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Summary. In [4] it is proved that a measure on a finite coarse-grained space extends,
as a signed measure, over the entire power algebra. In [7] this result is reproved and
further improved. Both the articles [4] and [7] use the proof techniques of linear spaces
(i.e. they use multiplication by real scalars). In this note we show that all the results cited
above can be relatively easily obtained by the Horn—Tarski extension technique in a purely
combinatorial manner. We also characterize the pure measures and settle the dimension
of the normalized-measure space. We then comment on a consequence of the results for
circulant matrices. Finally, we take up the case of circle coarse-grained space and also
establish a measure-extension result.

1. Introduction. The problem pursued in this paper is motivated by
the measurement theory and the theory of quantum logics (see [4], [6] and
[9] for more motivation details). The coarse-grained structures constitute an
important example of so-called “concrete quantum logics”. Let us recall the
definition of the coarse-grained space and the relevant notions we shall use.

Let n > 2 and [ > 2 be natural numbers. Let 2 = {0,1,...,nl — 1}.
Denote by A,,; the smallest system of subsets of {2 that contains all sets of

the type

P Li={hh+1,....h+1-1} (heQ)
(the sum is understood modulo nl) and that is closed under the formation
of complements in {2 and disjoint unions. The collection A,,; is called the
coarse-grained additive class generated by the system Iy, and the sets Ij, are
called the generating sets of A, ;.
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Let m : A,; — R be a mapping such that

e m(0) =0,
e m(AUB) = m(A) +m(B) for arbitrary disjoint sets A and B in A, .

The mapping m is said to be a coarse-grained signed measure on A, ;. If a
coarse-grained signed measure attains only non-negative values, it is called a
coarse-grained measure. We shall omit the phrase coarse-grained and simply
speak of signed measures (resp. measures) on A, ;.

We want to present another proof technique for the extension results for
measures (resp. signed measures) on A, ; (see [4] and [7]) and add a few new
results. OQur approach uses the classical Horn—Tarski extension theorem. This
we believe simplifies the arguments in places and allows one to have a better
insight into the question considered.

2. Measures on a finite coarse-grained additive class (exten-
sions). We use the notations introduced above.

THEOREM 2.1. Let n,l € N, n > 2,1 > 2 and let A,; be the coarse-
grained additive system of subsets of 2 ={0,1,...,nl —1}.

(i) Each signed measure on A, ; can be extended as a signed measure
over the Boolean algebra exp (2 of all subsets of (2.

(ii) If n > 3 orif n =1 = 2, then each measure on A, ; can be extended
as a measure over exp 2. Moreover, if the measure on A, ; we start
with is two-valued, the extension over exp {2 can also be required to
be two-valued.

(iii) Let M(A,,;) denote the set of all normalized measures on A,
(a measure m is called normalized if m({2) = 1). Then t is an
extreme point of M(A,, ;) if and only if it is a two-valued measure.
Moreover, dim M(A,, ;) =1(n —1)+ 1.

(iv) Suppose that iy, ...,i;_1 € §2 lie in different classes modulo I. Sup-
pose that real numbers ry,...,r;_1 are given. Then any measure m
on Ay can be uniquely extended over exp {2 as a signed measure t
such that t(i;) = r; (j <1—1).

The proof of Theorem 2.1(i) has been given in [4] where also (ii) appeared,
though in a rather erroneous form, as observed in [7]. A complete proof of
Theorem 2.1(i), (ii) has been published in [7]. Our proof essentially differs
from the previous ones and is based on the following well known result due
to Horn and Tarski (see [1] and [5]).

PROPOSITION 2.2. Let C be a collection of subsets of a set (2.

(i) A set function m : C — R can be extended as a signed measure
over the power algebra exp {2 if the following implication holds true
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(by xy we denote the characteristic function of the set Y): If A;
(t=1,...,p) and B; (j=1,...,q) are sets of C, then
P q P
ZXAi = ZXBJ implies Zm(AZ) = Zm(Bj).
i=1 j=1 i=1 j=1
(ii) A non-negative set function m : C — R can be extended as a measure

over the power algebra exp {2 if the following implication holds true:
IfA; (i=1,...,p) and Bj (j =1,...,q) are sets of C, then

P q P q
ZXAi < ZXBJ‘ implies Zm(AZ) < Zm(Bj).
j=1 i=1 j=1

i=1

According to Proposition 2.2, to prove statement (i) in Theorem 2.1 it
is sufficient to verify the validity of the implication in Proposition 2.2(i).
This will be done in our next proposition. Prior to that, let us note that
every measure on 4, ; is uniquely determined by its values on the generating
sets Ij,. Indeed, suppose that two measures m and m’ coincide on all gen-
erators Ip,. Since the family F of sets A in A,,; for which m(A4) = m/(A)
is closed under the formation of disjoint unions and complements and since
JF contains all generators Iy, we see that F necessarily coincides with the
entire A, ;.

