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Extending Coarse-Grained MeasuresbyAnna DE SIMONE and Pavel PTÁKPresented by Tomasz �UCZAKSummary. In [4℄ it is proved that a measure on a �nite 
oarse-grained spa
e extends,as a signed measure, over the entire power algebra. In [7℄ this result is reproved andfurther improved. Both the arti
les [4℄ and [7℄ use the proof te
hniques of linear spa
es(i.e. they use multipli
ation by real s
alars). In this note we show that all the results 
itedabove 
an be relatively easily obtained by the Horn�Tarski extension te
hnique in a purely
ombinatorial manner. We also 
hara
terize the pure measures and settle the dimensionof the normalized-measure spa
e. We then 
omment on a 
onsequen
e of the results for
ir
ulant matri
es. Finally, we take up the 
ase of 
ir
le 
oarse-grained spa
e and alsoestablish a measure-extension result.1. Introdu
tion. The problem pursued in this paper is motivated bythe measurement theory and the theory of quantum logi
s (see [4℄, [6℄ and[9℄ for more motivation details). The 
oarse-grained stru
tures 
onstitute animportant example of so-
alled �
on
rete quantum logi
s�. Let us re
all thede�nition of the 
oarse-grained spa
e and the relevant notions we shall use.Let n ≥ 2 and l ≥ 2 be natural numbers. Let Ω = {0, 1, . . . , nl − 1}.Denote by ∆n,l the smallest system of subsets of Ω that 
ontains all sets ofthe type
Ih = {h, h + 1, . . . , h + l − 1} (h ∈ Ω)(the sum is understood modulo nl) and that is 
losed under the formationof 
omplements in Ω and disjoint unions. The 
olle
tion ∆n,l is 
alled the
oarse-grained additive 
lass generated by the system Ih, and the sets Ih are
alled the generating sets of ∆n,l.2000 Mathemati
s Subje
t Classi�
ation: 06C15, 28E99, 81P10.Key words and phrases: quantum logi
s, 
oarse-grained measures, measure extensions,
ir
ulant matri
es.The authors a
knowledge the support of Progetto di Ri
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Let m : ∆n,l → R be a mapping su
h that
• m(∅) = 0,
• m(A∪B) = m(A) + m(B) for arbitrary disjoint sets A and B in ∆n,l.The mapping m is said to be a 
oarse-grained signed measure on ∆n,l. If a
oarse-grained signed measure attains only non-negative values, it is 
alled a
oarse-grained measure. We shall omit the phrase 
oarse-grained and simplyspeak of signed measures (resp. measures) on ∆n,l.We want to present another proof te
hnique for the extension results formeasures (resp. signed measures) on ∆n,l (see [4℄ and [7℄) and add a few newresults. Our approa
h uses the 
lassi
al Horn�Tarski extension theorem. Thiswe believe simpli�es the arguments in pla
es and allows one to have a betterinsight into the question 
onsidered.2. Measures on a �nite 
oarse-grained additive 
lass (exten-sions). We use the notations introdu
ed above.Theorem 2.1. Let n, l ∈ N, n ≥ 2, l ≥ 2 and let ∆n,l be the 
oarse-grained additive system of subsets of Ω = {0, 1, . . . , nl − 1}.(i) Ea
h signed measure on ∆n,l 
an be extended as a signed measureover the Boolean algebra expΩ of all subsets of Ω.(ii) If n ≥ 3 or if n = l = 2, then ea
h measure on ∆n,l 
an be extendedas a measure over expΩ. Moreover , if the measure on ∆n,l we startwith is two-valued , the extension over expΩ 
an also be required tobe two-valued.(iii) Let M(∆n,l) denote the set of all normalized measures on ∆n,l(a measure m is 
alled normalized if m(Ω) = 1). Then t is anextreme point of M(∆n,l) if and only if it is a two-valued measure.Moreover , dimM(∆n,l) = l(n − 1) + 1.(iv) Suppose that i1, . . . , il−1 ∈ Ω lie in di�erent 
lasses modulo l. Sup-pose that real numbers r1, . . . , rl−1 are given. Then any measure mon ∆n,l 
an be uniquely extended over expΩ as a signed measure tsu
h that t(ij) = rj (j ≤ l − 1).The proof of Theorem 2.1(i) has been given in [4℄ where also (ii) appeared,though in a rather erroneous form, as observed in [7℄. A 
omplete proof ofTheorem 2.1(i), (ii) has been published in [7℄. Our proof essentially di�ersfrom the previous ones and is based on the following well known result dueto Horn and Tarski (see [1℄ and [5℄).Proposition 2.2. Let C be a 
olle
tion of subsets of a set Ω.(i) A set fun
tion m : C → R 
an be extended as a signed measureover the power algebra expΩ if the following impli
ation holds true
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(by χY we denote the 
hara
teristi
 fun
tion of the set Y ): If Ai

