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Summary. We prove that plurisubharmonic solutions to certain boundary blow-up prob-
lems for the complex Monge-Ampére operator are Lipschitz continuous. We also prove
that in certain cases these solutions are unique.

1. Introduction. In [3], Cheng and Yau studied the problem
0%u
e (8236219 (z)> f(z)e , zZ €L,
lim u(z) =00 for all zp € 012,

z—20

where (2 is a bounded strongly pseudoconvex domain in C™ with smooth
boundary, f is a smooth strictly positive function and K > 0 a constant.
They showed that there is a unique smooth plurisubharmonic solution to
this problem. In this paper we study a similar problem, namely

d%% (z)) = flzu(z), z€

lim u(z) = o0 for all zy € 012,

z—20

(1)

where the right hand side is a function f € C°°(£2 x R) which is strictly
positive, increasing in the second variable and satisfies the following three
conditions:
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A: There exist functions h € C*°(§2) and f; € C*°(R) and two strictly
positive constants ¢y and cy such that

G
A = )
uniformly in 2 and ¢; f1(t) < f(z,t) < cafi(t) for all (z,t) € 2 x R.

The function f is strictly positive and increasing.
The function

Qw

W (a) = Of((n +1)F(y)) Yt dy

a

exists for a > 0, where F'(s) = fi1(s) and F(0) = 0.

Certain aspects of this problem has been studied by the author and Matero
in [7].

The following theorem proven by Caffarelli, Kohn, Nirenberg and Spruck
in [2] will be useful.

THEOREM 1.1. Let §2 be a bounded, strongly pseudoconver domain in
C™ with smooth boundary. Let f € C®(£2 x R) be a strictly positive func-
tion which is increasing in the second variable. Let ¢ € C°°(0f2). Then the
problem

0%u
= in {2
det <3Zj35k > f(z,u) in £2,

u=¢ on 0f2,

(2)

has a unique strictly plurisubharmonic solution u. Moreover, u € C*({2).

This result is used to construct solutions to Problem (1). A sequence of
plurisubharmonic functions ux which solve Problem (2) on certain pseudo-
convex domains {2y is constructed. We construct upper and lower bounds
for these solutions and since 2 = | {2y we can conclude that the sequence
upn converges to a solution for Problem (1) on (2. This is done in Section 2.
In Section 3 the regularity of the solution is studied in some special cases.
There it is assumed that the right hand side f depends only on u, that is,
f(z,u) = f(u), and also satisfies an extra condition. The extra assumption is
used to get a priori estimates for the first derivatives of solutions, which lets
us conclude that solutions to Problem (1) are Lipschitz under these assump-
tions. Finally, in Section 4 uniqueness of solutions is studied. Here the right
hand side can depend on the z-variable but we need to make another extra
assumption. This extra assumption together with estimates on the bound-
ary behavior of the solution, which were proved in [7], lets us conclude that
solutions to Problem (1) are unique.
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We will use the notation

ou ou 9%u

= — Uy = — U, = .
82’]'7 k 0z’ ik 82’j8§k

uj

2. Construction of solutions. In order to prove existence of a solution
of the problem

det (uje(2)) = f(zu(2). =€ 2
lim u(z) = oo for all zy € 912,

2—20
we shall begin by constructing approximate solutions. Let p: 2 — R be
a strictly negative plurisubharmonic function such that ¢ € C*°({2) and
lim,_,,, o(z) = 0 for all zyp € 02. Take a strictly increasing convex function
g: R™ — R such that lim, o_ g(z) = oco. Put ¢(z) = g(o(z)). This is a
plurisubharmonic function which satisfies lim,_,,, ¢(z) = oo for all zy € 02.
Let

and
ldol2 = ¢’ 0; 0
We see that
%p = Qgg/(Q)
and

e = 059 (0) + 0jopg” (o).
Let MjE be the minor

QIT . Ql(kzi—l) le . O1m
det | 2601 0 C0ETD CG-nGED ccc QG-Dm
CU+DT o OG- CGHnkTD o GGHm
on1 cee Onlk—1) Cnlk+1) s Onn
We see that

det (i0,7) = det (0,z9'(0) + 0j059" (0))