PROPOSITION 2.3. Let I}, be the generating sets of the additive class Ay, |
on 2 ={0,1,...,nl —1}. Let m : A,; — R be a signed measure. If for
some p and q and for some generating sets A; and B; we have Y b_| xa, =

G=1 X8y then 370 m(Ay) = 377 m(B;).

Proof. Assume that Ay,..., A, Bi,..., B, are generating sets of A, ;.
It follows that A; = I, and B; = I, for ¢ < p, j < ¢ and some 7 and s in
{0,1,...,nl — 1}. Assume that 7, x4, = > {_; B, Since all A; and B
are of the same cardinality (equal to ), we see that p = q. We can assume
A; # Bj for any i, j (if the same set appears in both families {A4;};<, and
{Bj}j<q, we can cross it out). Consider the number of times each element of
{2 appears in the two families. That is, given w € {2, set

Nw) =3 xaw) =3 xs, ).
i=1 j=1

First observe that the function A : 2 — N is constant. If not, take an w € {2
such that A (w) < M(w + 1). Such an element certainly exists as we easily
see once we take into account that the sum in (2 is understood modulo nl.
Supposing the last inequality holds true, there is an ig € {1,...,p} such
that A;, = Iy+1 = {w+1,...,w+1}. Indeed, if not then any set containing
w + 1 also contains w. Then N (w) > N (w + 1) contrary to assumption. The
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same argument applies to the family {B;}. It means that A;; = B}, for some
indices 79, jo. This is impossible since we have crossed out all equal elements.
Thus, N(w) is a constant function; denote its value by c.

To complete the proof, take the set A;. For some h € {2 we have A1 =
In={h,h+1,...,h+1—1}. There exists j € {2,3,...,p} such that A; =
Ipy. If not, any set of the family {A;}i<, containing h + [ also contains
h+1—1, which is impossible. Going on this way, we see that the family {4;}
is a union of partitions of {2 (the number of these partitions is then c). The
same is true for the family {B;}. The proof is then complete since m was
supposed to be additive on A,,; and therefore Y 7_, m(4;) = ?:1 m(Bj) =
c-m(f2). =

Note that in the previous proof we did not need to know what a general
element of A, ; looks like. In the proof of Theorem 2.1(ii) to follow we do
need it. For that, recall the following result by Ovchinnikov [7] (this seems
to be the only point where our procedure overlaps with his).

PROPOSITION 2.4. Let A,,; be the coarse-grained additive class on 2 =
{0,1,...,nl — 1} generated by the sets I, (h € 2). If n > 3, then an I-
element set I = {ag,a1,...,a1_1} C §2 belongs to A, if and only if for each
t €{0,1,...,1—1} there is exactly one element in I congruent to t modulo .

The previous proposition gives a complete description of the atoms in
Ay, and therefore in the case of n > 3 it gives a complete description
of all elements of A, ;: The atoms are exactly the l-element subsets of 2
containing precisely one element of each residue class modulo /. Denoting by
A the family of all atoms in A, ;, this implies that (upon denoting by R;
the elements congruent to ¢ modulo [)

A:{{ao,al,...,al_l}:aieRi,i:Ql,...,l—l}.

(Note that for n = 2 the situation is rather different. In this case Ay; =
{Qa IDv -[17 o 7Inl—17 Q})

REMARK. Before taking up the proof of Theorem 2.1(ii), observe that
the question of extending measures to measures is subtler than in the case of
signed measures. The complication is that there are non-negative evaluations
of the sets Iy, (h = 0,1,...,nl — 1) which are additive on the sets I;, but
which do not allow for non-negative extensions over all atoms of A,,; (the
circumstance overlooked in the erroneous Theorem 3 of [4]). This peculiarity
may even occur for a two-valued evaluation. If e.g. we take n =3 and [ = 3
and consider the function ¢ : {2 — R defined by setting ¢(0) = 1, ¢(1) = —1,
t(2) = 1 and t(i) = 0 for all 4, 3 < i < 8, we get a signed measure on
exp {2 such that ¢(I,) € {0,1} (h € {0,1,...,8}). We easily see that ¢ as an
evaluation of I, cannot be additively and non-negatively extended over all
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atoms of Az 3. Indeed, the value of the extension would have to be —1 on
the set {1,5,6}.

