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SURVIVAL PROBABILITY APPROACH TO THE

RELAXATION OF A MACROSCOPIC SYSTEM IN THE

DEFECT-DIFFUSION FRAMEWORK

Abstract. The main objective of this paper is to present a new prob-
abilistic model underlying the universal relaxation laws observed in many
fields of science where we associate the survival probability of the system’s
state with the defect-diffusion framework. Our approach is based on the no-
tion of the continuous-time random walk. To derive the properties of the
survival probability of a system we explore the limit theorems concerning
either the summation or the extremes: maxima and minima. The forms of
the survival probability that result from the scheme under consideration
are in agreement with the characteristics of empirical data. Moreover, the
proposed approach allows us to indicate their origins.

1. Introduction. We present a new probabilistic approach to model
the irreversible stochastic transition that a system undergoes as a whole
due to the transitions of individuals (atoms, molecules, etc.) The idea is
to incorporate the empirical knowledge on evolution in course of time of
physical systems driven by external forces to a nonequilibrium excited state.
Our considerations are based on the assumption that the transition of the
system from its initial state occurs under the diffusion of defects (such as
microscopic cavities or random orientations of crystallites) [11]. For other
approaches see [9, 12, 15, 17].

We consider a macroscopic physical system consisting of a large number
of objects individually taking part in the transition. The transition of the
system from a nonequilibrium state A imposed at t = 0 to the relaxed state
B at some t > 0 occurs as a consequence of the first transition of individuals.
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The nonincreasing empirical function Φ(t) (Φ(0) = 1, Φ(∞) = 0) defined by
the change of some physical parameter that discriminates between the states
A and B is called the relaxation function and has the meaning of the survival
probability of A. The experimental evidence [1, 4, 6] indicates that in the
majority of cases the forms of the response functions f(t) := −dΦ(t)/dt that
satisfactorily fit the data follow either the so-called short-time fractional
power law, i.e.,

lim
t→0

f(t)/t−a = const for some 0 < a < 1,(1)

or both short and long-time fractional power laws:

lim
t→0

f(t)/t−a1 = const for some 0 < a1 < 1,(2)

lim
t→∞

f(t)/t−a2−1 = const for some 0 < a2 < 1.(3)

The transition of an individual object from its excited state to the equi-
librium occurs under the diffusion of defects. Each object (target) in the
system is surrounded by an appropriately large number of defects. When
the defects meet an excited state prepared at t = 0 (a dipole, stress, etc.)
the latter is allowed to relax. We take into account all the nearest defects
which at t = 0 are at the same distance from the target considered (all sited
on a sphere of the random radius L (see Fig. 1)). We assume that they can
reach the target diffusing in one direction along the line segment joining
the defect and the target. We model this movement by means of a rescaled
continuous-time random walk (CTRW) (see also [8, 11]).

Fig. 1. The defect-diffusion model

The objective of this paper is to derive the form of the survival probabil-
ity of the system’s state A and to find its relationship with the parameters
characterizing the movements of defects. In order to familiarize the reader
with the notions used further and to justify the consecutive steps that we
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perform, we sketch briefly the stochastic scenario of our defect-diffusion
model:

• Let θ denote the survival time of an individual target in its imposed
state. We will say that the target has not relaxed until time t > 0 if
none of the N defects that surround it has covered the distance L.
This way we associate the survival probability of an individual with
the probability of {max{R1(t), . . . , RN (t)} < L}, where Rj(t) is the
distance covered by the jth defect until time t.

• The system consists of a large number M (we also allow this number
to be random ZM ) of targets with i.i.d. survival times θ1, . . . , θM . We
identify the survival probability of the entire system with the proba-
bility of its first passage [7–10, 15–17], i.e.,

P(θ̃ ≥ t) = P(min{θ1, . . . , θM} ≥ t),

where θ̃ denotes the effective survival time of the imposed state A (the
effective waiting time for the entire system).

The article is structured as follows: In Section 2 we introduce the notion of
the rescaled continuous-time random walk and study its asymptotic proper-
ties. In Section 3 we express the survival probability of an individual and of
the entire system in terms of the rescaled CTRW, and basing on extreme-
value theory together with the results obtained in Section 2 we derive formu-
las for the survival probabilities. Finally, in Section 4 we discuss the results
obtained in the context of the physical phenomenon of relaxation.

