c) and ∆ ∈ (δ, d) such that g > h on (b, δ) and

(∆, d) and g < h on (δ,∆).

If (a) holds, then there exists a nondecreasing linear function l such that
h ≤ l ≤ g on (b, c), where g is convex and h concave. Moreover, h ≤ l ≤ g
on (c, d), and l ≤ g on (0, b). In case (i) we have

l(0) ≤ g(0) ≤ g(α) = h(α) = h(α′),

so l crosses h1 = max {h(α), h} at some α′′. The function

g2(x) =
{
h(α), 0 ≤ x ≤ α′′,
l(x), α′′ < x < d,

belongs to (1.5) and is of the form (2.1) provided α′′ > α′. Otherwise it is of
the form (2.2). The constantly h(α) function is closer to h than g on (0, α′′),
and h ≤ l ≤ g on (α′′, d). If case (ii) holds, then g(φ) = h(φ). It follows that
l crosses h at α′′ ≥ φ. Hence g2 is of the form (2.1) and is closer to h than g.

Assume now that (b) holds. Take the line l2 passing through (δ, h(δ))
and (∆,h(∆)). Then l2(x) ≤ g(x) for x ∈ [0, δ], g(x) ≤ l2(x) ≤ h(x) for
x ∈ [δ,∆] and h(x) ≤ l2(x) ≤ g(x) for x > ∆ and h(δ−) < l2(δ−). Applying
the same arguments as in (a) we conclude that l2 crosses h1 = max {h(α), h}
at some α′′. Therefore, we improve the approximation if we replace g by

g3(x) =
{
h(α), 0 ≤ x ≤ α′′,
l2(x), α′′ < x < d,

which is of the form (2.1) or (2.2).
It remains to consider cases (iii) and (iv). Then g runs beneath h on

[φ, b] where h is convex and either g < h on (b, d) or g crosses h at a
unique ∆ ∈ (b, d). If the former holds, then we set ∆ = d < ∞. Let l3 be
the line passing through (φ, h(φ)) and (∆,h(∆)), with h(∆) ≥ g(∆). Then
l3(x) ≤ g(x) for x ∈ [0, φ], h(φ−) < l3(φ−) and g(x) ≤ l3(x) ≤ h(x) for
x ∈ [φ,∆] and h(x) ≤ l3(x) ≤ g(x) for x > ∆. Since l3(x) ≤ g(x) for x < φ
and g(0) < h(0), we see that l3(x) = h(x) for some x > φ. Moreover l3
crosses h1 = max{h(α), h} at some α′′ ∈ (α, φ]. Let

g4(x) =
{
h(α), 0 ≤ x ≤ α′′,
l3(x), α′′ < x < d.

If (iv) holds, then g4 is of the form (2.1). If (iii) holds, then g4 is either of
the form (2.1) or (2.2). Obviously, ‖g4−h‖ ≤ ‖g−h‖. This ends the proof.

Proof of Lemma 4. (i) From (A) we have � d0 h(x)w(x) dx = 0 and clearly

h(d) = 0. Since h(β) ≤ 0 for any β ≤ θ, we see that � β0 h(x)w(x) dx < 0,
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which implies h(β) < 0 for β ≤ θ. Likewise, h(β) ≥ 0 for β > θ, which gives
0 < � dβ h(x)w(x) dx = − � β0 h(x)w(x) dx. Thus h(β) < 0 for β > θ.

(ii) We have

h′(β) =
h(β)w(β) � β0 w(x) dx− w(β) � β0 h(x)w(x) dx

[ � β0 w(x) dx]2

=
w(β)[h(β)− h(β)]

� β0 w(x) dx
.

It suffices to show that h > h in [0, α] and h < h in (α, d). Let W (β) =
� β0 w(x) dx. Then W is strictly increasing and W (d) = 1. With the notation

HW (γ) =
γ�

0

hW−1(x) dx

for γ ∈ [0, 1] we have

HW (W (β)) =
W (β)�

0

hW−1(x) dx =
β�

0

h(x)w(x) dx.(4.3)

Note that H ′W (γ) = hW−1(γ) and H ′W (W (β)) = h(β). Thus H ′W (0) = 0,
H ′W decreases in (0,W (a)) and in (W (c), 1), increases in (W (a),W (c)), and
H ′W (W (θ)) = 0. Hence HW is concave decreasing in (0,W (a)), convex de-
creasing in (W (a),W (θ)), convex increasing in (W (θ),W (c)), concave in-
creasing in (W (c), 1) and attains its local minimum at γ = W (θ). Moreover
HW (0) = 0 and

HW (1) =
1�

0

hW−1(x) dx =
d�

0

h(x)w(x) dx = 0.