We are now able to prove Proposition 2.2(ii) and thus provide the essen-
tial part of the proof of Theorem 2.1(ii) (the case n =1 = 2 is evident).

PROPOSITION 2.5. Letn > 3. Let I, (h € §2) be the generating sets of the
coarse-grained additive class Ap; on 2 ={0,1,...,nl—1}. Letm : A,; — R
be a measure. If Zle xa; < 231'21 XB;, where A; and B; are some generating
sets I, (h=1,...,nl — 1), then >.7_  m(A;) < 23:1 m(B;).

Proof. Since card A; = card Bj; for any i, j, we see that p < ¢. The case
of p = ¢ is equivalent to D% ; x4, = 23:1 xB; and this has been argued in
Proposition 2.2(i).

Assume p < g. Since each of the sets A;, B; belongs to A and therefore

contains exactly one element of each residue class modulo [, it is possible to
add to {A;}i<, some atoms Apyq,...,Aq of A, such that

q q
Z XA; = Z XB]' .
i=1 j=1

Indeed, consider the collection E of all “exceeding” elements of the right-
hand side of the inequality > ©_| x4, < 25:1 XB;, i.e. set B = {w € 2 :
e X, (W) < 3792 xB;(w)}. The equalities

> iXAi =p, >, Zq:XBj =q

weR; =1 weR; j=1

together with the inequality

P q
D XA <) xz
i=1 j=1

ensure that it is possible to choose [ elements in the set F, one for each
residue class R,

wo € Ro, w1 € Ry, -y wi—1 € Ry,
in such a way that, denoting by A, the [-element set {wop,w1,...,wi—1},
we obtain
p+1 q

ZXAi < ZXB]- =q.
i=1 j=1

If p+ 1 = g we are done. Otherwise, let us again set
p+1

E= {w €N:) xalw) < zq:XBj(w)}
i—1 j=1
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and repeat the procedure to obtain A,;2, etc. After ¢ — p steps, we have
produced the sets A,,1,... A, so that the desired equality

q q
Z XA; = Z X B,
i=1 j=1

is valid. The non-negativity of m then yields

D> m(A) < m(A).
=1 i=1

An application of Proposition 2.2(i) gives the existence of a signed measure
m, extending m to exp 2. This obviously implies the equality >7 ; m(4;) =

']1-:1 m(B;) (in fact, for each set C'in A,,; we have m(C) = > o m({w}))
and completes the proof. =

REMARK. Note that the example we provided in the Remark above does
not fulfil the condition in the statement of the last proposition. For instance,

takepzl, q:2, A1=IQ, Blzfl and BQZI4.

For the proof of the rest of Theorem 2.1(ii), we need the following propo-
sition.

PROPOSITION 2.6. Assume n > 3 orn = [ = 2. Let s be a normal-

ized measure on A, (i.e. a measure with s(2) = 1). Then the following
statements are equivalent:

(i) s is two-valued,
(ii) s is concentrated at a point of §2 (it is a Dirac measure),
(iii) s is an extreme point of the (compact convex) set of all normalized
measures on Ay ;.

Proof. (i)=(ii). For n=1[=2 the situation is obvious. Assume n > 3. Let
s: Ay —{0,1}. Since s(I)) € {0,1} for any k € 2 and ), ., s(I) =1, it
follows that there are wy, ..., w; in §2 such that s(/,,) = 1forany j = 1,...,1.
We therefore see that for any w among the remaining (n — 1)I elements of
{2 the value of s on I, is zero. We can then write 2 = (2; U (2, where
card(£21) = [ and s(Iy) = 1 for k € (21, while card({23) = (n — 1)l and
s(Iy) = 0 for k € §25. Observe now that if we manage to show that (2
consists of consecutive elements, we are done. Indeed, if this is the case,
typically £ = {h+1,h+2,...,h+1} = I}41 for a certain h in {2, then the
measure s is concentrated at the element h + [ (the atoms I} with k € (2
are exactly those which contain h + [). Assume that {2; does not consist
of consecutive elements. Then we make use of the fact that n > 2 and we
find h,k € 21 with I, N I, = (. However, this is impossible since then
s(Ip U Ij) = 2. This proves (i)=-(ii).

(ii)=-(iii). This implication is obvious.



