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SOLVING A CLASS OF MULTIVARIATE INTEGRATION
PROBLEMS VIA LAPLACE TECHNIQUES

Abstract. We consider the problem of calculating a closed form expres-
sion for the integral of a real-valued function f : Rn → R on a set S. We
specialize to the particular cases when S is a convex polyhedron or an ellip-
soid, and the function f is either a generalized polynomial, an exponential
of a linear form (including trigonometric polynomials) or an exponential of
a quadratic form. Laplace transform techniques allow us to obtain either a
closed form expression, or a series representation that can be handled nu-
merically. Finally, a methodology is proposed for multivariate functions f
which have a (multidimensional) Laplace transform.

1. Introduction. The main goal of this work is to calculate a closed
form for the integral �

S

f(x) dx,(1.1)

when the sets S ⊂ Rn are either convex polyhedra {x ∈ Rn | Ax ≤ b} or
ellipsoids {x ∈ Rn | x′Ax ≤ b}, and the real-valued functions f : Rn → R
belong to a certain class.

This kind of multivariate integrals are classically calculated (numeri-
cally) using finite element methods (see e.g. Zienkiewicz and Taylor [9]).
That is, one decomposes S into elementary cells (in particular, simplices)
where the function f is suitably approximated by polynomials and inte-
grated via quadrature formulae. The case of ellipsoids is interesting in some
applications. For instance, given a random vector X with values in Rn, one
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Cinvestav-IPN (México) for its support.

[391]



392 J. B. Lasserre and E. S. Zeron

may wish to compute the probability P (X ∈ S) that X belongs to S, espe-
cially when S is a compact set far away from the mean X, let us say. An
ellipsoid centered at some x0 away from X is a convenient example of such
a set S.

Even if the use of Laplace transform is not new in deriving closed form
expressions for univariate integration, its use for multivariate integration
seems not so well developed. Some of the results presented in this paper are
not new, but to our knowledge they were obtained with other techniques:
mainly inductive arguments, and in some cases Stokes’ theorem as well. The
reader will see that in many interesting cases the Laplace transform yields
short and direct proofs with no induction argument. The main reason is that
the product of two (elementary) Laplace transforms can often be inverted
directly, avoiding in this way the convolution (the latter is in many cases
just a rephrasing of the original multivariate integral into a convolution of
one-dimensional integrals).

The class of functions considered here is invariant under affine transfor-
mations. Thus, in the case of a convex polyhedron (which can be partitioned
into elementary simplices), we may restrict our analysis to the canonical sim-
plex ∆(z) = {x ∈ Rn+ :

∑
i xi ≤ z}. Similarly, for an ellipsoid, we may also

restrict to the generic n-ball S(z) := {‖x‖2 ≤ z}. We then consider the
integral in (1.1) as a function of the single parameter z, and we calculate its
Laplace transform. Sometimes the inversion of this Laplace transform can
be done directly or via a real series inversion technique described in Widder
[8]. In the latter case, it is important to emphasize that the problem is re-
duced to computing a series expansion of a univariate function, as opposed
to the multivariate original problem in Rn. Moreover, the convergence of the
resulting series is usually faster in view of the coefficients introduced in the
real inversion technique.

We also obtain, as a by-product, a series representation of f(x(z)) in the
mean value theorem � S f(x) dx = vol(S)f(x(z)) with S being ∆(z) or S(z).

We finally consider the case of arbitrary functions f : Rn → R whose
multi-dimensional Laplace transform F : Cn → C exists. Following the same
techniques, if the function F (λen) (with en the unit vector (1, . . . , 1) of Rn),
evaluated in the bisector λj = λ for all j, has a Laurent series expansion in
λ−1, then the integral of f over the simplex∆(z) can be expressed as a power
series in terms of z whose coefficients can be easily deduced from the series
expansion of F (λen). That is, the original n-dimensional problem reduces
to a one-dimensional series inversion, provided the Laplace transform F is
known.