= g'(0)" det (0;3) + 9"()g ()" > Mjrojop
k=1

= (4'(0)" + lldell29" ()¢ ()" ") det (o;7)-
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Since
g'(0(2) =1/(g7 ) (#(2))
and
g9"(0(2)) = =(g71)"(2(2))/ (g7 1) ((2))?,
this can be rewritten as

1 —1\n
e (21) = Gty (00) ~ G e

|dol| det ( (07)-

We shall show that we can choose g so that

1 < _(g7D)"(e(2)) doll?
(=) ()™ = (g7 (p(z))mt> 7 70¢
near the boundary. This will show that the last term is the important term.
Hopf’s lemma, sometimes also referred to as Zaremba’s principle, implies
that a plurisubharmonic function u € C1(£2) N C?(£2) which satisfies u(z) <
u(zp) for all z € 2 and a boundary point z also satisfies (Ou/dv)(zp) < 0
where v denotes the inward-pointing normal to 9f2. A proof of Hopf’s lemma
can be found in Taylor’s book [9]. Since every boundary point is a global
maximum for ¢ and 942 is compact we see that HdQHZ > ¢, for some ¢ > 0,
near the boundary.
We are interested in solving

det (u5(2)) = f(5ru(2), 2 €2,
lim u(z) = oo for all zy € 012,

zZ—20

where f is strictly positive, increasing in the second variable and satisfies
conditions A, B and C. We deduce what g should be by solving
—1\n
g x
s = (@)
(g71)(x)

Rewriting this we get

d 1
dx ((n + 1)(9_1)’(x)"+1> = fi(2).
Integrating we see that
1 = (n+1)F(z).

(g—l)/(m)n-f—l
This implies that
g (@) =\ ((n+ V)F(x))" /"1 d
In particular, we can choose g~ (x) = —¥,(x). Making this choice we get

(97 (@) = ((n+ P (@) /",
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Let us now turn to the question if

1 < (e g2
(=) ()" = (971 (e(2))m2 7 70e
near the boundary. But this is the same as
Y@ d ( i )
= T T B\ @
as z tends to co. Here ¢ is the infimum of ||dg[|? in some neighborhood of
the boundary. Assume that

a1 N_ 4, LD 1
i () =~ o DP@ M <o

for large x. We get

(n+1D)F@)/0t) < 7l 4 C
for large = but this contradicts the integrability of ((n + 1)F(m))_1/("+1).

Hence p .
#vm) 2

1 < _ (gil)”((ﬁ('z)) ||d,Q||2
(g7 ()™ = (g7 1) (p(z))mt> 7 70¢
near the boundary.
Having this at our disposal we can construct plurisubharmonic functions
which are approximate solutions to the problem we are interested in. Namely,
given f and f; use the method above to choose g. Take a plurisubharmonic

function ¢ which solves

det (0;5(2)) =1, =z € £,
lim p(z) =0 for all 2y € 012.

Z2—20

and we conclude that

By Theorem 1.1 we know that ¢ € C°°({2). It is also strictly plurisub-
harmonic on 2. Hence |dg|3 € C°(£2). Put ¢ = go o. We see that
lim,_,,, ¢(z) = oo for all zg € 912 and

1 (9" ()

det (¢ z(2)) = T () del3 = k(=) f1(¢)

@Y,
)@ =<

The existence of the upper bound C” is clear. The lower bound is a little trick-
ier. At points near the boundary we know, by Hopf’s lemma, that [|do]|2 > «.

where

0<C < r(z) = |dol® -
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At points where ||do||2 < € (these points are not close to the boundary), we
see that ¢ is bounded and hence
e
(g=1)" () ~
for some ¢’ > 0. We see that there is a lower bound C so that 0 < C' < k(2).
Now notice that px = Kp satisfies

det (0 ;5(2)) = K", 2 €82,
lim o (z) =0 for all zg € 912.
2—20

The function ¢ = g o g satisfies g1 (ox) = Kg~ (o). Therefore

—1\/ 2
et oy 2(2)) = det o 2) (w2 — 200 ) o)

