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ORTHOGONAL SERIES REGRESSION ESTIMATION
UNDER LONG-RANGE DEPENDENT ERRORS

Abstract. This paper is concerned with general conditions for conver-
gence rates of nonparametric orthogonal series estimators of the regres-
sion function. The estimators are obtained by the least squares method
on the basis of an observation sample Yi = f(Xi) + ηi, i = 1, . . . , n, where
Xi ∈ A ⊂ Rd are independently chosen from a distribution with density
% ∈ L1(A) and ηi are zero mean stationary errors with long-range depen-
dence. Convergence rates of the error n−1∑n

i=1(f(Xi) − f̂N (Xi))2 for the
estimator f̂N (x) =

∑N
k=1 ĉkek(x), constructed using an orthonormal system

ek, k = 1, 2, . . . , in L2(A), are obtained.

1. Introduction. Consider a random design observation model Yi =
f(Xi) + ηi, i = 1, . . . , n, where the points Xi, i = 1, . . . , n, form a ran-
dom sample from an absolutely continuous distribution X with density
% ∈ L1(A) on a compact subset A of some euclidean space Rd, d ≥ 1,
f ∈ L2(A) is an unknown regression function and ηi, i = 1, . . . , n, are sta-
tionary second order errors with zero mean, variance σ2

η, and covariance
function Eη(η1η1+j) = Cj−γ , j = 1, 2, . . . , where 0 < γ < 1 and C is a
real constant. We assume that the observation errors η = (η1, . . . , ηn) are
independent of the predictors ω = (X1, . . . ,Xn).

Let us consider a series type regression function estimator

f̂N (x) =
N∑

k=1

ĉkNek(x),

where the functions ek, k = 1, 2, . . . , form a complete orthonormal system
in L2(A). We assume that the vector ĉN = (ĉ1N , . . . , ĉNN )T of coefficient
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estimators is, for fixed N , obtained by the least squares method, i.e.

ĉN = arg min
a∈RN

1
n

n∑

i=1

(Yi − 〈a, eN (Xi)〉)2,

where eN (x) = (e1(x), . . . , eN (x))T .
The vector ĉN can be obtained as a solution of the normal equations

GnĉN = gn,

where

Gn =
1
n

n∑

i=1

eN (Xi)eN (Xi)T , gn =
1
n

n∑

i=1

Yie
N (Xi),

and when detGn 6= 0 it is uniquely determined. As shown in the author’s
previous work on a related subject [14], in the case when % ≥ c > 0
the matrix G(N) = EGn is nonsingular. Then, if detGn 6= 0, the rele-
vant estimator can be represented in the form f̂N (x) = 〈hN (x), b̂N 〉, where
hN (x) = G(N)−1/2eN (x), and the vector b̂N = G(N)1/2ĉN satisfies the
normal equations

(1) Hnb̂N = hn,

where

Hn =
1
n

n∑

i=1

hN (Xi)hN (Xi)T , hn =
1
n

n∑

i=1

Yih
N (Xi).

Representing the estimator f̂N using the vector function hN is convenient,
since then EhN (X)hN (X)T = IN , where IN is the unit matrix, and conse-
quently E‖hN (X)‖2 = N . Moreover, if we put

MN = ‖eN‖∞ = sup
x∈A
‖eN (x)‖

and λn denotes the smallest eigenvalue of the matrix Hn, then we also have
(inequality (3) in [14])

(2) E|λn − 1|2 ≤ NM2
N

cn
.

For % ≥ c > 0 inequality (2) implies P (detGn = 0) = P (detHn = 0)
≤ P (λn < 1/2) ≤ 4NM2

N c
−1/n. Thus, the conditions % ≥ c > 0 and

NM2
N/n → 0 as n → ∞ assure that P (detGn = 0) → 0, i.e. the estimator

is uniquely determined with growing probability. The above facts will be
used to prove the results of this work, which continues the investigations
of asymptotic properties of series type regression estimators, started by the
author in [11], [13].
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In Section 2 we give some sufficient conditions for convergence rates in
probability of the square prediction error

dnN =
1
n

n∑

i=1

(f(Xi)− f̂N (Xi))2

for orthogonal series regression estimators and for the observation model
considered. They extend the results of [11], [13] where we have only investi-
gated consistency in the sense of that error for estimators constructed using
orthonormal systems of univariate analytic functions and i.i.d. observation
errors.