By definition of W and (4.3), we have h(β) = HW (W (β))/W (β). It follows
that h(β) is the slope of the linear function lβ passing through (0, 0) and
(W (β),HW (W (β))). By concavity of HW in [0,W (a)], lβ lies beneath HW

for W (β) ∈ (0,W (a)), that is, for β ∈ [0, a]. Every line tangent to HW at
W (β) ∈ (0,W (a)) lies over HW in that interval. As H ′W (W (β)) = h(β), we
see that h(β) > h(β) for β ∈ [0, a].

It follows from the convexity ofHW in [W (a),W (θ)] that there is a unique
α ∈ [a, θ] such that the difference h − h changes its sign from positive to
negative. Precisely, α is the point such that the line through (0, 0) and
(W (α),HW (W (α))) is tangent to HW at W (α). Moreover, for β ∈ (θ, d) we
have h(β) < 0 < h(β).

Lemma 6. Assume that α satisfies (2.3). Then for any β ∈ (0, c] the
function

g(x) =
{
h(β), 0 ≤ β ≤ α,
h(max{x, α}), α < β ≤ c,

(4.4)
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is the projection of h|[0,β] onto the convex cone of nondecreasing functions
in the Hilbert space L2([0, β), w(x)dx).

Proof. Rychlik ([12, Example 3, pp. 14–16]) presented the solution to
the problem of projecting functions onto the convex cone of nondecreasing
functions in spaces of the type L2 with nonuniform weight function. In
particular, the projection of h|[0,β) ∈ L2([0, β), w(x)dx) is (H

β
W )′W , where

Hβ
W is the greatest convex minorant of HW on [0, β). From the properties

of HW and HWW , given above, we conclude that (Hβ
W )′W (x) has the form

(4.4), which completes the proof.

Clearly, for any β ≤ max{b, α} the function (4.4) is the projection of
h|[0,β] onto the convex cone of nondecreasing and convex functions in the
space L2([0, β), w(x)dx).

Proof of Proposition 1. Suppose first that the assumptions of the first
claim are satisfied. Take an arbitrary ξ ∈ (α, β) and g defined by (2.5). By
Lemma 6, g|[0,ξ] is the projection of h|[0,ξ] onto the cone of nondecreasing
functions in L2([0, ξ), w(x)dx). Proposition 1 in Danielak [1] implies that
g|[ξ,d] is the projection of h|[ξ,d] onto the convex cone of nondecreasing convex
functions in L2([ξ, d), w(x)dx). Therefore, for any f ∈ CW (see (1.5)) we have

d�

0

[f(x)− h(x)]2w(x) dx ≥
d�

0

[g(x)− h(x)]2w(x) dx

because the inequality holds for the integrals over both [0, ξ] and [ξ, d]. It
follows that g is the projection of h, because it is closer to h than any other
function f from the cone.

Suppose now that PWh is of the form (2.5), but the parameters α, β do
not satisfy the assumptions of the proposition. We will show that we can
find better approximations of h than g, which gives a contradiction. First,
assume that α ∈ (a, β) does not satisfy (2.3). Consider g of the form (2.5)
restricted to [0, β] with β fixed and α ∈ [a, β]. Let

D(α) =
β�

0

[g(x)− h(x)]2w(x) dx.

Then

D′(α) = 2h′(α)[h(α)− h(α)]
α�

0

w(x) dx.

If D′(α) < 0, then D(α) decreases if α increases. If D′(α) > 0, then D(α)
decreases if α decreases. In both cases approximation of h can be improved,
a contradiction.
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Suppose now that g is of the form (2.5), α satisfies condition (2.3), but
λ 6= λ1(β). Set

D(β, λ) =
d�

α

[g(x)− h(x)]2w(x) dx

=
d�

β

[h(β) + λ(x− β)− h(x)]2w(x) dx.

