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NUMERICAL EXPERIMENTS FOR MATHEMATICAL
MODELS OF RAILWAY TRACK OSCILLATIONS

Abstract. Two mathematical models of railway track oscillations are
compared on the basis of numerical experiments.

1. Introduction. Good mathematical models describing vibrations of
railway track and trains are important and helpful in engineering studies
concerning comfort and safety of travel (see [1]–[5]). The main goal of this
work is a mathematical description of the dynamical behaviour of the system
train-track. We present a numerical experiment for two different mathemat-
ical models of railway track oscillations. We consider only one-dimensional
models. The first is based on Mathews’ problem (see [2]), which treated a
Bernoulli–Euler beam on an elastic foundation as an infinite rail track under
the action of a moving (with velocity v) and harmonically oscillating force.
The force of frequency $/2π is vertical to the beam and at the point x and
time t > 0 has the value F0 cos$t · δ(x− vt), where F0 is the amplitude. In
this model we do not take into account vibrations of the particular sleepers,
but we introduce an elasticity term for the whole beam. The second model
(see [4]) consists of an equation of a continuous Euler–Bernoulli beam and
a differential equation describing vibrations of the sleepers. The track is
considered as a system consisting of an infinite continuous elastic beam con-
nected with a finite number of discrete masses modelling the sleepers. We
imitate the motion of the train by the vertical force acting at one fixed point
x = l and having the form F0e

−ω̃t cos$t ·δ(x− l). The positive parameter ω̃
is a substitute for the velocity of the train. Using realistic data we compare
results of numerical experiments for both models.

2. Presentation of two mathematical models. We briefly describe
the relevant models. In both, we shall consider only asymptotic solutions,
i.e. solutions for which the effect of the initial condition has disappeared.
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2.1. Mathematical model of infinite railway track oscillations. This
model is based on Mathews’ problem (see [2]), which treated a Bernoulli–
Euler beam on an elastic foundation as an infinite rail track under the ac-
tion of a moving and harmonically oscillating force. The equation of the
track is

EI
∂4y

∂x4 + %A
∂2y

∂t2
+ sy = F0 cos$t · δ(x− vt),(1)

where

y(x, t) — the deflection of the beam at the point x and time t,
E — Young’s modulus of the material of the beam,
I — moment of inertia of the section of the beam, with respect to the

horizontal axis,
% — density of the beam,
A — area of the cross-section of the beam,
s — coefficient of elasticity,
F0 — amplitude of the force,
δ — Dirac delta function,
v — velocity of the train.

Note that the frequency of the force is $/2π. We also assume that y(x, t)
satisfies the boundary conditions

lim
|x|→∞

y(i)(x, t) = 0 (i = 0, . . . , 4).(2)

Theorem 1. The asymptotic solution y(x, t) of equation (1) is given by

(3) y(x, t)

=
F0

2EI
cos$t

(
1
b1

(4a2 − b21 + b22)e−b1|r| cos a|r|+ 4ab1e−b1|r| sin a|r|
(4a2 − b21 + b22)2 + 16a2b21

+
1
b2

(4a2 − b22 + b21)e−b2|r| cos a|r|+ 4ab2e−b2|r| sin a|r|
(4a2 − b22 + b21)2 + 16a2b22

)

± F0

2EI
sin$t

(
1
b1

(4a2 − b21 + b22)e−b1|r| sin a|r| − 4ab1e−b1|r| cos a|r|
(4a2 − b21 + b22)2 + 16a2b21

− 1
b2

(4a2 − b22 + b21)e−b2|r| sin a|r| − 4ab2e−b2|r| cos a|r|
(4a2 − b22 + b21)2 + 16a2b22

)
,

where r = x−vt and the negative sign holds when r > 0 and the positive sign
for r ≤ 0. Moreover , the real and positive values of a, b1, b2 are obtained by
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solving the system of equations




2a2 − b21 − b22 =
%Av2

EI
,

2a(b21 − b22) =
2v$%A
EI

,

(a2 + b21)(a2 + b22) =
s− %A$2

EI
.

(4)

Remark 2. Since the solution Y (x, t) of the homogeneous partial differ-
ential equation

α
∂4Y

∂x4 + β
∂2Y

∂t2
+ γY = 0, where α, β, γ > 0,

satisfying null initial conditions is zero, the asymptotic solution y(x, t) given
by (3) is uniquely determined.

Sketch of proof of Theorem 1. We are only looking for the asymptotic
solution of equation (1). It is easy to notice that the deflection of the beam
at point r = x − vt has the same value at times t and t + 2π/$. In other
words, y(r, t) is periodic with period 2π/$. Suppose an asymptotic solution
has the form

y(x, t) = y1(r) cos$t+ y2(r) sin$t,(5)

where
r = x− vt.