In [8] Huang has obtained general conditions for convergence rates in
probability of the error dnN for series type estimators in the case of i.i.d.
observation errors, assuming that D ≥ % ≥ c > 0, and both the regression
function f and the functions ek, k = 1, 2, . . . , are bounded. In the present
work it is shown that the boundedness conditions imposed on %, f and
ek, k = 1, 2, . . . , can be relaxed.

In Section 3 we examine the asymptotic properties of the mean-square
prediction error EdnN of an estimator obtained by a proper truncation of
the estimator f̂N . Consistency in the sense of that error and its convergence
rates for series estimators in the case of fixed design observation models were
investigated in [1], [6], [7], [12].

2. Convergence rates of the square prediction error. Let χn de-
note the indicator function of the event set {λn ≥ 1/2}. If % ≥ c > 0, then
according to (2) we have

P (λn < 1/2) ≤ 4NM2
Nc
−1/n

and the assumption NM2
N/n→ 0 as n→∞ implies P (χn 6= 1)→ 0. Now,

consider the mean-square prediction error defined as

RnN = EωEηχn
1
n

n∑

i=1

(f(Xi)− f̂N (Xi))2.

We need the following lemmas to obtain an upper bound for the error RnN
of the series type estimators considered.

Lemma 2.1. If ηi, i = 1, . . . , n, are stationary second order errors with
Eη(η1) = 0, Eη(η2

1) = σ2
η and with covariance function Eη(η1η1+j) =

Cj−γ , j = 1, 2, . . . , where 0 < γ < 1 and C 6= 0, then

1
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)| = O(n−γ).
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Proof. By the assumption |Eη(η1η1+j)| = |C|j−γ , we obtain

1
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)| =
1
n2

n∑

k=1

Eη(η2
k) +

2
n2

n−1∑

k=1

n−k∑

j=1

|Eη(ηkηk+j)|

≤
σ2
η

n
+

2|C|
n2

n−1∑

k=1

n−k∑

j=1

1
jγ

=
σ2
η

n
+

2|C|
n2

n−1∑

j=1

n− j
jγ

,

and since the function g(s) = (n−s)/sγ is strictly decreasing on the interval
(0, n] (its derivative is negative there) we also have

n−1∑

j=1

n− j
jγ

≤
n�

0

n− s
sγ

ds =
n�

0

n

sγ
ds−

n�

0

s1−γ ds

=
nn1−γ

1− γ −
n2−γ

2− γ =
n2−γ

(1− γ)(2− γ)
.

In consequence,

1
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)| ≤
σ2

n
+

2|C|
nγ(1− γ)(2− γ)

= O(n−γ).

Lemma 2.2. If % ≥ c > 0 and dN =
∑N
k=1 ckek, c1, . . . , cN ∈ R, then

RnN ≤
�

A

(f(x)− dN (x))2%(x) dx+
2N
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|.

Proof. The standard squared bias plus variance decomposition with re-
spect to the η variable yields

RnN = Eωχn
1
n

n∑

i=1

(f(Xi)− Eηf̂N (Xi))2

+ Eωχn
1
n

n∑

i=1

Eη(f̂N (Xi)− Eη f̂N (Xi))2.