We fix β and look for λ ≥ h′(β) for which D(β, λ) is minimized. The function
D(β, λ) is quadratic in λ and attains its minimum for λ1(β) defined by (2.4).
Hence, we minimize D(β, λ) by taking λ∗(β) = max{h′(β), λ1(β)}. Thus we
can exclude all λ 6= λ∗(β). Furthermore, if λ∗(β) = h′(β), then we improve
the approximation by decreasing β (cf. Gajek and Rychlik [5, pp. 170–171]).
So, we can also exclude λ = λ(β) 6= λ1(β).

Suppose then that g is of the form (2.5), α satisfies (2.3) and λ = λ1(β).
If Y (β) < 0, then g is not convex. If Z(β) 6= 0, then the necessary condition
(1.6) fails and g is not a projection. Therefore, conditions (2.3), Y (β) ≥ 0
and Z(β) = 0 are necessary for g of the form (2.5) with λ = λ1(β) to be
the projection of h onto CW . If there exist α < β1 < β2 satisfying these
conditions, then (2.5) with β2 and λ1(β2) approximates h better on [α, d)
than (2.5) with β1 and λ1(β1) (cf. Danielak [1, proof of Proposition 1]).
Therefore we take the greatest β∗ satisfying the above conditions.

Summing up, we have proved that the assumptions of the first part of
the proposition are necessary and sufficient. If they are not satisfied, then by
Lemma 3, the projection is of the form (2.2). We now show that the function
satisfying the assumptions of the second claim is the best approximation of
h of this form.

Consider the function

D(γ, λ, β) = ‖g − h‖2

=
β�

0

[h(x)− γ]2w(x) dx+
d�

β

[h(x)− λ(x− β)− γ]2w(x) dx.

Defining

g̃λ,β(x) = h(x)− λ(x− β)I[β,d)(x),

we can write

D(γ, λ, β) =
d�

0

[g̃λ,β(x)− γ]2w(x) dx.

The function D(γ, λ, β), with λ and β fixed, is quadratic convex and attains
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its minimum at

γ∗ = γ∗(λ, β) =
d�

0

g̃λ,β(x)w(x) dx = −λ
d�

β

(x− β)w(x) dx.(4.5)

Set D(λ, β) = D(γ∗, λ, β) and

g̃β(x) = (x− β)I[β,d)(x)−
d�

β

(x− β)w(x) dx.

Then the quantity

D(λ, β) =
d�

0

[h(x)− λg̃β(x)]2w(x) dx

for any fixed β ∈ (0, d) is minimized at

λ∗ = λ∗(β) =
� d0 h(x)g̃β(x)w(x) dx

� d0 g̃β(x)2w(x) dx
=

L(β)
M(β)

,

where

L(β) =
d�

β

(x− β)h(x)w(x) dx,

M(β) =
d�

β

(x− β)2w(x) dx−
[ d�

β

(x− β)w(x) dx
]2
.

We have

L′(β) = −
d�

β

h(x)w(x) dx,

M ′(β) = −2
d�

β

(x− β)w(x) dx
β�

0

w(x) dx.

Note that L(d) = 0 and L′(β) < 0, and the same holds for M. It follows
that L(β), M(β) and λ∗(β) are positive for any β ∈ [0, d). Therefore, for
arbitrary fixed β the function of the form (2.2) with optimal parameters γ∗

and λ∗ is nondecreasing and convex.
Let D(β) stand for D(λ∗(β), β). Then

D(β) =
d�

0

h2(x)w(x) dx− 2
L(β)
M(β)

d�

0

h(x)g̃β(x)w(x) dx

+
(
L(β)
M(β)

)2 d�

0

g̃ 2
β (x)w(x) dx =

d�

0

h2(x)w(x) dx− L2(β)
M(β)
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and

D′(β) = 2
L(β)
M(β)

[
λ∗(β)

M ′(β)
2
− L′(β)

]
.

Since D′(β) is continuous and D(β) does not attain its minimum at β = 0
or β = d, we see that the condition D′(β) = 0 is necessary for β ∈ (0, d) to
be optimal. Thus we need

λ∗(β) = 2
L′(β)
M ′(β)

= − h(β)

� dβ(x− β)w(x) dx
.(4.6)

Substituting (4.6) into (4.5), we conclude that β has to satisfy

γ∗(β) =
� β0 h(x)w(x) dx

� β0 w(x) dx
= h(β).