Substituting into (1) we obtain
(
EI

∂4y1

∂r4 + %Av2 ∂
2y1

∂r2 − 2v%A$
∂y2

∂r
+ (s−$2%A)y1

)
cos$t

+
(
EI

∂4y2

∂r4 + %Av2 ∂
2y2

∂r2 + 2v%A$
∂y1

∂r
+ (s−$2%A)y2

)
sin$t

= F0δ(r) cos$t.
By the last equality we get





EI
∂4y1

∂r4 + %Av2 ∂
2y1

∂r2 − 2v%A$
∂y2

∂r
+ (s−$2%A)y1 = F0δ(r),

EI
∂4y2

∂r4 + %Av2 ∂
2y2

∂r2 + 2v%A$
∂y1

∂r
+ (s−$2%A)y2 = 0.

(6)

To solve (6) we use the Fourier transform to obtain
{

(EIu4 − %Av2u2 + s− %A$2)p1 − 2v%A$iup2 = F0,

(EIu4 − %Av2u2 + s− %A$2)p2 + 2v%A$iup1 = 0,
(7)

where p1(u) and the p2(u) are the Fourier transforms of y1(r) and y2(r).
From (7), we can easily determine p1(u) and p2(u). To calculate the inverse
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transforms of p1(u) and p2(u) we must decompose these functions into par-
tial fractions. To do this, we calculate the complex roots of the equation
EIu4 − %Av2u2 + s− %A$2 + 2v%A$u = 0. Since the roots must form con-
jugate pairs, the four roots have the form a± ib1 and a± ib2, where the real
and positive values a, b1, b2 satisfy (4). Calculating the inverse transforms of
p1(u) and p2(u) we get (3).

2.2. Mathematical model of infinite railway track oscillations with a finite
number of sleepers under a fixed load. The track is considered as a system
consisting of a continuous elastic beam connected with discrete masses mod-
elling the sleepers. We consider a finite railway track. We assume that the
number of sleepers is also finite, and is equal to n. The vertical force is acting
only at one fixed point x = l, and it is equal to F0e

−ω̃t cos$t, where ω̃ > 0.
This means that the force has decreasing amplitude. By a suitable choice
of ω̃, it should model the motion of the wheel which appears at one fixed
point. It is important that we additionally assume that the railway track is
oscillating together with the sleepers (see [4]).

For simplicity, we shall describe this model in the complex form. In this
case the acting force is F0e

ωt, where ω = −ω̃+ i$ and ω̃ > 0. The equation
of a continuous Bernoulli–Euler beam under a fixed load F0e

ωt, ω ∈ C,
located at x = l, has the form

(8) IE
∂4z

∂x4 + %A
∂2z

∂t2
+

n∑

j=1

(
mpj

d2zj
dt2

+ kbj
dzj
dt

+ sbjzj

)
δ(x− lj)

= F0e
ωtδ(x− l),

where

z(x, t) — beam’s deflection at the point x and time t,
zj(t) — position of the jth sleeper at vertical motion at the point lj (j =

1, . . . , n),
E — Young’s modulus,
I — moment of inertia of the section of the beam, with respect to the

horizontal axis,
% — density of the beam,
A — area of the cross-section of the beam,

mpj — mass of the jth sleeper,
spj — coefficient of elasticity of the jth spring joining the sleeper with

the beam,
kpj — drag coefficient of the jth spring joining the sleeper with the beam,
sbj — coefficient of elasticity of the jth spring joining the sleeper with

the ground,
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kbj — drag coefficient of the jth spring joining the sleeper with the
ground.

The partial differential equation (8) is coupled with the system of ordi-
nary differential equations

mpj z̈j = − kbj żj − sbjzj − kpj żj − spjzj(9)

+
∂

∂t
z(lj,t)kpj + spjz(lj, t) for j = 1, . . . , n.

We are looking for a solution of system (8)–(9) satisfying the boundary
conditions

lim
|x|→∞

z(i)(x, t) = 0 (i = 0, . . . , 4).(10)

Before we formulate our theorem, we present the following lemma.

Lemma 3. The function U(x) defined by

U(x) =
1

4λ3IE
(ieiλ|x| − e−λ|x|), where λ4 = −%Aω

2

IE
,(11)

is a solution of the equation

EIU (IV )(x) + %Aω2U(x) = δ(x)(12)

satisfying the conditions

lim
|x|→∞

U (i)(x) = 0 (i = 0, . . . , 4).(13)

Theorem 4. The complex asymptotic solution of system (8)–(10) is
given by

z(x, t) = eωt
(
F0U(x− l)−

n∑

j=1

BjγjU(x− lj)
)
,(14)

with

zj(t) = βje
ωt for j = 1, . . . , n,(15)

and the constants γj , Bj , βj are calculated from

γj =
(mpjω

2 + kbjω + sbj)(kpjω + spj)
mpjω2 + kbjω + sbj + kpjω + spj

,(16)

Bi = F0U(li − l)−
n∑

j=1

BjγjU(li − lj),(17)

βj =
Bj(kpjω + spj)

mpjω2 + kbjω + sbj + kpjω + spj
,(18)

for i, j = 1, . . . , n.

Remark 5. Uniqueness of the asymptotic solution can be shown as in
Section 2.1.
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Remark 6. The real asymptotic solution y(x, t) of this model will be
given by y(x, t) = Re z(x, t).