(i = 1, . . . , p) and Bj (j = 1, . . . , q) are sets of C, then
p∑

i=1

χAi
=

q∑

j=1

χBj
implies p∑

i=1

m(Ai) =

q∑

j=1

m(Bj).(ii) A non-negative set fun
tion m : C → R 
an be extended as a measureover the power algebra expΩ if the following impli
ation holds true:If Ai (i = 1, . . . , p) and Bj (j = 1, . . . , q) are sets of C, then
p∑

i=1

χAi
≤

q∑

j=1

χBj
implies p∑

i=1

m(Ai) ≤

q∑

j=1

m(Bj).A

ording to Proposition 2.2, to prove statement (i) in Theorem 2.1 itis su�
ient to verify the validity of the impli
ation in Proposition 2.2(i).This will be done in our next proposition. Prior to that, let us note thatevery measure on ∆n,l is uniquely determined by its values on the generatingsets Ih. Indeed, suppose that two measures m and m′ 
oin
ide on all gen-erators Ih. Sin
e the family F of sets A in ∆n,l for whi
h m(A) = m′(A)is 
losed under the formation of disjoint unions and 
omplements and sin
e
F 
ontains all generators Ih, we see that F ne
essarily 
oin
ides with theentire ∆n,l.Proposition 2.3. Let Ih be the generating sets of the additive 
lass ∆n,lon Ω = {0, 1, . . . , nl − 1}. Let m : ∆n,l → R be a signed measure. If forsome p and q and for some generating sets Ai and Bj we have ∑p

i=1 χAi
=∑q

j=1 χBj
, then ∑p

i=1 m(Ai) =
∑q

j=1 m(Bj).Proof. Assume that A1, . . . , Ap, B1, . . . , Bq are generating sets of ∆n,l.It follows that Ai = Ir and Bj = Is for i ≤ p, j ≤ q and some r and s in
{0, 1, . . . , nl − 1}. Assume that ∑p

i=1 χAi
=

∑q
j=1 χBj

. Sin
e all Ai and Bjare of the same 
ardinality (equal to l), we see that p = q. We 
an assume
Ai 6= Bj for any i, j (if the same set appears in both families {Ai}i≤p and
{Bj}j≤q, we 
an 
ross it out). Consider the number of times ea
h element of
Ω appears in the two families. That is, given ω ∈ Ω, set

N (ω) =

p∑

i=1

χAi
(ω) =

p∑

j=1

χBj
(ω).First observe that the fun
tion N : Ω → N is 
onstant. If not, take an ω ∈ Ωsu
h that N (ω) < N (ω + 1). Su
h an element 
ertainly exists as we easilysee on
e we take into a

ount that the sum in Ω is understood modulo nl.Supposing the last inequality holds true, there is an i0 ∈ {1, . . . , p} su
hthat Ai0 = Iω+1 = {ω + 1, . . . , ω + l}. Indeed, if not then any set 
ontaining