Plugging the optimal γ∗(β) and λ∗(β) into (2.2) we obtain (2.6). The func-
tion g is the best constant approximation of h in [0, β] because

β�

0

g(x)w(x) dx =
β�

0

h(x)w(x) dx.

It is also the best linear approximation of h in [β, d] since it is of the form
λ∗(β)(x − β) + γ∗. It remains to find β ∈ (0, d) satisfying D′(β) = 0, for
which the function of the form (2.6) is the projection of h onto (1.5). We have
stated that the function (2.6) is the projection if the following conditions
are satisfied:

1) a constant approximation in [0, β] is optimal in this interval,
2) the point (β, γ(β)) lies on the curve (β, h(β)),
3) the increasing linear part of (2.6), say l, is the optimal linear approx-

imation of h on [β, d).

Assume that D′(β) = 0 for some β > α. Then either g runs beneath h
on (β, c), or g and h have at least one common point over (β, c). In both
cases we can find a better approximation of the form (2.5).

If conditions 1)–3) hold for β = α, then the constant and linear parts are
the optimal nondecreasing approximations of h on [0, α] and (α, d), respec-
tively, and they together define the desired projection of h on [0, d).

Assume that l(α) < h(α) = h(α) for β = α, where l(α) denotes the
value of the optimal linear approximation of h on [α, d) at α. Then g can be
replaced by a function of the form (2.5), passing through (α, h(α)). So we
have a contradiction. If the function (2.6) with β = α is not the projection,
then the best linear approximation of h on (α, d) is the best nondecreasing
and convex approximation on this interval and l(α) > h(α). Now we decrease
β starting from β = α. Linear functions are still the best nondecreasing
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convex approximations of h on (β, d), the values l(β) change continuously
until they reach the level h(β), earlier than h(β), because h(β) > h(β) for
β < α. Then the function that is constantly h(β) on [0, β] and equal to l on
(β, d) is the projection of h onto (1.5), because h(β) and l are the projections
of h on [0, β) and (β, d), respectively.

The following lemma is a simplified version of Lemma 4 in Gajek and
Rychlik [5].

Lemma 7. If {y ∈ (0, b] : Y (y) > 0} = (0, v) and Z has a finite number
of zeros, then Z is either positive or negative or changes its sign once from
− to + in (0, v).

Proof of Proposition 2. We begin by finding α defined by (2.3). Since
h(x) = sj:n(x) = n[Bj,n−1(x)−Bj−1,n−1(x)], α is the unique solution to

α�

0

n[Bj,n−1(x)−Bj−1,n−1(x)] dx = nα[Bj,n−1(α)−Bj−1,n−1(α)],

which is equivalent to

−Bj,n(α) = (j + 1)Bj+1,n(α)− jBj,n(α),(4.7)

and finally α = (j−1)/(n−1). Note that, by Lemma 4(ii), α > a. The next
step is to evaluate

λ1(β)

=
n � 1

β(x− β)[Bj,n−1(x)−Bj−1,n−1(x)−Bj,n−1(β) +Bj−1,n−1(β)] dx

� 1
β(x− β)2 dx

.

Since

n

1�

β

x[Bj,n−1(x)−Bj−1,n−1(x)] dx

=
∑j

m=0Bm,n+1(β) + (j + 1)Bj+1,n+1(β)
n+ 1

,

nβ

1�

β

[Bj,n−1(x)−Bj−1,n−1(x)] dx =
j + 1
n+ 1

Bj+1,n+1(β),

n[Bj,n−1(β)−Bj−1,n−1(β)]
1�

β

(x− β) dx

=
(n− j)(n− j + 1)Bj,n+1(β)− (n− j + 1)(n− j + 2)Bj−1,n+1(β)

2(n+ 1)
,

we finally obtain
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(4.8) λ1(β)

=

∑j
m=0Bm,n+1(β)− (n−j+1)!

2(n−j−1)!Bj,n+1(β) + (n−j+2)!
2(n−j)! Bj−1,n+1(β)

1
3(n+ 1)(1− β)3

.

We next evaluate Y (β) = λ1(β)− h′(β), where

h′(β) = n(n− 1)[−Bj−2,n−2(β) + 2Bj−1,n−2(β)−Bj,n−2(β)].