This paper is organized as follows: We firstly integrate on a convex poly-
hedron {x ∈ Rn | Ax ≤ b}. Subsequently, we analyse the integral on an
ellipsoid {x ∈ Rn | x′Ax ≤ b}, when f is a generalized polynomial, an ex-
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ponential of a linear form or an exponential of a quadratic function. The
last section is devoted to integrating arbitrary functions f , whose Laplace
transform is available, on the simplex ∆(z).

2. Integration on a convex polyhedron. Consider the problem (1.1)
with S := {x ∈ Rn | Ax ≤ b} for a given matrix A ∈ Rm×n and vector
b ∈ Rm. We assume that S is compact in order to decompose it into ele-
mentary simplices {∆i}, that is,

⋃
i∆i = S, so it suffices to consider the

problem (1.1) with S := ∆i.
Moreover, let {x0, x1, . . . , xn} be the vertices of ∆i. Making the change

of variable x = x0 +
∑n

i=1 yi(xi − x0), we obtain
�

∆i

f(x) dx = vol(∆i)
�

∆(1)

g(y) dy,

where

y 7→ g(y) := f
(
x0 +

n∑

i=1

yi(xi − x0)
)
,

and ∆(1) is the canonical simplex (with z := 1)

z 7→ ∆(z) :=
{
y ∈ Rn

∣∣∣
n∑

i=1

yi ≤ z; yi ≥ 0, i = 1, . . . , n
}
, z ∈ R+.(2.1)

Thus, we can address problem (1.1) fixing S to be the simplex ∆(z) given
in (2.1).

2.1. Generalized polynomials. Consider the case when f : Rn → R is
given by

x 7→ f(x) =
n∏

i=1

xαii , αi ∈ R, i = 1, . . . , n;(2.2)

and more generally, when f is a sum of such functions. Observe that we do
not require αi to be integers. Let Γ (·) be the gamma-function defined by
the Euler product expansion

1
Γ (1− s) := lim

n→∞
ns

n∏

k=1

(
1− s

k

)
.(2.3)

Theorem 2.1. Let f : Rn → R be as in (2.2) and ∆(z) be as in (2.1).
Assume that αi > −1 for all i = 1, . . . , n. Then

�

∆(z)

f(x) dx =
∏n
i=1 Γ (αi + 1)

Γ (n+ 1 +
∑n

i=1 αi)
zn+

∑n
i=1 αi(2.4)

= vol(∆(z))
Γ (1 + n)

∏n
i=1 Γ (αi + 1)

Γ (n+ 1 +
∑n

i=1 αi)
z
∑n
i=1 αi .(2.5)
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Proof. Let g : R+ → R+ be the function

y 7→ g(y) :=
�

∆(y)

f(x) dx(2.6)

and let G : C→ C be its Laplace transform, that is,

λ 7→ G(λ) :=
∞�

0

e−λy
[ �

x≥0,
∑
i xi≤y

f(x) dx
]
dy, λ ∈ C, <(λ) > 0,(2.7)

where <(λ) stands for the real part of λ. By Fubini’s theorem (valid here),

G(λ) =
�

x≥0

f(x)
[ �
∑
i xi≤y

e−λydy
]
dx(2.8)

=
1
λ

�

x≥0

e−λ
∑
i xif(x) dx =

1
λ

n∏

i=1

∞�

0

e−λxixαii dxi

= λ−1−n−∑n
i=1 αi

n∏

i=1

Γ (αi + 1)

=
Γ (1 + n+

∑n
i=1 αi)

λ(1+n+
∑n
i=1 αi)

·
∏n
i=1 Γ (αi + 1)

Γ (1 + n+
∑n

i=1 αi)
.

We recognize the Laplace transform of z 7→ zn+
∑n
i=1 αi in the first term of

the last equality. The result follows.