Extending Coarse-Grained Measures 7

(iii)=-(i). The proof follows from a well known result in convex analysis:
the restriction map R®™P? — RAn! can be viewed as a continuous linear
operator and when specified to normalized measure spaces, every extreme
point in the range allows for a preimage extreme point in the domain. Let us
present a simple direct proof. Let s be a normalized measure on A,, ; which
is not two-valued. Proposition 2.3 ensures the existence of an extension, s,
of s over the power algebra exp {2. The state s can be written as a convex

combination of Dirac measures 04,0z, ,...,0z,, , on exp {2,
nl—1 nl—1

5= E a0y, with a; > 0 and E a; = 1.
=0 =0

Without any loss of generality we can assume ag € (0,1). If we denote by ¢
the measure on exp {2 defined by
1 nl—1

i=1

then s becomes a convex combination of two measures d,, and ¢,
S = apdg, + (1 —ap)t.
Observe that the restrictions sg and ¢y (of 0, and ¢, respectively) to A,,; do

not agree. In fact, since s is not concentrated at x(, the same is true for ¢,
which is then different from sy. =

From the previous result it follows that each two-valued measure on A, ;
can be extended as a two-valued measure over the entire exp §2. Using this,
we want to show that dim M(A,,;) = [(n—1)+1. Let s; be the Dirac measure
concentrated at {i}. We want to show that the measures sg, s1, ..., S(n—1)1
form an affine basis of M(A,;). Let us first check that they are linearly
independent. Assume that Zgial)l Ais; = 0. Then

(n—1)1
Z Aisi(Ln—1)141) = A080(L(n=1)1+1) = Ao
i=0
and therefore \g = 0. Further,
(n—1)I
Z )\isi(I(nfl)l+2) = )\OSO(I(nfl)l+2) + )‘151(I(n71)l+2)
i=0
= Ms1({(n—1)142) = M1
and therefore A\; = 0, etc. We inductively obtain Ag=XA1=---=A(,_1;=0.

Second, we are going to show that any measure s can be expressed as
a linear combination of s; (0 < ¢ < (n — 1)I). For that it is sufficient to
check that given arbitrary values (vo,v1,...,v(,—1)), there exist coefficients
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(Ao, A1, -+ s Agn—1)1) such that the measure s = ZZ( B DU \;s; attains the value
v; on the generating set I; (0 < i < (n — 1)I). Since the values of s on the
remaining sets I;, i > (n — 1)l, are already determined by the values of s on
I (0<i<(n-— 1)l) this will complete the proof.
Fix (vo, v1, .-+, v(n—1)). Knowing that s;((,_1);) = 0 for any i < (n—1)I
and wanting s(/, ) V(n—1);, We must have
(n—1)1

> Nisillin—1y) = A= 18 e-1Tm—11) = Am-1)1-

This yields )‘(nfl)l = V(n-1)I- For S(I(nfl)lfl) = V(n—1)—1 We must have

(n—1)I
Z Aisi(In—1)1-1) = An—1)1-18(n-1)1-1I(n—1)1-1)
=0
+ An—1)18(n—1) I (n-1)1-1)
= An-1)i-1 + Yn-1)1-1-

This yields A(,—1)1-1 = V(n—1)1-1 — Y(n—1)1- Going on this way, we will de-
termine all the coefficients \; (i < (n — 1)I) and complete the proof of
Theorem 2.1(iii). Theorem 2.1(iv) easily follows from Theorem 2.1(iii).

Let us show by examples that the extension results given by Theorem
2.1 are in a sense best possible. Firstly, in Theorem 2.1 we have to assume
n > 2 as the following simple example shows.

ExAMPLE 2.7. Take n =2 and [ = 3. Then Ay 3 = {0, Iy, I1,...,I5, 2}.
It is immediate to check that the (two-valued) measure on Ay 3 such that
s(lo) = s(l2) = s(ls) =1, s(h) =s(I3) =s(I5) =0
cannot be extended over exp {2 as a measure.

Secondly, it is worth observing that Theorem 2.1 cannot be generalized
to arbitrary additive classes (see also [8]). In fact, an extension may not exist
even if the original measure is two-valued.

EXAMPLE 2.8. Let 2 = {0,1,2,3,4,5} and consider the additive class
A generated by the sets A = {1,2,3}, B = {2,3,4}, C = {3,4,5}, and
D ={1,3,5}. If m is a signed measure on exp {2, then

m(C) +m(A) + m(B) + m(D°) = 2m(£2).
Analogously,
m(C°) + m(A°) + m(B) + m(D) = 2m(£2).
The (two-valued) measure t on A defined by setting
t(A)=0, tB)=1, t(C)=0, tD)=1
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cannot be extended as a signed measure on exp (2. Indeed, if we compute
the sums above, we obtain 0 for the first sum and 4 for the second.