ω + 1 also 
ontains ω. Then N (ω) ≥ N (ω + 1) 
ontrary to assumption. The
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same argument applies to the family {Bj}. It means that Ai0 = Bj0 for someindi
es i0, j0. This is impossible sin
e we have 
rossed out all equal elements.Thus, N (ω) is a 
onstant fun
tion; denote its value by c.To 
omplete the proof, take the set A1. For some h ∈ Ω we have A1 =
Ih = {h, h + 1, . . . , h + l − 1}. There exists j ∈ {2, 3, . . . , p} su
h that Aj =
Ih+l. If not, any set of the family {Ai}i≤p 
ontaining h + l also 
ontains
h+ l−1, whi
h is impossible. Going on this way, we see that the family {Ai}is a union of partitions of Ω (the number of these partitions is then c). Thesame is true for the family {Bj}. The proof is then 
omplete sin
e m wassupposed to be additive on ∆n,l and therefore ∑p

i=1 m(Ai) =
∑p

j=1 m(Bj) =
c · m(Ω).Note that in the previous proof we did not need to know what a generalelement of ∆n,l looks like. In the proof of Theorem 2.1(ii) to follow we doneed it. For that, re
all the following result by Ov
hinnikov [7℄ (this seemsto be the only point where our pro
edure overlaps with his).Proposition 2.4. Let ∆n,l be the 
oarse-grained additive 
lass on Ω =
{0, 1, . . . , nl − 1} generated by the sets Ih (h ∈ Ω). If n ≥ 3, then an l-element set I = {a0, a1, . . . , al−1} ⊂ Ω belongs to ∆n,l if and only if for ea
h
t ∈ {0, 1, . . . , l−1} there is exa
tly one element in I 
ongruent to t modulo l.The previous proposition gives a 
omplete des
ription of the atoms in
∆n,l, and therefore in the 
ase of n ≥ 3 it gives a 
omplete des
riptionof all elements of ∆n,l: The atoms are exa
tly the l-element subsets of Ω
ontaining pre
isely one element of ea
h residue 
lass modulo l. Denoting by
A the family of all atoms in ∆n,l, this implies that (upon denoting by Rithe elements 
ongruent to i modulo l)

A = {{a0, a1, . . . , al−1} : ai ∈ Ri, i = 0, 1, . . . , l − 1}.(Note that for n = 2 the situation is rather di�erent. In this 
ase ∆2,l =
{∅, I0, I1, . . . , Inl−1, Ω}.)
Remark. Before taking up the proof of Theorem 2.1(ii), observe thatthe question of extending measures to measures is subtler than in the 
ase ofsigned measures. The 
ompli
ation is that there are non-negative evaluationsof the sets Ih (h = 0, 1, . . . , nl − 1) whi
h are additive on the sets Ih butwhi
h do not allow for non-negative extensions over all atoms of ∆n,l (the
ir
umstan
e overlooked in the erroneous Theorem 3 of [4℄). This pe
uliaritymay even o

ur for a two-valued evaluation. If e.g. we take n = 3 and l = 3and 
onsider the fun
tion t : Ω → R de�ned by setting t(0) = 1, t(1) = −1,

t(2) = 1 and t(i) = 0 for all i, 3 ≤ i ≤ 8, we get a signed measure on
expΩ su
h that t(Ih) ∈ {0, 1} (h ∈ {0, 1, . . . , 8}). We easily see that t as anevaluation of Ih 
annot be additively and non-negatively extended over all
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atoms of ∆3,3. Indeed, the value of the extension would have to be −1 onthe set {1, 5, 6}.We are now able to prove Proposition 2.2(ii) and thus provide the essen-tial part of the proof of Theorem 2.1(ii) (the 
ase n = l = 2 is evident).Proposition 2.5. Let n ≥ 3. Let Ih (h ∈ Ω) be the generating sets of the
oarse-grained additive 
lass ∆n,l on Ω = {0, 1, . . . , nl−1}. Let m : ∆n,l → Rbe a measure. If ∑p

i=1 χAi
≤

∑q
j=1 χBj

, where Ai and Bj are some generatingsets Ih (h = 1, . . . , nl − 1), then ∑p
i=1 m(Ai) ≤