Taking into account (1) together with χnλ−1
n ≤ 2 and E‖hN (X)‖2 = N , we

easily obtain

Eωχn
1
n

n∑

i=1

Eη(f̂N (Xi)−Eη f̂N (Xi))2

= Eωχn
1
n

n∑

i=1

Eη

〈
hN (Xi),H−1

n

1
n

n∑

k=1

ηkh
N (Xk)

〉2

= Eωχn
1
n3

n∑

i=1

n∑

k=1

n∑

l=1

Eη(ηkηl)hN (Xk)TH−1
n hN (Xi)hN (Xi)TH−1

n hN (Xl)
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= Eωχn
1
n3

n∑

k=1

n∑

l=1

n∑

i=1

Eη(ηkηl)hN (Xk)TH−1
n hN (Xi)hN (Xi)TH−1

n hN (Xl)

= Eωχn
1
n2

n∑

k=1

n∑

l=1

Eη(ηkηl)hN (Xk)TH−1
n hN (Xl)

≤ Eωχnλ−1
n

1
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)| · ‖hN (Xk)‖ · ‖hN (Xl)‖

≤ 2
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|Eω‖hN (Xk)‖ · ‖hN (Xl)‖

≤ 2
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|(Eω‖hN (Xk)‖2)1/2(Eω‖hN (Xl)‖2)1/2

≤ 2N
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|.

Thus,

RnN ≤ Eωχn
1
n

n∑

i=1

(f(Xi)− Eηf̂N (Xi))2 +
2N
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|.

Now, since for fixed observation points Xi, i = 1, . . . , n, we have

χn
1
n

n∑

i=1

(f(Xi)− Eη f̂N (Xi))2 ≤ 1
n

n∑

i=1

(f(Xi)− dN (Xi))2

for any linear combination dN =
∑N
k=1 ckek, c1, . . . , cN ∈ R, we immediately

obtain

RnN ≤
1
n

n∑

i=1

Eω(f(Xi)− dN (Xi))2 +
2N
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|

=
�

A

(f(x)− dN (x))2%(x) dx+
2N
n2

n∑

k=1

n∑

l=1

|Eη(ηkηl)|.

Now, we can prove the following theorems on convergence in probability
of the square prediction error for the regression estimators considered.

Theorem 2.1. Assume that % ≥ c > 0, the sequence of natural numbers
N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) =∞, lim
n→∞

N(n)M2
N(n)

n
= 0,
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and for N=1, 2, . . . , there exist gN ∈span{e1, . . . , eN} such that ‖f−gN‖∞
= O(N−α), where α > 0. Then for the orthogonal series estimator f̂N(n),
we have

1
n

n∑

i=1

(f(Xi)− f̂N(n)(Xi))2 = Op(N(n)/nγ +N(n)−2α).

Proof. Since the assumption N(n)M 2
N(n)/n→ 0 assures that P (χn 6= 1)

→ 0, the assertion of the theorem follows by applying Lemmas 2.1 and 2.2
with dN = gN .

In the case when the regression function is square integrable the following
theorem holds.

Theorem 2.2. Assume that D ≥ % ≥ c > 0, the sequence of natural
numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) =∞, lim
n→∞

N(n)M2
N(n)

n
= 0,

and fN is the orthogonal projection of the regression function f ∈ L2(A)
onto the subspace span{e1, . . . , eN}. Then for the orthogonal series estimator
f̂N(n), we have

1
n

n∑

i=1

(f(Xi)− f̂N(n)(Xi))2 = Op(N(n)/nγ + ‖f − fN(n)‖2).

Proof. Observe that �
A

(f − fN )2% ≤ D‖f − fN‖2 and follow the proof
of Theorem 2.1. In fact we can even prove that

Eχn
1
n

n∑

i=1

(f(Xi)− f̂N(n)(Xi))2 = O(N(n)/nγ + ‖f − fN(n)‖2).