3. A link of coarse-grained measures with circulant matrices.
Let n,l € N and n > 2, [ > 2. Denote by M™ the set of all nl x nl
matrices. Let M € M™. We say that M is an elementary circulant matriz
if M is a circulant matrix (see [2|) with the first row (a1 1,a12,...,a1,01)
such that a;; = 1 for all j <[, a; = 0 otherwise. It is easy to see that
if we write out the extension problem as a collection of equations for the
values of the potential extension, we obtain a system of linear equations
with an elementary circulant matrix. Our result can then be expressed in
the following form:

THEOREM 3.1. Let M € M™ and M be an elementary circulant matriz.
Consider the equation MZ =b. Let b= (by,...,bn).

(i) The system Mz = b has a solution if and only if there is a c € R
such that for each h € {1,...,1} we have > ;" | bpyi = ¢ (the sum is
understood modulo nl).

(i1) Suppose that b; > 0 for each i, 1 <i < nl. Then the system MT = b
has a mon-negative solution if and only if the following implication
holds true (with 7; denoting the i-th row of M):

If Z?il Ty > Z;il d;7; for some non-negative integers c;, d;
(1 <i<mnl), then " eiby > S dib;.

4. Measures on a circle coarse-grained additive class (exten-
sions). In this section we shall consider a continuous analogy of finite coarse-
graining. This has already been initiated in [4], though the measure extension
of finitely additive measures has not been pursued: the authors only analyzed
a measure extension problem of analytic nature based on o-additivity. We
want to show that there is an extension theorem analogous to Theorem 2.1(i)
valid in this “continuous” case, and that this result can also be derived from
the Horn—Tarski theorem.

Let C' be the unit circle in the plane parametrized by [0,27). Fix an
integer n > 2 and denote by A, the smallest system of subsets of C that
contains all the (generating) sets of the type [a,a + 27/n), a € [0,27) (the
sum is understood modulo 27) and that is closed under the formation of
complements in C' and disjoint unions. Call A, the coarse-grained additive
system on C. With the intention to obtain an extension result for finitely
additive measures defined on A,,, we shall verify the Horn-Tarski condition
(Proposition 2.2(i)) for signed measures (we have not been able to verify the
Horn—Tarski condition for measures, so this rather interesting question is left
open).
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PROPOSITION 4.1. Let Ay,..., A, and By,..., B, be generating sets of
the additive class A, and let m : A, — R be a signed measure. If for some

p and q we have Y 8| x4, = 23:1 XB;, then Y27 m(A;) = ;1:1 m(Bj).

Proof. By assumption, for some sets of the type A; = [a;, a; + 27/n)
(1 <i<p)and Bj =[B},5; +2n/n) (1 < j < q) we have the equality

P q
D XA =D xn:
i=1 j=1
We can assume A; # B; for each 4, j. This gives
{al,...,ap}ﬂ{ﬂl,...,ﬂq} = .

Consider the number of times an element of C' appears in the two families
{Ai}i<p and {Bj};<4. That is, for each z € C set

q
N(@) = xa(@) =Y xn(2).
i=1 j=1
We first want to show that A/ : C'— N is constant. Suppose it is not. Then
the set {x € C': N(z) > lim,_,,- N(y)} is not empty. The points in this set

are necessarily the left end points of A; and B;. Then the inclusion

{xGC:N(x)>yl_igl_/\f(y)}Q{al,...,ap}ﬁ{ﬁl,...,ﬂq}:Q)

gives a contradiction.

We have shown that the function N is constant; denote its value by c.
This means that {4;};_, and {B;},_, are c-fold coverings of C' (this can be
easily shown by proving that if (o, a+27/n) = A;, then [a+27/n, a+4w/n)
must be one of the A;’s (j # i)). We infer that

p

D> m(A)=> m(B;)=c-m(C).

i=1 j=1
We have proved the following theorem:

THEOREM 4.2. Let C be the unit circle in the plane and let A, be the
coarse-grained additive system of subsets of C generated by all half-open in-
tervals of the type [a, v + 2w /n), a € [0,27). Let m : A,, — R be a (finitely
additive) measure on A,. Then m can be extended over the power algebra
expC as a signed measure.
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