Multiplying h′(β) by the denominator of (4.8) we get

h′(β)(n+ 1)(1− β)3

3
= −(n− j + 3)!

3(n− j)! Bj−2,n+1(β)

+
2(n− j + 2)!
3(n− j − 1)!

Bj−1,n+1(β)− (n− j + 1)!
3(n− j − 2)!

Bj,n+1(β).

Therefore

Y (β) =
∑j

m=0 amBm,n+1(β)
1
3(n+ 1)(1− β)3

,(4.9)

where

am = 1, m = 0, . . . , j − 3,

aj−2 = 1 +
(n− j + 3)!

3(n− j)! ,

aj−1 = 1 + (n− j + 2)(n− j + 1)
[1

2 − 2
3(n− j)

]
,

aj = 1 + (n− j)(n− j + 1)
[1

3(n− j − 1)− 1
2

]
.

Since the denominator in (4.9) is positive, Y has the same sign as the
polynomial (3.1) in the numerator. The coefficients am are positive for
m = 0, . . . , j − 2, and aj−1 is negative, because such is the expression in
square brackets. Furthermore, aj = 0 for j = n−2, and aj > 0 for j ≤ n−3.
Thus, by Lemma 5, (3.1) is positive near 0 and negative near 1, provided
j = n − 2. If j ≤ n − 3, then (3.1) is either + − + or positive in (0, 1).
Since the line tangent to h at b lies over the graph of h for β > b, we have
h′(b) > λ1(b), which implies Y1(b) < 0. It follows that (3.1) is positive near 0
and has exactly one zero y ∈ (0, b). The condition y > α, which is equivalent
to Y1(α) > 0, is necessary for the existence of a projection of the form (2.5).
If y ≤ α, then the projection is of the form (2.6).

Next, we find the exact form of the polynomial

Z(β) = n

1�

β

[Bj,n−1(x)−Bj−1,n−1(x)] dx

− n(1− β)[Bj,n−1(β)−Bj−1,n−1(β)]− 1
2λ1(β)(1− β)2.
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Since

n

1�

β

[Bj,n−1(x)−Bj−1,n−1(x)] dx = Bj,n(β),

n(1− β)[Bj,n−1(β)−Bj−1,n−1(β)]

= (n− j)Bj,n(β)− (n− j + 1)Bj−1,n(β),

λ1(β) =
2
∑j

m=0Bm,n+1(β)− (n−j+1)!
(n−j−1)! Bj,n+1(β) + (n−j+2)!

(n−j)! Bj−1,n+1(β)
2
3(n+ 1)(1− β)3

,

with the notation Z1(β) = 2
3(n+ 1)(1− β)Z(β), we obtain

Z1(β) = − 2
3

(n− j − 1)(n− j + 1)Bj,n+1(β) +
2(n− j + 2)!

3(n− j)! Bj−1,n+1(β)

−
j∑

m=0

Bm,n+1(β)+
(n−j+1)!
2(n−j−1)!

Bj,n+1(β)− (n−j + 2)!
2(n− j)! Bj−1,n+1(β).

The polynomial Z1(β) can be represented as Z1(β) =
∑j

m=0 bmBm,n+1(β),
where

bm = − 1, m = 0, . . . , j − 2,

bj−1 = 1
6(n− j + 1)(n− j + 2)− 1,

bj = −1
6(n− j + 1)(n− j − 4)− 1

(cf. (3.2)). The coefficient bj−1 is positive, because j < n−1. If j = n−2, then
bj = 0, and bj < 0 otherwise. It follows that for j = n−2 the polynomial Z1

(and so Z) changes its sign once from − to + at some z ∈ (0, 1). If j < n−2,
then (3.2) is either negative in the whole (0, 1) and then the projection is
of the form (2.5), or it is − + −. By Lemma 7, (3.2) changes its sign in
(0, y) at most once and only from − to +. Therefore, for 2 ≤ j ≤ n − 2
the polynomial (3.2) is either negative on (0, y], or there exists a unique
z ∈ (0, y] such that (3.2) changes its sign at z from − to +. If the former
holds, then the necessary condition (1.6) fails and the projection is not of
the form (2.5). In the latter case, the projection is of the form (2.5) if z > α.
Summing up, (3.3) are necessary and sufficient conditions for (2.5) to be the
projection, with α∗ = α = (j − 1)/(n− 1) and β∗ the smallest positive zero
of the polynomial (3.2). Then