∑q
j=1 m(Bj).Proof. Sin
e 
ard Ai = 
ard Bj for any i, j, we see that p ≤ q. The 
aseof p = q is equivalent to ∑p

i=1 χAi
=

∑q
j=1 χBj

and this has been argued inProposition 2.2(i).Assume p < q. Sin
e ea
h of the sets Ai, Bj belongs to A and therefore
ontains exa
tly one element of ea
h residue 
lass modulo l, it is possible toadd to {Ai}i≤p some atoms Ap+1, . . . , Aq of ∆n,l su
h that
q∑

i=1

χAi
=

q∑

j=1

χBj
.Indeed, 
onsider the 
olle
tion E of all �ex
eeding� elements of the right-hand side of the inequality ∑p

i=1 χAi
<

∑q
j=1 χBj

, i.e. set E = {ω ∈ Ω :∑p
i=1 χAi

(ω) <
∑q

j=1 χBj
(ω)}. The equalities

∑

ω∈Ri

p∑

i=1

χAi
= p,

∑

ω∈Ri

q∑

j=1

χBj
= qtogether with the inequality

p∑

i=1

χAi
<

q∑

j=1

χBjensure that it is possible to 
hoose l elements in the set E, one for ea
hresidue 
lass Ri,
ω0 ∈ R0, ω1 ∈ R1, . . . , ωl−1 ∈ Rl−1,in su
h a way that, denoting by Ap+1 the l-element set {ω0, ω1, . . . , ωl−1},we obtain

p+1∑

i=1

χAi
≤

q∑

j=1

χBj
= q.If p + 1 = q we are done. Otherwise, let us again set

E =
{

ω ∈ Ω :

p+1∑

i=1

χAi
(ω) <

q∑

j=1

χBj
(ω)

}
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and repeat the pro
edure to obtain Ap+2, et
. After q − p steps, we haveprodu
ed the sets Ap+1, . . . Aq so that the desired equality

q∑

i=1

χAi
=

q∑

j=1

χBjis valid. The non-negativity of m then yields
p∑

i=1

m(Ai) ≤

q∑

i=1

m(Ai).An appli
ation of Proposition 2.2(i) gives the existen
e of a signed measure
m̃, extending m to expΩ. This obviously implies the equality ∑q

i=1 m(Ai) =∑q
j=1 m(Bj) (in fa
t, for ea
h set C in ∆n,l we have m(C) =

∑
ω∈C m̃({ω}))and 
ompletes the proof.

Remark. Note that the example we provided in the Remark above doesnot ful�l the 
ondition in the statement of the last proposition. For instan
e,take p = 1, q = 2, A1 = I2, B1 = I1 and B2 = I4.For the proof of the rest of Theorem 2.1(ii), we need the following propo-sition.Proposition 2.6. Assume n ≥ 3 or n = l = 2. Let s be a normal-ized measure on ∆n,l (i.e. a measure with s(Ω) = 1). Then the followingstatements are equivalent :(i) s is two-valued ,(ii) s is 
on
entrated at a point of Ω (it is a Dira
 measure),(iii) s is an extreme point of the (
ompa
t 
onvex ) set of all normalizedmeasures on ∆n,l.Proof. (i)⇒(ii). For n= l=2 the situation is obvious. Assume n≥3. Let
s : ∆n,l → {0, 1}. Sin
e s(Ik) ∈ {0, 1} for any k ∈ Ω and ∑

k∈Ω s(Ik) = l, itfollows that there are ω1, . . . , ωl in Ω su
h that s(Iωj
) = 1 for any j = 1, . . . , l.We therefore see that for any ω among the remaining (n − 1)l elements of