2. Rescaled continuous-time random walk as a model of move-
ment of defects. The notion of the continuous-time random walk (CTRW)
was introduced by Montroll and Weiss [14] as a walk with random time in-
tervals between subsequent jumps (see Fig. 2). Since then it has been applied

Fig. 2. An exemplary trajectory of the CTRW with the jumps performed in one direction
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to model a wide variety of phenomena connected with anomalous diffusion.
The definition of this stochastic process can be formulated as follows:

Definition 2.1 (see [8]). Let (T,R) = {(Ti, Ri), i = 1, 2, . . .} be a se-
quence of i.i.d. random vectors such that Ti > 0 with probability 1. The
random variable Ti is usually interpreted as a waiting time of a moving
particle for the ith jump, and Ri indicates both the length and direction of
the ith jump. The continuous-time random walk {R̃(t), t ≥ 0} generated by
(T,R) is defined to be the random sum

R̃(t) =

NT (t)∑

i=1

Ri,(4)

where {NT (t), t ≥ 0} is the counting renewal process corresponding to T.
More precisely, R̃(t) = SR(NT (t)), where SR(n) and ST (n) denote the par-
tial sums of the sequences R = {Ri, i = 1, 2, . . .} and T = {Ti, i = 1, 2, . . .},
respectively (defined as SR(0) = ST (0) = 0, and SR(n) =

∑n
i=1Ri and

ST (n) =
∑n
i=1 Ti for n = 1, 2, . . .), and

NT (t) = max {k : ST (k) ≤ t} .(5)

Further considerations are restricted to the jump parameters with the
following properties:

Assumption 1. (T,R) = {(Ti, Ri), i = 1, 2, . . .} is a sequence of i.i.d.
random vectors such that Ri and Ti are independent positive random vari-
ables for which

P(Ri ≥ r) r→∞∼ (r/bR)−α for some 0 < α < 1, bR > 0,(6)

P(Ti ≥ t) t→∞∼ (t/bT )−λ for some 0 < λ < 1, bT > 0.(7)

Here and further on, we use the symbol “∼” to specify the asymptotic
behavior, i.e. f(x)

x→a∼ bxc means limx→a f(x)/bxc = 1. Conditions (6) and
(7) signify that the random variables Ri and Ti, respectively, have heavy
tails and are sufficient for the respective random variables to belong to the
domain of attraction of the one-sided Lévy-stable law with the index of
stability equal to the heavy-tail exponent. Therefore, Ri and Ti satisfying
Assumption 1 belong to the domains of attraction of the random variables
Sα and Sλ, respectively, where Sa with 0 < a < 1 denotes the completely
asymmetric Lévy-stable random variable with Laplace transform ψa(s) =
E(exp(−sSa)) = exp(−sa) [18]. (We will denote by Sa(x) the corresponding
distribution function.)

In the following definition we introduce the notion of the rescaled CTRW
constructed from the CTRW generated by independent and heavy-tailed
jump parameters (T,R). We use this transformation of CTRW to model the
migration of defect in the defect-diffusion approach to explain the relaxation
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mechanism. The procedure of rescaling allows us to derive the distribution
of the defect position at any fixed t > 0.

Definition 2.2. For any fixed t > 0 we define

R(t) := lim
c→∞

R̃(ct)

cλ/α
(8)

as a weak limit, if it exists. The resulting stochastic process {R(t), t ≥ 0}
will be called the rescaled CTRW generated by (T,R).

Proposition 2.1. If (T,R) satisfies Assumption 1, then R(t) is well
defined and

R(t)
d
= tλ/αA

Sα
Sλ/αλ

,(9)

where A is the constant (
bαRΓ (1− α)

bλTΓ (1− λ)

)1/α

,

and the Lévy-stable random variables Sα, Sλ are independent.

Proof. Condition (9) is in fact a limit theorem for the CTRW R̃(ct) and
is analogous to the result obtained for the CTRW in [7, 12].

Below we derive the asymptotic properties of the rescaled CTRW at any
fixed time t > 0. This result will be used in the following section, since it
permits obtaining the distribution of the maximum of an appropriately con-
structed sequence of i.i.d. random variables which are independent rescaled
CTRW’s at fixed time t > 0.