The result in the case of integer coefficients {αi} is known (see e.g. Stroud
[6]). An explicit formula in terms of the vertices is given in Lasserre and
Avrachenkov [4] for homogeneous polynomials on an arbitrary simplex ∆,
and using a different technique. An immediate consequence of Theorem 2.1 is
the possibility of integrating analytic functions. For illustration and to avoid
heavy notation, we restrict ourselves to R2, but the result easily extends to
arbitrary dimension.

Corollary 2.2. Let f : R2 → R be analytic, that is,

x 7→ f(x) =
∞∑

n=0

[ n∑

k=0

ankx
k
1x

n−k
2

]
, x ∈ R2,(2.9)

where the series converges uniformly on compact subsets of R2. Then

�

∆(z)

f(x) dx =
∞∑

n=0

zn+2

(n+ 2)!

[ n∑

k=0

ankk!(n− k)!
]

(2.10)

= vol(∆(z))
∞∑

n=0

zn(
n+2

2

)
[ n∑

k=0

ank(
n
k

)
]
.(2.11)
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Proof. Just integrate each term of the series (2.9) on ∆(z) and apply
Theorem 2.1.

If f is not analytic, but has a series expansion like (2.9) with real expo-
nents (for instance f(x, y) =

√
xy g(x, y) with g analytic) larger than −1,

then an analog of Corollary 2.2 also holds with obvious adjustments.

2.2. Exponentials of linear type. We could apply Corollary 2.2 to inte-
grate multivariate exponential functions, since they are analytic. However,
we may also proceed directly to get an expression in closed form.

Consider the case where f : Rn → R is given by

x 7→ f(x) := e〈c,x〉(2.12)

for some c ∈ Rn with c = {c1, . . . , cn}. We need to define c0 := 0 as well.
In fact, we will see later that we can also consider c ∈ Cn to be a purely
imaginary number c := a

√
−1 with a ∈ Rn; this construction will allow us

to handle trigonometric polynomials.

Theorem 2.3. Let f : Rn → R be as in (2.12) and ∆(z) be as in (2.1).
Assume that ci 6= cj for all i 6= j. Then

�

∆(z)

f(x) dx =
n∑

i=0

eciz∏
j 6=i(ci − cj)

(2.13)

= vol(∆(z))
n∑

i=0

ecizn!∏
j 6=i(ciz − cjz)

.(2.14)

Proof. Again, let g : R+ → R+ be as in (2.6) and let G : C → C as
in (2.7) be its Laplace transform. Straightforward calculation with a Fubini
argument yields

G(λ) =
n∏

i=0

(λ− ci)−1, <(λ) > max
i
ci,

which is the Laplace transform of

z 7→
n∑

i=0

eciz∏
j 6=i(ci − cj)

;

this yields (2.13). Then (2.14) follows from vol(∆(z)) = zn/n!.

A similar result for the (n − 1)-simplex {x ∈ Rn+ |
∑n

i=1 xi = 1} was
demonstrated in Barvinok [1] using the Fourier transform of the function
e〈c,x〉|x∈Rn+ (with c < 0) and induction on the dimension in Podkorytov [2].
A formula for integrating e〈c,x〉 over a convex polytope was proved in [1] via
Stokes’ theorem, and in Lasserre [3] with different arguments. The above
result shows that the Laplace transform technique yields a very short proof.
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Trigonometric polynomials. Notice that equation (2.13) is still valid if we
let c ∈ Cn be a complex vector. In particular, we can handle trigonometric
polynomials by setting c = a

√
−1 with a ∈ Rn. For example, consider the

case when x 7→ f(x) := sin〈a, x〉, x ∈ Rn. We can apply Theorem 2.3 with
c := a

√
−1, provided that ai 6= aj for all i 6= j and a0 := 0, because

� ∆(z) sin〈a, x〉 dx = =( � ∆(z) e〈a,x〉
√−1 dx). Moreover, we have

Corollary 2.4. Let a ∈ Rn be such that ai 6= aj 6= 0 for all i 6= j.
Then, with n = 2p+ 1,

�

∆(z)

sin〈a, x〉 dx = (−1)p
n∑

i=0

− cos(aiz)∏
j 6=i(ai − aj)