Ω the value of s on Iω is zero. We 
an then write Ω = Ω1 ∪ Ω2, where
card(Ω1) = l and s(Ik) = 1 for k ∈ Ω1, while card(Ω2) = (n − 1)l and
s(Ik) = 0 for k ∈ Ω2. Observe now that if we manage to show that Ω1
onsists of 
onse
utive elements, we are done. Indeed, if this is the 
ase,typi
ally Ω1 = {h + 1, h + 2, . . . , h + l} = Ih+1 for a 
ertain h in Ω, then themeasure s is 
on
entrated at the element h + l (the atoms Ik with k ∈ Ω1are exa
tly those whi
h 
ontain h + l). Assume that Ω1 does not 
onsistof 
onse
utive elements. Then we make use of the fa
t that n > 2 and we�nd h, k ∈ Ω1 with Ih ∩ Ik = ∅. However, this is impossible sin
e then
s(Ih ∪ Ik) = 2. This proves (i)⇒(ii).(ii)⇒(iii). This impli
ation is obvious.
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(iii)⇒(i). The proof follows from a well known result in 
onvex analysis:the restri
tion map R

exp Ω → R
∆n,l 
an be viewed as a 
ontinuous linearoperator and when spe
i�ed to normalized measure spa
es, every extremepoint in the range allows for a preimage extreme point in the domain. Let uspresent a simple dire
t proof. Let s be a normalized measure on ∆n,l whi
his not two-valued. Proposition 2.3 ensures the existen
e of an extension, s̃,of s over the power algebra expΩ. The state s̃ 
an be written as a 
onvex
ombination of Dira
 measures δx0
, δx1

, . . . , δxnl−1
on expΩ,

s̃ =
nl−1∑

i=0

αiδxi
with αi ≥ 0 and nl−1∑

i=0

αi = 1.Without any loss of generality we 
an assume α0 ∈ (0, 1). If we denote by tthe measure on expΩ de�ned by
t =

1

1 − α0

nl−1∑

i=1

αiδxithen s̃ be
omes a 
onvex 
ombination of two measures δx0
and t,

s̃ = α0δx0
+ (1 − α0)t.Observe that the restri
tions s0 and t0 (of δx0

and t, respe
tively) to ∆n,l donot agree. In fa
t, sin
e s is not 
on
entrated at x0, the same is true for t,whi
h is then di�erent from s0.From the previous result it follows that ea
h two-valued measure on ∆n,l
an be extended as a two-valued measure over the entire expΩ. Using this,we want to show that dimM(∆n,l) = l(n−1)+1. Let si be the Dira
 measure
on
entrated at {i}. We want to show that the measures s0, s1, . . . , s(n−1)lform an a�ne basis of M(∆n,l). Let us �rst 
he
k that they are linearlyindependent. Assume that ∑(n−1)l
i=0 λisi = 0. Then

(n−1)l∑

i=0

λisi(I(n−1)l+1) = λ0s0(I(n−1)l+1) = λ0and therefore λ0 = 0. Further,
(n−1)l∑

i=0

λisi(I(n−1)l+2) = λ0s0(I(n−1)l+2) + λ1s1(I(n−1)l+2)

= λ1s1(I(n−1)l+2) = λ1and therefore λ1 = 0, et
. We indu
tively obtain λ0 =λ1 = · · ·=λ(n−1)l =0.Se
ond, we are going to show that any measure s 
an be expressed asa linear 
ombination of si (0 ≤ i ≤ (n − 1)l). For that it is su�
ient to
he
k that given arbitrary values (v0, v1, . . . , v(n−1)l), there exist 
oe�
ients
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(λ0, λ1, . . . , λ(n−1)l) su
h that the measure s =