Theorem 2.1. Fix t > 0. Under Assumption 1 the tail of the distribu-
tion of R(t) has the following asymptotic property :

P(R(t) ≥ x)
x→∞∼ B(t)x−α,(10)

where

B(t) = tλ
sinπλ

πλ

bαR
bλT
.

Proof. For the function

H(t) := E

(
exp

(
−tα/λ

( Sα
Sλ/αλ

)−α/λ))
,

we have

H(t) = E

(
exp

(
−tα/λ Sλ

Sα/λα

))
= E

(
exp

(
−tα 1

Sαα

))

= P

(
Γ1 ≥ tα

1

Sαα

)
= P(Γ

1/α
1 Sα ≥ t),
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where Γ1 is a random variable distributed according to the standard expo-
nential law, independent of Sα. Therefore by [3, Chapter XIII]

∞�

0

e−stH(t) dt =
1− E(exp(−sΓ 1/α

1 Sα))

s
=

1− E(exp(−sαΓ1))

s
(11)

=
1− (1 + sα)−1

s
s→0∼ sα−1.

By the Tauberian theorems condition (11) implies

H(t)
t→∞∼ 1

Γ (1− α)
t−α.

As a consequence, the Laplace transform of the random variable Sλ/Sα/λα

satisfies

E

(
exp

(
−t Sλ
Sα/λα

))
t→∞∼ 1

Γ (1− α)
t−λ(12)

since E(exp(−tSλ/Sα/λα )) = H(tλ/α). Again by the Tauberian theorems,
condition (12) implies

P

( Sλ
Sα/λα

≤ z
)
z→0∼ zλ

Γ (1− α)Γ (λ+ 1)
.(13)

Property (13) together with Proposition 2.1 leads to

P(R(t) ≥ x) = P

( Sλ
Sα/λα

≤
(

x

tλ/αA

)−α/λ)
x→∞∼ tλ

sinπλ

πλ

bαR
bλT

x−α,

which is equivalent to (10).

In the following section we focus on the survival probability of the sys-
tem’s imposed state in the defect-diffusion framework. We will attribute the
rescaled CTRW properties to the behavior of all defects in the system. We
will propose a suitable definition of the survival probability, and derive its
forms.

3. The rescaled CTRW approach to the survival probability.
Consider a family {(T (jk), R(jk)), j, k = 1, 2, . . .} of independent random
sequences

(T (jk), R(jk)) = {(T (jk)
i , R

(jk)
i ), i = 1, 2, . . .},

such that for any fixed pair j, k = 1, 2, . . . the sequence (T (jk), R(jk)) satisfies
Assumption 1 with the same parameters α, λ, bR and bT . For a fixed t > 0
and j, k = 1, 2, . . . , let Rjk(t) be defined as in Definition 2.2 by means of

(T (jk), R(jk)).
We let {θk, k = 1, 2, . . .} be a sequence of i.i.d. positive random variables

such that for any k the conditional probability of θk given a positive random
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variable L is

P(θk ≥ t |L = l) = lim
N→∞

P(AN max{R1k(t), . . . , RNk(t)} < l),(14)

where

AN = N−1/α
(

sinπλ

πλ

bαR
bλT

)−1/α

,

while L is independent of (T (jk), R(jk)) for any j, k and satisfies the condition

P(L < l)
l→0∼ (l/c0)κ, 0 < κ, c0 = const.(15)

Theorem 3.1. Let κ 6= α. The survival probability of the imposed state
of an individual kth target has the form

P(θk ≥ t) = E(exp(−tλL−α))(16)

and the survival probability of the system in state A is

P(θ̃ ≥ t) = lim
M→∞

P(BM min{θ1, . . . , θM} ≥ t) = exp(−tηλ),(17)

where η = min{κ/α, 1}, BM = bM1/ηλ and

b =

{
c
−κ/ηλ
0 (Γ (1− η))1/ηλ, η < 1,

µ1/λ, η = 1, µ = E(L−α).

Proof. By extreme-value theory [13, Chapter 1], the asymptotic property
given in Theorem 2.1 implies that for any k = 1, 2, . . . ,

lim
N→∞

P(AN max(R1k(t), . . . , RNk(t)) ≤ l) = exp(−(l/tλ/α)−α)

= exp(−tλl−α)

and therefore P(θk ≥ t) = E(exp(−tλL−α)), which proves (16).