,(2.15)

�

∆(z)

cos〈a, x〉 dx = (−1)p
n∑

i=0

sin(aiz)∏
j 6=i (ai − aj)

,(2.16)

and with n = 2p,

�

∆(z)

sin〈a, x〉 dx = (−1)p
n∑

i=0

sin(aiz)∏
j 6=i(ai − aj)

,(2.17)

�

∆(z)

cos〈a, x〉 dx = (−1)p
n∑

i=0

cos(aiz)∏
j 6=i(ai − aj)

.(2.18)

Remark 2.5. If ∆(1) is obtained by an affine transformation from an
arbitrary simplex ∆ with vertices x0, x1, . . . , xn, then formula (2.13) (and
formulas (2.15)–(2.18)) can be rewritten as a compact formula in terms of
the vertices {xi}. Namely, (2.13) becomes

�

∆

f(x) dx = vol(∆)
�

∆(1)

e〈c,x0〉e
∑n
i=1 yi〈c,xi−x0〉 dy

= vol(∆)
n∑

i=0

e〈c,xi〉∏
j 6=i〈c, xi − xj〉

,(2.19)

and, for instance, with n = 2p+ 1, (2.15) becomes

�

∆

sin〈a, x〉 dx = vol(∆)(−1)p
n∑

i=0

− cos〈a, xi〉∏
j 6=i〈a, xi − xj〉

(2.20)

2.3. Exponentials of Gaussian type. Now we consider f : Rn → R de-
fined by

x 7→ f(x) := ex
′Qx,

for some real-valued symmetric matrix Q ∈ Rn×n. Let Hk : Rn×2k → R be
the 2k-linear form associated with the homogeneous polynomial (x′Qx)k.
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That is, for instance, with n = 2,

H1(X1,X2) = X ′1QX2,

H2(X1,X2,X3,X4) = 1
3 [X ′1QX2X

′
3QX4 +X ′1QX3X

′
2QX4

+X ′1QX4X
′
2QX3 ], etc.

Theorem 2.6. Let ∆ be an n-simplex with vertices {a0, . . . , an}. Then

�

∆

ex
′Qx dx = vol(∆)

∞∑

k=0

Ak
k!

(2.21)

with

Ak =
1(

n+2k
2k

)
∑

0≤i1≤...≤i2k≤n
Hk(ai1 , . . . , ai2k).

Proof. The generic term in the series expansion of the exponential ex
′Qx

is (x′Qx)k/k!, or equivalently Hk(x, . . . , x), a homogeneous polynomial of
degree 2k. As the series of ex

′Qx converges uniformly on compact subsets
of Rn, we can integrate each term over ∆ and sum up. From a result in
Lasserre and Avrachenkov [4],

�

∆

Hk(x, . . . , x) dx =
vol(∆)(
n+2k

2k

)
∑

0≤i1≤...≤i2k≤n
Hk(xi1 , . . . , xi2k),

which yields (2.21).

In fact, this result is valid for all analytic functions f : Rn → R, and
extends Corollary 2.2 to arbitrary simplices.

3. Integration on an ellipsoid. Let S be any ellipsoid {(x−a)′Q(x−a)
≤ z} for a given real-valued symmetric positive definite matrix Q ∈ Rn×n
and real number z ∈ R+. We may assume, after applying an affine transfor-
mation, that in fact

S = S(z) :=
{
x ∈ Rn

∣∣∣
n∑

i=1

x2
i ≤ z

}
(3.1)

is an n-ball of radius z1/2.
Indeed, in many cases, the integration of a function f over an arbitrary

ellipsoid reduces, after an affine transformation, to the integration of a func-
tion g over an n-ball, with g still in a class of (nice) functions studied below.