‖PUh‖2U =
α∗�

0

h2(α∗) dx+
β∗�

α∗
h2(x) dx+

1�

β∗
[h(β∗) + λ(x− β∗)]2 dx,

where λ = λ1(β∗), and we finally get (3.5). Using (1.7), we find the cdf (3.6)
for which the bound (3.4) is achieved.
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If (3.3) fails, then PWh is of the form (2.6). Condition (2.7) takes on the
form

Bj,n(β)
[1

3(1− β)3 − 1
4(1− β)4] =

β(1− β)2

2(n+ 1)

j∑

m=0

Bm,n+1(β),

which can be rewritten as

2
3(j+ 1)(n− j+ 1)Bj+1,n+2(β) +

(n− j + 2)!
6(n− j)! Bj,n+2(β) =

j+1∑

m=1

mBm,n+2(β).

This is equivalent to

K(β) =
j+1∑

m=1

cmBm,n+2(β) = 0,

where

cm = m > 0, m = 1, . . . , j − 1,

cj = j − 1
6(n− j + 1)(n− j + 2),

cj+1 = (j + 1)
[
1− 2

3(n− j + 1)
]

(cf. (3.8)). Since n− j ≥ 2, we have cj+1 < 0. This combined with Lemma 5
implies that K is positive near 0, negative near 1 and has a unique zero
β∗ ∈ (0, 1). It uniquely determines PUh of the form (2.6). Its norm gives
the bound in (3.7). Applying (1.7), we obtain the cdf (3.9) attaining the
bound (3.7).

Proof of Proposition 3. We proceed analogously to the proof of Propo-
sition 2. Set h(x) = rj:nV (x) = fj+1:nV (x) − fj:nV (x). Suppose first that
PV h is of the form (2.5). The task is now to find α satisfying

α�

0

[Bj,n−1(1− e−x)−Bj−1,n−1(1− e−x)]e−x dx

= (1− e−α)[Bj,n−1(1− e−α)−Bj−1,n−1(1− e−α)]

(cf. (2.3)) or equivalently

−Bj,n(1− e−α) = (j + 1)Bj+1,n(1− e−α)− jBj,n(1− e−α).

Writing α0 = 1− e−α, we obtain equation (4.7) and so α0 = (j− 1)/(n− 1).
Next we determine

λ1(β) =
� ∞β (x− β)[sj:nV (x)− sj:nV (β)]e−x dx

� ∞β (x− β)2e−x dx
.(4.10)
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The denominator of (4.10) is equal to 2e−β, and its numerator can be rewrit-
ten as

A(β) = n

∞�

β

(x− β)[Cj,n−1(x)− Cj−1,n−1(x)]e−x dx− sj:nV (β)e−β.

Gajek and Rychlik [5, pp. 176–177]) showed that
∞�

β

(x− β)Ci,m(x)e−x dx =
1

m+ 1

i∑

k=0

S(i+ 1− k,m+ 1− k)Ck,m+1(β),

where

S(i, n) = EV (Xi:n) =
i∑

m=1

1
n+ 1−m, 1 ≤ i ≤ n.

Therefore

A(β) =
j−1∑

m=0

[S(j + 1−m,n−m)− S(j −m,n−m)]Cm,n(β)

+ S(1, n− j)Cj,n(β)− sj:nV (β)e−β.

Since S(j + 1−m,n−m)− S(j −m,n−m) = S(1, n− j) = 1/(n− j) and

sj:nV (β)e−β = (n− j)Cj,n(β)− (n− j + 1)Cj−1,n(β),

it follows that

A(β) =
j∑

m=0

Cm,n(β)
n− j − (n− j)Cj,n(β) + (n− j + 1)Cj−1,n(β)

and finally we obtain

λ1(β) =
eβ

2

{ j∑

m=0

Cm,n(β)
n− j − (n− j)Cj,n(β) + (n− j + 1)Cj−1,n(β)

}
.

Our next goal is to determine

Y (β) = λ1(β)− h′(β) =
eβ

2
[A(β)− 2e−βh′(β)].

As
h′(β)
eβ

= − (n− j + 2)!
(n− j)! Cj−2,n(β)

+
2(n− j + 1)!
(n− j − 1)!

Cj−1,n(β)− (n− j)!
(n− j − 2)!