Observe that condition (15) is equivalent to P(L−α > z)
z→∞∼ (zcα0 )−κ/α.

Hence, for κ/α > 1 the expected value µ = E(L−α) is finite, and it follows
from the Tauberian theorems that

P(θk ≤ t) = 1− E(exp(−tλL−α))
t→0∼ µtλ,(18)

whereas for η = κ/α < 1, the Tauberian theorems lead to

P(θk ≤ t) t→0∼ c−κ0 Γ (1− η)tλη.(19)

Now (18) and (19) yield (17) by extreme-value theory. This technique does
not apply to the case of κ = α, which remains an open question.

The following theorem corresponds to the case when we assume the num-
ber of targets that actively contribute to the relaxation process to be ran-
dom, in particular to have negative binomial distribution. Some attempts
to justify the ubiquity of this distribution in physics have been presented
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in [5]. By assuming the model in which ZM follows the negative binomial
law, we allow for the clustering in the number of targets in the system.

Theorem 3.2. Let a random sequence {ZM ,M = 1, 2, . . .} be indepen-
dent of (T (jk), R(jk)) and for any fixed M let ZM be distributed according to
the negative-binomial law with parameters c > 0 and pM ∈ (0, 1), that is,

P(ZM = m) =
Γ (m+ c)

m!Γ (c)
(pM )c(1− pM )m, m = 0, 1, 2, . . .(20)

Assume additionally that pM
M→∞∼ D/Md for some positive constants d

and D. Then the survival probability of the system in state A is

P(θ̃ ≥ t) = lim
M→∞

P(B′M min{θ1, . . . , θZM} ≥ t) = (1 + tηλ)−c,(21)

where B′M = (b/D1/ηλ)Md/ηλ.

Proof. We observe that for the sequence θ of positive random variables
we may define V (M) := (min {θ1, . . . , θM})−1 and rewrite (21) as

lim
M→∞

P

(
V (M)

bM1/ηλ
≤ t
)

= P(W−1
ηλ ≤ t),(22)

where Wηλ is a random variable distributed according to the standard
Weibull law. Moreover, we observe by [5] that

lim
M→∞

P

(
ZM

D

Md
≤ z

)
= Γc(z),(23)

where Γc is the standard gamma distribution function with the shape pa-
rameter c. Therefore, by [2], we deduce from (22) and (23) that

lim
M→∞

P

(
V (ZM )

bD−1/ηλMd/ηλ
≤ t
)

= P(Γ 1/ηλ
c W−1

ηλ ≤ t),(24)

where the random variables Γc and Wηλ are taken to be independent. As a
consequence of (24), we obtain

lim
M→∞

P

(
b

D1/ηλ
Md/ηλ min{θ1, . . . , θZM} ≥ t

)
= P

(
Wηλ

Γ
1/ηλ
c

≥ t
)

(25)

=
1

(1 + tηλ)c
,

which proves (21).

4. Physical interpretation of the results. We have obtained the sur-
vival probability of the nonequilibrium state of the system, which is equiva-
lent to the empirical relaxation function Φ(t) = P(θ̃ ≥ t). We have, therefore,
found the probabilistic scheme yielding two forms of relaxation functions,
i.e.,

Φ1(t) = exp(−(Ct)ηλ),(26)
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Φ2(t) = (1 +Dtηλ)−c,(27)

where C and D are positive constants. This result is of a significant impor-
tance as the functions (26) and (27) indeed exhibit the universal behavior.
More precisely, formula (26) yields the short-time fractional power law (1)
with a = 1 − ηλ, whereas the relaxation function of the form (27) yields
for 0 < c < (ηλ)−1 both the short and long-time fractional power laws (2)
and (3) with a1 = 1 − ηλ and a2 = cηλ. Moreover, the proposed approach
allowed us to indicate the origins of the power-law characteristics. In the
case of κ < α the parameters a, a1 and a2 depend on both spatial (by means
of α and κ) and temporal (λ) characteristics of the system, whereas for
κ ≥ α they contain only the information on the temporal characteristics
of the system. We notice that the randomness (via c) in the number of ac-
tive participants does not influence the short-time system evolution. On the
contrary, it causes the slowing down in the long-time behavior.

The author is deeply indebted to Dr. Agnieszka Jurlewicz for many fruit-
ful comments leading to the improvement of the presentation.
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