3.1. Generalized polynomials. Integrating a homogeneous polynomial
x 7→ p(x) :=

∏n
i=1 x

αi
i on S(z) is trivial if some exponent αi is an odd
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integer. Indeed, assume that α1 is odd. Then

�

S(z)

p(x) dx =
z1/2�

−z1/2

xα1
1

[ �
∑n
j=2 x

2
j≤z−x2

1

n∏

j=2

x
αj
j dx2 dx3 . . . dxn

]
dx1

vanishes. Thus, nontrivial cases appear only when each exponent αi is an
even integer, and in this case we can even write p(x) =

∏n
i=1 |xi|αi . We will

integrate here the generalized polynomial

x 7→ f(x) =
n∏

i=1

|xi|αi , x ∈ Rn,(3.2)

where each αi ∈ R is not necessarily an integer.

Theorem 3.1. Let f : Rn → R be as in (3.2) and S(z) as in (3.1).
Assume moreover that αi > −1 for all i = 1, . . . , n. Then

�

S(z)

f(x) dx = 2−n
∏n
i=1 Γ

(
αi+1

2

)

Γ (1 + (n+
∑n

i=1 αi)/2)
z(n+

∑
i αi)/2(3.3)

= vol(S(z))
Γ (1 + n/2)

∏n
i=1 Γ

(
αi+1

2

)

2nπn/2Γ (1 + (n+
∑n

i=1 αi)/2)
z
∑
i αi/2.

Proof. In � S(z) f(x) dx, make the change of variable x 7→ yi = x2
i so that

the n-ball S(z) becomes the n-simplex ∆(z) in (2.1), and

�

S(z)

f(x) dx = 2−n
�

∆(z)

n∏

i=1

y
(αi−1)/2
i dy,

so that (3.3) follows from a direct application of Theorem 2.1.
To get the second equality in (3.3) it suffices to observe that vol(S(z)) =

(zπ)n/2/Γ (1 + n/2).

3.2. Exponentials of linear type. Now we consider the functions f : Rn →
R defined by

x 7→ f(x) := e〈c,x〉.(3.4)

This is an important class of functions for it contains, in particular, the
trigonometric polynomials when c is allowed to be a purely imaginary com-
plex vector.

Of course, since f is analytic, one may consider its series expansion and
apply Theorem 3.1 to each term. We will end up with a series expansion in
z for the integral over S(z). However, the expansion in several dimensions
can be quite heavy to perform. Alternatively, we may proceed directly to
obtain the following.
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Theorem 3.2. Let f : Rn → R be as in (3.4) and let S(z) be as in (3.1).
Then

�

S(z)

f(x) dx = (zπ)n/2
∞∑

k=0

zk(
∑

i c
2
i /4)k

Γ (1 + k + n/2)k!
, 0 ≤ z <∞.(3.5)

Alternatively ,

�

S(z)

f(x) dx = vol(S(z))
[
1 +

∞∑

k=1

(
∑

i c
2
i /2)k

k!
∏k
j=1(n+ 2j)

zk
]
.(3.6)

Proof. Let g : R+ → R be defined as follows:

z 7→ g(z) :=
�

S(z)

f(x) dx.(3.7)

Then g(z) is well defined for all z ∈ R+ because

0 < |g(z)| < ez
1/2 maxi |ci| vol(S(z)) =

(πz)n/2

Γ (1 + n/2)
ez

1/2 maxi |ci|.

After a Fubini argument, its (one-sided) Laplace transform G : C→ C reads

G(λ) =
1
λ

n∏

i=1

[ ∞�

−∞
ecixi−λx

2
i dxi

]
, λ ∈ C, <(λ) > 0,

and we recognize in brackets the two-sided Laplace transform of e−λx
2
i eval-

uated at −ci, that is,
(π/λ)1/2 · ec2i /(4λ).

Hence, we obtain

G(λ) =
1
λ

(
π

λ

)n/2
e
∑
i c

2
i /(4λ).(3.8)

Now we apply series inversion techniques inspired by those described in
Widder [8, pp. 234–239]. The Laurent series expansion (around the origin)
of the exponential eβ/λ =

∑∞
k=0(β/λ)k/k! allows us to write

G(λ) = πn/2
∞∑

k=0

[
(
∑

i c
2
i /4)k

k!
· 1
λ1+k+n/2

]
.