(9‘1)’(9%)2)
= K" K||do||% — Fi(er
( el (971" () (1)
—1y/(, )2
:Kn+1<dQ2 _(g )((P) )f K:Kn+1/‘€2f ).
lldoll5, T ) 1(¢K) (2)f1(¢x)
We see that by choosing K and K suitably we have Kntlg < c1 and co <
K" g Let 2y = {2z € 2; o (2) < N} and uy be the solution of

det (uy ;z(2)) = f(z,un(2)), 2 €,
lim un(z) = N for all zp € 002y.
z—20

which exists by Theorem 1.1. By Lemma 2.2 in [6] we get o < uny <
uny1 < @ on 2. Define u(z) = limy .o un(2). We now investigate the
regularity of u.

3. A priori estimate of first derivatives of solutions. In this section
we assume that f(z,u) = f(u) is a function satisfying B, C and the technical
condition n—1 . F(:z:)f’(ac)

n+1~  f(x)?

We shall estimate the norm of the gradient of uy on compact subsets of (2.
We do this by studying the functions vy = |Vuy|?(g71) (un)?. Notice
that |[Vor|? = [Vo[2(g71) (¢)? < C and that vy = |[Vun|* (g7 (un)? <
IV|?(g71) (p)? on 002y since uy = ¢ on Oy and ¢ < uy in 2y. We
claim that sup(vy(2); z € 2n) < sup(vn(z); z € 02y) < C. We shall show
that vy does not have any interior maximum in {2y to establish the claim.
This calculation was inspired by Bo Guan’s work on the regularity of the
pluricomplex Green function [4], [5]. Readers interested in the regularity of
the pluricomplex Green function should also consult Blocki’s paper [1].




Complex Monge—Ampére Operator 19

Assume that a local maximum for vy is attained at p € 2y. We know
that Voy (p) = 0. Choose coordinates near p so that u,jx(p) = uy 77(p) =0
and uy z(p) = 0 if j # k. It is known that such coordinates can be found if
Vuy(p) # 0, which is the case at a maximum point of vy. A proof can be
extracted from the calculation on page 130 of [8]. Remember that

n
on = unguy (g (un)?
=1

and hence
n

UNj = Z(uN,luNJZ(g_l)/(uN)Q
=1

+ “N,jl“N,Z(g_l)/(UN)2 + 2(9_1),(1‘]\/)(9_1)//(UN)UN,lUN’ZUN,j)-

Evaluating this at p yields

n

UN,j = (uN,luN j(g_l)/(uN)2 + 2(9_1)/(UN)(g_l)//(uN)uN,lUNZUN,j)
7] b
=1

n
= “N,J'“N,ﬁ(g_l)/(UN)Q + Z 2(9_1)/(UN)(g_l),/(uN)uN,lUNJUN,j
=1

(971" (un)
(=1 (un)
At the relevant local maximum point we have |Vuy| > 0 and therefore

= uN,j(g_l)’(uN)z (uNJ-; + 2 ’VUNP) =0.

- (971" (un) 2>
- 422 L Y =0.
jl_I1 (“N,JJ () (uy) [Vuy|
Thus we have .
o (979 (un)
|VUN| = _2(9_1)”(UN) Un 57

for some j. We see that

s V)
|[Vun|* < 1)”(UN)]-; N.,jj

2(g~
with equality if and only if u,, ;=0 for all but one j. Hence
—1\7 n
2 (9~) (un)
|Vuy|® < _2(9_1)”(UN) ; UN 57

because otherwise det (uy ;z) = 0. Remembering that

(971 (x) = ((n + 1)F(x))"/ D
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we get

(n+ 1 uN
[Vun|* < Z UN, 55

So far we have only used the fact that p is a critical point. Now we shall
use the fact that it is a local maximum point. We have logdet (uNjE) =
log f(u). Differentiating we see that

0 l
My } : Uiy =
——logdet (uy ;7) E UNklj = uNuNkl] ZUNUN,llj
0z det

J k=1 k=1 =1

and hence we get the relation

n

Sl _flun)
UNUp 7 = 7 UN ;-

=1

(un)