∑(n−1)l
i=0 λisi attains the value

vi on the generating set Ii (0 ≤ i ≤ (n − 1)l). Sin
e the values of s on theremaining sets Ii, i > (n− 1)l, are already determined by the values of s on
Ii (0 ≤ i ≤ (n − 1)l), this will 
omplete the proof.Fix (v0, v1, . . . , v(n−1)l). Knowing that si(I(n−1)l) = 0 for any i < (n−1)land wanting s(I(n−1)l) = v(n−1)l, we must have

(n−1)l∑

i=0

λisi(I(n−1)l) = λ(n−1)ls(n−1)l(I(n−1)l) = λ(n−1)l.This yields λ(n−1)l = v(n−1)l. For s(I(n−1)l−1) = v(n−1)l−1 we must have
(n−1)l∑

i=0

λisi(I(n−1)l−1) = λ(n−1)l−1s(n−1)l−1(I(n−1)l−1)

+λ(n−1)ls(n−1)l(I(n−1)l−1)

= λ(n−1)l−1 + v(n−1)l−1.This yields λ(n−1)l−1 = v(n−1)l−1 − v(n−1)l. Going on this way, we will de-termine all the 
oe�
ients λi (i ≤ (n − 1)l) and 
omplete the proof ofTheorem 2.1(iii). Theorem 2.1(iv) easily follows from Theorem 2.1(iii).Let us show by examples that the extension results given by Theorem2.1 are in a sense best possible. Firstly, in Theorem 2.1 we have to assume
n > 2 as the following simple example shows.Example 2.7. Take n = 2 and l = 3. Then ∆2,3 = {∅, I0, I1, . . . , I5, Ω}.It is immediate to 
he
k that the (two-valued) measure on ∆2,3 su
h that

s(I0) = s(I2) = s(I4) = 1, s(I1) = s(I3) = s(I5) = 0
annot be extended over expΩ as a measure.Se
ondly, it is worth observing that Theorem 2.1 
annot be generalizedto arbitrary additive 
lasses (see also [8℄). In fa
t, an extension may not existeven if the original measure is two-valued.Example 2.8. Let Ω = {0, 1, 2, 3, 4, 5} and 
onsider the additive 
lass
∆ generated by the sets A = {1, 2, 3}, B = {2, 3, 4}, C = {3, 4, 5}, and
D = {1, 3, 5}. If m is a signed measure on expΩ, then

m(C) + m(A) + m(Bc) + m(Dc) = 2m(Ω).Analogously,
m(Cc) + m(Ac) + m(B) + m(D) = 2m(Ω).The (two-valued) measure t on ∆ de�ned by setting

t(A) = 0, t(B) = 1, t(C) = 0, t(D) = 1
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annot be extended as a signed measure on expΩ. Indeed, if we 
omputethe sums above, we obtain 0 for the �rst sum and 4 for the se
ond.3. A link of 
oarse-grained measures with 
ir
ulant matri
es.Let n, l ∈ N and n ≥ 2, l ≥ 2. Denote by Mnl the set of all nl × nlmatri
es. Let M ∈ Mnl. We say that M is an elementary 
ir
ulant matrixif M is a 
ir
ulant matrix (see [2℄) with the �rst row (a1,1, a1,2, . . . , a1,nl)su
h that a1,j = 1 for all j ≤ l, a1,k = 0 otherwise. It is easy to see thatif we write out the extension problem as a 
olle
tion of equations for thevalues of the potential extension, we obtain a system of linear equationswith an elementary 
ir
ulant matrix. Our result 
an then be expressed inthe following form:Theorem 3.1. Let M ∈ Mnl and M be an elementary 
ir
ulant matrix.Consider the equation M~x = ~b. Let ~b = (b1, . . . , bnl).(i) The system M~x = ~b has a solution if and only if there is a c ∈ Rsu
h that for ea
h h ∈ {1, . . . , l} we have ∑n

i=1 bh+il = c (the sum isunderstood modulo nl).(ii) Suppose that bi ≥ 0 for ea
h i, 1 ≤ i ≤ nl. Then the system M~x = ~bhas a non-negative solution if and only if the following impli
ationholds true (with ~ri denoting the i-th row of M):If ∑nl
i=1 ci~ri ≥