Notice that the previous series converges uniformly on <(λ) ≥ 1 so that
we can apply the inverse Laplace transformation, term by term, to get the
series on the right-hand side of (3.5).

Observe how fast the convergence of the series on the right-hand side
of (3.5) is, in view of the coefficient Γ (1 + k + n/2)k!. This fact allows us
to conclude that the series converges uniformly on compact subsets of R+.
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Moreover, the series in (3.5) is a Bessel-type function for which a lot of
tables are available in the literature. Finally, using the mean value theorem,
we see that

�

S(z)

f(x) dx = vol(S(z))f(ξ) for some ξ ∈ S(z).

We can then obtain a series representation of f(ξ) in terms of z:

f(ξ(z)) = 1 +
∞∑

k=1

(
∑

i c
2
i /2)k

k!
∏k
j=1(n+ 2j)

zk.(3.9)

Trigonometric polynomials. We can handle trigonometric polynomials
by letting c ∈ C be a purely imaginary vector c := a

√
−1 with a ∈ Rn, as

we did in the case of integrating on a simplex ∆(z). However, since sin(·) is
an odd function, the integral of x 7→ sin〈a, x〉 on the n-ball S(z) vanishes.
On the other hand, as a direct consequence of Theorem 3.2, we obtain

�

S(z)

cos 〈a, x〉 dx = vol(S(z))
[
1 +

∞∑

k=1

(−1)k (
∑

i a
2
i /2)k

k!
∏k
j=1(n+ 2j)

zk
]
.(3.10)

3.3. Exponentials of Gaussian type. We now consider the function f :
R→ R with

x 7→ f(x) := e−x
′Qx(3.11)

for some real-valued positive definite symmetric matrix Q ∈ Rn×n.

Theorem 3.3. Let f : Rn → R be as in (3.11) and S(z) be as in (3.1).
Let {αi} be the strictly positive eigenvalues of Q. Then

�

S(z)

f(x) dx = (zπ)n/2
∞∑

k=0

βkz
k

Γ (1 + k + n/2)
, 0 ≤ z <∞,(3.12)

where the βk are the coefficients in the power series expansion around the
origin of

n∏

i=1

1√
1 + αix

=
∞∑

k=0

βkx
k, |x| < min{1/αi}.(3.13)

Notice that we take the positive branch of all square roots in order to get∏n
i=1 1/

√
1 = 1. Alternatively ,

�

S(z)

f(x) dx = vol(S(z))
[
1 +

∞∑

k=1

βk(2z)k
∏k
j=1(n+ 2j)

]
.(3.14)

Proof. Following a previous argument, let g : R+ → R be defined as in
(3.7). After a Fubini argument, its Laplace transform G : C→ C reads
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G(λ) =
1
λ

�

Rn
e−x

′(Q+λI)x dx =
πn/2

λdet(λI +Q)1/2

=
πn/2

λ

n∏

i=1

(λ+ αi)−1/2

=
πn/2

λ1+n/2

n∏

i=1

(1 + αi/λ)−1/2, λ ∈ C, <(λ) > 0.(3.15)

We take the positive branch of all square roots, so
∏n
i=1 1−1/2 = 1. Now

we expand
∏n
i=1(1 + αi/λ)−1/2 in a Laurent series, with |λ| > max{αi}, to

obtain

G(λ) = πn/2
∞∑

k=0

βk
λ1+k+n/2

, <(λ) > max{αi}.

Notice that the above series converges uniformly on <(λ) ≥ 1 + max{αi},
so that we can apply the inverse Laplace transformation, term by term, to
get the series on the right-hand side of (3.12). Finally, (3.14) follows from
vol(S(z)) = (πz)n/2/Γ (1 + n/2).