Sketch of proof of Theorem 4. We assume that the complex asymptotic
solution has the form

z(x, t) = B(x)eωt,(19)

zj(t) = βje
ωt.(20)

Substituting (19)–(20) into (8) and (9) we obtain respectively

(21) IEB(IV )(x) + %Aω2B(x)

= F0δ(x− l)−
n∑

j=1

βj(ω2mpj + ωkbj + sbj)δ(x− lj)

and

βjω
2mpj = −βjωkbj − βjsbj − βjωkpj − βjspj +Bjωkpj +Bjspj ,(22)

where Bj = B(lj). Calculating βj from the above formula we get

βj =
Bj(kpjω + spj)

mpjω2 + kbjω + sbj + kpjω + spj
for j = 1, . . . , n.(23)

From (21) and (23) we have

IEB(IV )(x) + %Aω2B(x) = F0δ(x− l)−
n∑
j = 1γjBjδ(x− lj),(24)

with

γj =
(mpjω

2 + kbjω + sbj)(kpjω + spj)
(mpjω2 + kbjω + sbj + kpjω + spj)

,(25)

where B(x) satisfies

lim
|x|→∞

B(i)(x) = 0 (i = 0, . . . , 4).(26)

Using Lemma 3 we obtain the solution of (24) satisfying (26) as follows:

B(x) = F0U(x− l)−
n∑
j = 1BjγjU(x− lj).(27)

Putting x = lk (k = 1, . . . , n) into (27) we can calculate Bk (k = 1, . . . , n)
as a solution of a system of linear equations

n∑

j=1

(δkj + γjU(lk − lj))Bj = F0U(lk − l) for k = 1, . . . , n.(28)

This ends the proof.

3. Numerical experiment. We have performed computations using
realistic data, delivered by the department of structural research of Polish
National Railway Company.
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type of rail S42 S49 S60

application small intensity
of motion

average intensity
of motion

large intensity
of motion

%A [kg/dm3] 7.85 7.85 7.85

E [N/m2] 2.1 · 1011 2.1 · 1011 2.1 · 1011

I [cm4] 1442 1815 3055

s, spj [N/m] 3.3 · 108 4.15 · 108 7 · 108

In our numerical experiment we have made some simplifications. Each
wagon consists of a wagon body and two lorry cars. We took into account
only the motion of one of the lorry cars. Every lorry car has four wheels,
but we consider only two of them, because we are interested in one side
of the car. These two wheels are treated as one. So we used the following
parameters in both models: m = 1250 kg (mass of one wheel), F0 = 12500
N (gravity force acting on the track). Since our study is only a first step to
construct a more general model, our first aim was to check the correctness of
both models against reality. The second model seems to be more complicated
to apply. Our second aim was to test whether numerical results obtained in
both models are comparable for a special choice of ω̃, which substitutes the
velocity v in the second model.

3.1. Simulations for the first model. In the first model we used addition-
ally the parameters $ = 50 and v = 10 m/s. All simulations were made
on the segment of length 35 m (as in the second model). We observed os-
cillations of the track at the fixed point x0 = 0, and compared oscillations
of different types. The oscillations are highest for S42 and lowest for S60,
which is reasonable, because S42 is the lightest type of railway track and
S60 is the heaviest one (Figs. 1–3).

3.2. Simulations for the second model. The remaining parameters used in
these simulations are r = 0.35 m (distance between sleepers), ω = −1 + 50i,
kpj = 6.3 · 104 Ns/m, kbj = 8.2 · 104 Ns/m, sbj = 2.6 · 108 N/m (these coef-
ficients are the same for every sleeper), mp = 75 kg (mass of each sleeper),
number of sleepers n = 100, place where a fixed force is acting (wheel) l = 0.
The conclusions are the same as in model 1: S42 is oscillating stronger than
S49 and S60 (Figs. 1–3).

3.3. Conclusions and comments. The numerical results (Figs. 1–3)
demonstrate, in some sense, real behaviour of railway track. In both models
the deflections are strongest for S42 and weakest for S60, which is reason-
able. However, the deflections in both models are not too high. The reason
is that we observe only one wheel. As mentioned earlier, the models con-
sidered are different. In the first one, we consider the moving wheel and
we add a term with the elasticity coefficient to the equation. In the second
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model, we also study oscillations of particular sleepers but the motion of
the wheel is modeled by a force acting at the fixed point. We also showed
that for a suitable value of ω̃ the second, more complicated, model can
give results similar to those given by the first one. This means that for nu-
merical modelling of oscillation of track, we can also use the first, simpler
model.

0 0.05 0.1 0.15 0.2 0.25 0.3
−2

0

2

4

6

8

10
x 10

−5

y(
0,

t) 
[m

] −
 d

ef
le

ct
io

n

t [s] − time

model 1
model 2

Fig. 1. Comparison of oscillations for both models for railway track S42
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Fig. 2. Comparison of oscillations for both models for railway track S49
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Fig. 3. Comparison of oscillations for both models for railway track S49
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