Cj,n(β),

we have

Y (β) =
eβ

2

j∑

m=0

amCm,n(β),
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where

am =
1

n− j , m = 0, . . . , j − 3,

aj−2 =
1

n− j + 2
(n− j + 2)!

(n− j)! ,

aj−1 =
1

n− j + (n− j + 1)[1− 4(n− j)],

aj =
1

n− j + (n− j)[2(n− j)− 3].

We easily check that am > 0 for m = 0, . . . , j − 2 and aj−1 < 0. Moreover
aj = 0 for j = n− 1 and aj > 0 for j < n− 1. Hence Y is +− for j = n− 1,
and it is either + or +−+ for the remaining values of j. By the argument
used in the proof of the previous proposition, Y (b) < 0. Therefore, for any
2 ≤ j ≤ n − 1, there exists y ∈ (0, b) such that Y (y) = 0 and Y (β) > 0 for
β ∈ (0, y). Setting Y2V (β) = 2(n+2)e−βY (β), we get (3.10) for x = 1−e−β .

Next we analyze the behavior of

Z(β) =
∞�

β

sj:nV (x)e−x dx− sj:nV (β)
∞�

β

e−x dx− λ1(β)
∞�

β

(x− β)e−x dx,

where
∞�

β

sj:nV (x)e−x dx = n

1�

1−e−β
[Bj,n−1(y)−Bj−1,n−1(y)] dy = Cj,n(β),

sj:nV (β)
∞�

β

e−x dx = (n− j)Cj,n(β)− (n− j + 1)Cj−1,n(β).

Finally, we obtain Z(β) =
∑j

m=0 bmCm,n(β), where

bm = − 1
2(n− j) , m = 0, . . . , j − 2,

bj−1 =
n− j + 1

2
− 1

2(n− j) ,

bj = 1− 1
2(n− j) −

n− j
2

.

We see that bm < 0 for m = 0, . . . , j − 2, bj−1 > 0, bj < 0 for j < n− 1 and
bj = 0 for j = n−1. Therefore, for j = n−1 the function Z has exactly one
zero. If j < n− 1, then Z is either −+−, or negative everywhere in (0,∞).
Analysis similar to that in the proof of Proposition 2 shows that the latter
is impossible. Set Z2V

−1(β) = 2(n+1)(n−j)Z(β). As in the previous proof
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we deduce that relations (3.12) are necessary and sufficient for the existence
of the projection of the form (2.5). Then α∗ = V −1(α0) and β∗ = V −1(β0),
where β0 is the smallest positive zero of (3.11). Determining the projection
of the form (2.5) with λ = λ2(β∗) enables us to calculate the bound (3.14)
and the distribution function (3.15) attaining the bound.

Suppose now that (3.12) fails. Then the projection is of the form (2.6).
The aim is to find β satisfying (2.7). The condition can we rewritten as

Cj,n(β)(2e−β − e−2β) = (1− e−β)e−β
1

n− j

j∑

m=0

Cm,n(β),

or equivalently

2(j + 1)Cj+1,n+1(β) + (n− j + 1)Cj,n+1(β) =
1

n− j

j+1∑

m=1

mCm,n+1(β).

Further calculations lead to

K(β) =
j+1∑

m=1

dmCm,n+1(β) = 0

with
dm =

m

n− j , m = 1, . . . , j − 1,

dj =
j

n− j − (n− j + 1),

dj+1 = (j + 1)
(

1
n− j − 2

)
.

Since dm > 0 for m = 1, . . . , j − 1 and dj+1 < 0, independently of the sign
of dj , the function K(β) has exactly one zero, say z. Thus, the projection is
of the form

PV h(x) = −h(z)[ez(x− z)I[z,∞)(x)− 1],
where

h(z) =
� z0[fj+1:nV (x)− fj:nV (x)]e−x dx

� z0 e−x dx
=
−fj+1:n+1(1− e−z)

(1− e−z)(n+ 1)
.

Then

‖PV h‖2V = [h(z)]2(2ez − 1) =
f2
j+1:n+1(1− e−z)

(1− e−z)2(n+ 1)2 (2ez − 1)

and substituting % = 1 − e−z, we obtain the square of the bound (3.16).
Applying (1.7) we determine the cdf (3.17), for which the bound (3.16) is
achieved.
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