For many orthonormal systems the following bound holds true:

(3) M2
N = ‖eN‖2∞ = sup

x∈A

N∑

k=1

e2
k(x) ≤ KN,

where K is a constant [2]. It clearly holds for uniformly bounded systems
(e.g. the trigonometric system in L2([0, 2π]d)) but also for strongly localized
systems (e.g. splines, piecewise polynomials) and leveled localized systems
(e.g. compactly supported wavelets in L2[0, 1]) [2], [17]. For such systems
the condition N(n)M2

N(n)/n → 0 is satisfied if N(n)2/n → 0 as n → ∞.
Then, if ‖f − fN‖ = O(N−α), where α > 0, Theorem 2.2 allows one to
obtain convergence rates in probability of the square prediction error. In-
deed, the two terms N/nγ and N−2α go to zero at the same rate when
N(n) ∼ nγ/(1+2α) (i.e. r1 ≥ N(n)n−γ/(1+2α) ≥ r2, r1, r2 > 0), and then
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the convergence rate of the square prediction error will be n−2αγ/(1+2α),
provided α > max{γ − 1/2, 0}, which assures that N(n)2/n→ 0.

It is easy to see that in the case of i.i.d. observation errors the best obtain-
able convergence rate n−2α/(1+2α) can be attained [16], provided α > 1/2.
Moreover, in that case the assumptions of Theorem 2.2 imply that for or-
thogonal systems satisfying (3) and f ∈ L2(A) we also have n−1∑n

i=1(f(Xi)
− f̂N(n)(Xi))2 = op(1), i.e. the orthogonal series estimator considered is con-
sistent in the sense of the square prediction error.

3. Asymptotic mean-square prediction error. For the estimator
f̃N = χnf̂N , that is,

f̃N (x) =
{
f̂N (x) if λn ≥ 1/2,
0 otherwise,

the following result concerning its mean-square prediction error holds true.

Theorem 3.1. Assume that D ≥ % ≥ c > 0, the sequence of natural
numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) =∞, lim
n→∞

N(n)M2
N(n)

n
= 0,

and fN is the orthogonal projection of the bounded regression function f ∈
L2(A) onto span{e1, . . . , eN}. Then for the estimator f̃N(n), we have

E
1
n

n∑

i=1

(f(Xi)− f̃N(n)(Xi))2 = O

(
N(n)
nγ

+ ‖f − fN(n)‖2 +
N(n)M2

N(n)

n

)
.

Proof. According to the definition of f̃N , we have

E
1
n

n∑

i=1

(f(Xi)− f̃N(n)(Xi))2

= Eχn
1
n

n∑

i=1

(f(Xi)− f̂N(n)(Xi))2 + E(1− χn)
1
n

n∑

i=1

f2(Xi)

≤ Eχn
1
n

n∑

i=1

(f(Xi)− f̂N(n)(Xi))2 + P (λn < 1/2)‖f‖2∞.

As remarked in the proof of Theorem 2.2 the first term on the right-hand
side of the above inequality is O(N(n)/nγ + ‖f − fN(n)‖2) and the second
is bounded by 4‖f‖2∞N(n)M2

N(n)c
−1/n, which completes the proof.

We can also prove the following corollary on the convergence rate of the
mean-square prediction error of the estimator f̃N .

Corollary 3.1. Assume that D ≥ % ≥ c > 0, the orthogonal system
ek, k = 1, 2, . . . , satisfies (3) and ‖f−fN‖ = O(N−α), where α > 0 and fN
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is the orthogonal projection of the bounded regression function f ∈ L2(A)
onto span{e1, . . . , eN}. Then

(a) for 0 < γ ≤ (2α+ 1)/(2α+ 2) and N(n) ∼ nγ/(2α+1),

E
1
n

n∑

i=1

(f(Xi)− f̃N(n)(Xi))2 = O(n−2αγ/(2α+1)),

(b) for (2α+ 1)/(2α+ 2) < γ < 1 and N(n) ∼ n1/(2α+2),

E
1
n

n∑

i=1

(f(Xi)− f̃N(n)(Xi))2 = O(n−α/(α+1)).

Proof. Theorem 3.1 and inequality (3) imply

E
1
n

n∑

i=1

(f(Xi)− f̃N(n)(Xi))2 = O(N(n)/nγ +N(n)2/n+N(n)−2α).