We have to remark that, as in (3.9), the mean value theorem yields
�

S(z)

f(x) dx = vol(S(z))f(ξ(z)), ξ(z) ∈ S(z),(3.16)

with

f(ξ(z)) = 1 +
∞∑

k=1

βk(2z)k
∏k
j=1(n+ 2j)

.(3.17)

Finally, we analyse the general case of integrating the function

x 7→ f(x) := e−x
′Qx+b′x, x ∈ Rn,(3.18)

on an arbitrary ellipsoid S centred at some point a ∈ Rn. Recall that Q is a
real-valued positive definite symmetric matrix. We have already mentioned
that S(z) can be assumed to be an n-ball as in (3.1), by applying an affine
transformation if necessary. Moreover, the expression −x′Qx+ b′x does not
change its structure under an affine transformation, it remains of the form
−y′Q0y+ b′0y+ c; and the constant c can easily be ignored, since integrating
e−y

′Q0y+b′0y+c reduces to integrating ec times e−y
′Q0y+b′0y.

Let Q = V ′AV be the spectral decomposition of Q, where A is the
diagonal matrix whose entries αi are the strictly positive eigenvalues of Q,
and V ′V = I.
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Theorem 3.4. Let S(z) be as in (3.1) and f : Rn → R be as in (3.18).
Then

�

S(z)

f(x) dx = (zπ)n/2
∞∑

k=0

βkz
k

Γ (1 + k + n/2)
, 0 < z <∞,(3.19)

where the βk are the coefficients in the power series expansion around the
origin of the following function (with c := V b/2):

x 7→ h(x) :=
n∏

i=1

ec
2
i x/(1+αix)

(1 + αix)1/2
, |x| < min{1/αi}.(3.20)

Notice that we take the positive branch of all square roots in order to get∏n
i=1 1−1/2 = 1. Alternatively ,

�

S(z)

f(x) dx = vol(S(z))
[
1 +

∞∑

k=1

βk(2z)k
∏k
j=1(n+ 2j)

]
.(3.21)

Proof. Let g : R+ → R+ be defined as in (3.7). Then its Laplace trans-
form G : C→ C reads as follows (we need to define b0 = (Q+λI)−1b/2 and
fix λ ∈ C with <(λ) > max{αi}):

G(λ) =
1
λ

�

Rn
e−x

′(Q+λI)x+b′x dx

=
1
λ

eb
′
0(Q+λI)b0

�

Rn
e−(x−b0)′(Q+λI)(x−b0) dx

=
πn/2

λ1+n/2
eb
′
0(Q+λI)b0

n∏

i=1

(1 + αi/λ)−1/2.

Moreover, setting b = 2V ′c (or c = V b/2), we obtain b′0(Q+ λI)b0 =
c′(A+ λI)−1c, and so

G(λ) =
πn/2

λ1+n/2

n∏

i=1

ec
2
i /(λ+αi)

(1 + αi/λ)1/2
, <(λ) > max{αi}.(3.22)

The rest of the proof is similar to that of Theorem 3.3.

4. The general case on the simplex. In this section, we briefly out-
line a methodology valid for integrating functions f : Rn → R on the simplex
∆(z) of (2.1). Let g : R+ → R be

z 7→ g(z) :=
�

∆(z)

f(x) dx.(4.1)
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Let F : Cn → Cn be the Laplace transform of f , that is,

λ 7→ F (λ) :=
�

Rn+

e−〈λ,x〉f(x) dx, λ ∈ Df ⊂ Cn,(4.2)

where Df is the domain of definition of F . Recall that Df is empty when
the function f does not have a Laplace transform.

Theorem 4.1. Let f : Rn → R be a function with Laplace transform
F : Cn → Cn, let g be defined as in (4.1), and H : C → C be defined by
x 7→ H(x) := F (x−1en) with en = (1, . . . , 1) the unit vector in Rn.