∑nl
i=1 di~ri for some non-negative integers ci, di(1 ≤ i ≤ nl), then ∑nl

i=1 cibi ≥
∑nl

i=1 dibi.4. Measures on a 
ir
le 
oarse-grained additive 
lass (exten-sions). In this se
tion we shall 
onsider a 
ontinuous analogy of �nite 
oarse-graining. This has already been initiated in [4℄, though the measure extensionof �nitely additive measures has not been pursued: the authors only analyzeda measure extension problem of analyti
 nature based on σ-additivity. Wewant to show that there is an extension theorem analogous to Theorem 2.1(i)valid in this �
ontinuous� 
ase, and that this result 
an also be derived fromthe Horn�Tarski theorem.Let C be the unit 
ir
le in the plane parametrized by [0, 2π). Fix aninteger n ≥ 2 and denote by ∆n the smallest system of subsets of C that
ontains all the (generating) sets of the type [α, α + 2π/n), α ∈ [0, 2π) (thesum is understood modulo 2π) and that is 
losed under the formation of
omplements in C and disjoint unions. Call ∆n the 
oarse-grained additivesystem on C. With the intention to obtain an extension result for �nitelyadditive measures de�ned on ∆n, we shall verify the Horn�Tarski 
ondition(Proposition 2.2(i)) for signed measures (we have not been able to verify theHorn�Tarski 
ondition for measures, so this rather interesting question is leftopen).
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Proposition 4.1. Let A1, . . . , Ap and B1, . . . , Bq be generating sets ofthe additive 
lass ∆n and let m : ∆n → R be a signed measure. If for some

p and q we have ∑p
i=1 χAi

=
∑q

j=1 χBj
, then ∑p

i=1 m(Ai) =
∑q

j=1 m(Bj).Proof. By assumption, for some sets of the type Ai = [αi, αi + 2π/n)(1 ≤ i ≤ p) and Bj = [βj, βj + 2π/n) (1 ≤ j ≤ q) we have the equality
p∑

i=1

χAi
=

q∑

j=1

χBj
.

We 
an assume Ai 6= Bj for ea
h i, j. This gives
{α1, . . . , αp} ∩ {β1, . . . , βq} = ∅.Consider the number of times an element of C appears in the two families

{Ai}i≤p and {Bj}j≤q. That is, for ea
h x ∈ C set
N (x) =

p∑

i=1

χAi
(x) =

q∑

j=1

χBj
(x).

We �rst want to show that N : C → N is 
onstant. Suppose it is not. Thenthe set {x ∈ C : N (x) > limy→x− N (y)} is not empty. The points in this setare ne
essarily the left end points of Ai and Bj . Then the in
lusion
{x ∈ C : N (x) > lim

y→x−
N (y)} ⊆ {α1, . . . , αp} ∩ {β1, . . . , βq} = ∅gives a 
ontradi
tion.We have shown that the fun
tion N is 
onstant; denote its value by c.This means that {Ai}

p
i=1 and {Bj}

p
j=1 are c-fold 
overings of C (this 
an beeasily shown by proving that if [α, α+2π/n) = Ai, then [α+2π/n, α+4π/n)must be one of the Aj 's (j 6= i)). We infer that

p∑

i=1

m(Ai) =

q∑

j=1

m(Bj) = c · m(C).

We have proved the following theorem:Theorem 4.2. Let C be the unit 
ir
le in the plane and let ∆n be the
oarse-grained additive system of subsets of C generated by all half-open in-tervals of the type [α, α + 2π/n), α ∈ [0, 2π). Let m : ∆n → R be a (�nitelyadditive) measure on ∆n. Then m 
an be extended over the power algebra
expC as a signed measure.A
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