Now, for 0 < γ ≤ (2α+ 1)/(2α+ 2) and N(n) ∼ nγ/(2α+1) we have

N(n)/nγ +N(n)−2α = O(n−2γα/(2α+1)),

N(n)2/n = O(n−1+2γ/(2α+1)),

and 2γα/(2α+ 1) ≤ 1− 2γ/(2α+ 1).
Similarly, for (2α+ 1)/(2α+ 2) < γ < 1 and N(n) ∼ n1/(2α+2) we have

N(n)2/n+N(n)−2α = O(n−2α/(2α+2)), N(n)/nγ = O(n−γ+1/(2α+2)),

and 2α/(2α+ 2) ≤ γ − 1/(2α+ 2).

As one can easily see, in the case of i.i.d. observation errors the con-
vergence rate of the mean-square prediction error of the estimator f̃N is
n−α/(α+1), i.e. the same as in the case of long-range dependent errors with
(2α+ 1)/(2α+ 2) < γ < 1.

Since λn is the minimal eigenvalue of the matrix Hn which is not used in
computations we cannot verify directly whether the condition λn ≥ 1/2 is
satisfied. However, under the assumptions of Theorem 3.1, P (f̂N 6= f̃N ) ≤
P (λn < 1/2) → 0 as n → ∞, so the estimators f̂N and f̃N are identical
with growing probability.

4. Conclusions. As proved in [11], in the case when we use multi-
variate orthonormal systems constructed as tensor products of univariate
analytic functions forming an orthonormal system in L2([a, b]) (e.g. mul-
tivariate trigonometric functions or multivariate polynomials), the normal
equations matrix Gn is almost surely positive definite for any density % and
N ≤ n. Thus, in that case the estimators considered are uniquely defined
with probability one. Furthermore, in the case of i.i.d. observation errors
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the following inequality is valid for an arbitrary density % and N ≤ n (see
Theorem 3.1 in [13] for the proof):

EωEη
1
n

n∑

i=1

(f(Xi)− f̂N (Xi))2 ≤
�

[a,b]d

(f(x)− dN (x))2%(x) dx+ σ2
η

N

n
.

Thus, if the error of uniform approximation of f by linear combinations
of the first N basis functions is of order N−α, where α > 0, or its mean-
square approximation error is of this order and the density % is bounded,
one can show that the convergence rate of the mean-square prediction error
is n−2α/(2α+1), i.e. the optimal convergence rate for that error is attained
[15], [16].

The exponent α defining the decrease rate of the uniform approximation
error of the regression function is related not only to the smoothness of the
regression function but also to the dimension of X. For example, if f is s
times continuously differentiable on [−1, 1]d, then in the case of polynomial
approximation we have α = s/d according to Lorentz [10].

Convergence rates of uniform and mean-square approximation of univari-
ate functions from a Sobolev space on [−π, π] by trigonometric functions or
from a Sobolev space on [−1, 1] by Legendre polynomials are derived in
[4], [6].

Let Lipm(A) for m > 0 denote the space of Hölder-continuous func-
tions of order m (i.e. [m] times continuously differentiable and such that
the [m]th order derivatives satisfy the Lipschitz condition with exponent
m − [m], where [m] denotes the integer part of m). For multivariate func-
tions belonging to this class, convergence rates of uniform and mean-square
approximation by appropriate orthonormal wavelet bases can be derived
using the results of Jaffard and Meyer [9], [4].

It was shown by the author [14] that results concerning consistency
and convergence rates in probability of the errors EX(f(X) − f̂N (X))2

and ‖f − f̂N‖∞ for orthogonal series regression estimators can be obtained
in the case of weakly dependent observation errors. Applying Lemma 2.1
and the techniques of [14] we can also obtain such results for zero mean
stationary second order observation errors with long-range dependence. An-
other approach to estimating regression from dependent observations by the
least squares method, which enables obtaining similar results, is presented
in [3].

Efromovich [5] has recently shown that there exist trigonometric series
estimators for the random design observation model considered that are
robust and minimax, and discussed the results obtained both theoretically
and via Monte Carlo simulations, indicating also possible extensions.
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