(i) Suppose there exist two real numbers % > −1 and r > 0 such that the
function H(x) can be expanded in a power series

H(x) =
∞∑

k=0

βkx
k+%,(4.3)

which converges uniformly on the compact ball B := {x ∈ C : |x− r| ≤ r} of
radius r and centre at r. Notice that the intersection of B and the real line
is the closed interval [0, 2r]. Then

g(z) =
∞∑

k=0

βk
Γ (1 + k + %)

zk+%, 0 ≤ z <∞.(4.4)

(ii) Assume that g in (4.1) is bounded continuous. If there exist two real
numbers % and r > 0 such that H can be expanded in a series

H(x) :=
∞∑

k=0

βkx
−k−%, x ∈ R, x > 0,(4.5)

where βk = O(rk/k!) as k →∞, then

g(z) =
∞∑

k=0

βk
Γ (1− k − %)

z−k−%, reπ < x <∞.(4.6)

Proof. Let G : C→ C be the Laplace transform of g, that is,

G(λ) =
∞�

0

e−λz
[ �

∆(z)

f(x) dx
]
dz =

�

Rn+

f(x)
[ ∞�
∑
i xi

e−λz dz
]
dx

=
1
λ

�

Rn+

e−λ〈en,x〉f(x) dx =
F (λ en)

λ
=
H(1/λ)

λ
,

where we have just applied Fubini’s theorem. Now, in case (i), G can be
expanded in a series G(λ) =

∑∞
k=0 βk λ

−1−k−% which converges uniformly
on <(λ) ≥ 1/(2r), so we can apply inverse Laplace transform, term by
term, to get the series expansion of g in (4.4). On the other hand, the series
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expansion of g in (4.6) follows from the real series inversion techniques of
Theorem 10.2 in Widder [8, pp. 236–239].

Once again, we remark that the original multivariate integration prob-
lem reduces to calculating a one-dimensional series expansion of the Laplace
transform of F evaluated at x−1en. Moreover, notice that the results pre-
sented in Section 2 could have been deduced from Theorem 4.1. However,
we have used the fact that G could be inverted directly in several cases to
get a closed form.

Examples. Here are some nontrivial examples in R2 that illustrate the
efficiency of the approach presented in this section.

Let us recall the definitions of the Probability integral erf(·), Exponential
integral function Ei(·) and the Bessel function J0(·):

erf(x) :=
2√
π

x�

0

e−t
2
dt, x ∈ R, x ≥ 0,

Ei(x) :=
x�

−∞

et

t
dt, x ∈ R,

J0(x) :=
∞∑

k=0

(−1)k

(k!)2

(
x

2

)2k

, x ∈ R.

f(x, y) F (u, v) G(λ) F (x−1e2)

Ex1 erf( x
2
√
y ) 1

(u+
√
v)u
√
v

1
λ3(1+

√
λ)

x5/2

1+
√
x

Ex2 cos(2
√
axy)√

πx

√
u

uv+a

√
λ

λ(a+λ2)
x3/2

1+ax2

Ex3 J0(2
√
axy) 1

uv+a
1

λ(a+λ2)
x2

1+ax2

Ex4 2
√
xy

π(x+y)
1

(
√
u+
√
v)2√uv

1
4λ3

x2

4

Ex5 sin (2a
√
xy)

πay
1

u
√
uv+a2

1
λ2
√
a2+λ2

x2√
1+a2x2

Ex6 − e−x/y
y

ev/u Ei(−v/u)
u

e Ei(−1)
λ2 xe Ei(−1)

Ex7 1
2
√
x2+y2

1√
u2+v2 arctanh

√
u2+v2

u+v
1

λ2
√

2
arctanh 1√

2
x√
2

arctanh 1√
2

Hence, for instance,
�

∆(z)

2
√
xy

π(x+ y)
dx dy = z2/4 = vol(∆(z))

1
2
.
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Similarly,
�

∆(z)

sin (2a
√
xy)

πay
dx dy = z2

∞∑

k=0

akz
k

(k + 2)!
= 2 vol(∆(z))

∞∑

k=0

akz
k

(k + 2)!
,

where {ak} are the coefficients in the series

(1 + a2z2)−1/2 =
∞∑

k=0

akz
k, |z| < 1/|a|.
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