We also have
—~ i flux)
ZUN“N,zzj T Un7-
=1

If we differentiate vy twice we get

n
-1 2
UN,jk = (971) (un) Z(UN,UE“N,Z tunEUN T T “NJUN,J'E)
=1
n

+2(g7) (un) (g7 (un)uy g D un ity 7
=1

n
+2(g7) (un) (g7 (un)un g Dy i
=1

n
+2(g7) (un) (g™ (un)uy 5 > unatiy;
=1

+ (2097 (un) (g™ )" (un) + 209" (un)?)un juy 5 D unatiy -
=1

Here we have used the fact that the Hessian of uy is diagonal to simplify the
expression. Since p is assumed to be a local maximum point we know that

Z UN”N TS

3,k=1
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Therefore

Z “N”Nyk Z“N”N,ay

7,k=1

n
_ 7 1 _ }
= ( Z Ry g NNy ) uN,jj)
J,l=1 J=1

+ (44 2n) (7" (un) (g™ " (un) D uygun,

j=1
n S
+ (2097 (un) (g™ " (un) + 20971 " (un)?) Y ufunjuy juniuyg
Ji=1

f(un)

+ 4+ 2n)(g7 1) (un) (971" (un) [Vun]?

= 25 (un)? T [Gun P+ (0 )3 s
j=1

+ (20971 (un) (g™ )" (un) +2(g71)" (un)?) | Vun|® ZUNUNJUN] =0

at p. We need to analyze 2?21 u%uN,juNj. At p we have

(9~1)"(un)

— _o\9 J\UN) 2
Un 5 = ~2 (g~ (un) [Vuy|
if un ; # 0. Therefore
L n AUnr = —1y/
3j _ Jo_
UNUNjUNF = = - :
j; ’ ; UN 57 2(g~1)" (un)

Using this gives the inequality

ZUN,jj < ’quP((g_l)m(uN) 2f (un) (34 2n)(g_1)”(uN)>'

(0" (un)  flun) (g7 1) (un)
We have
(7 () = ((n+ V)P ()" /D,
(971)"(x) = = f(@)((n+1)F ()"0,
(971" (@) = = f/(2)((n+ 1)F ()"
+(n+2)f(2)*((n + 1) F(z)) "> 1/+,
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Hence
( )"’(UN) C2f'(un)  B+2n)(97")"(un)
“D'un)  f(un) (971 (un)
~ (@) (un)  2f'(un) N (3+2n)f(un) — f'(un) N f(un)

o) (wn)  fluy)  (n+DF(un)  fluy)  Flun)

Combining the two inequalities

n+ 1 uN
[Vun]* < Z UN ;7

and . /
Z : ‘V“N‘Q(ﬁiﬁ? ~ )
yields
Vun? < n+ 1 F et 1( F(z}z\(rii’(;N))‘vUN‘ 7
which gives a contradlctlon if
/
n—21—1 (1 B F(l}zzii)(gv)) <1

We see that, on the assumption

n—1 < F(un)f'(un)

n+1~  f(un)?
the function |Vuy|?(g~!) (uy)? attains its maximum on the boundary and
hence we have

IVun*(g™Y) (un)? < C

on (2. Since any compact set K C (2 is contained in 2y for sufficiently
large N we have proven that

sup(|Vun (2)*(97) (un(2)); 2 € K) < C
for all N large enough. Hence
[Vun(2)[* < Cg'(un(2))
in K and since un(z) < ¢(2) < C in K we see that [|un|c1x) < C. Since

the sequence of uy’s converges uniformly on compacts we can conclude that
u is Lipschitz. We state this in a theorem.

THEOREM 3.1. Let {2 be a bounded strongly pseudoconver domain in C™
with smooth boundary. Suppose that f satisfies B, C and

n—1 _ f'(z)F(x)
n—l—lS f(x)?
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Then the problem

(ddu)" = f(u(z)), z€8
lim u(z) = oo for all zg € 012,

z2—20
has a solution u that is Lipschitz.

REMARK 3.2. Note that f(u) = X% K > 0, and f(u) = u” (suitably
modified for u < 1) where v > (n — 1)/2, satisfies all the conditions in the
theorem.

4. Uniqueness. We shall now establish a uniqueness result. Uniqueness
for boundary blow-up problems is not as straightforward as for the Dirichlet
problem. This is because the comparison principles in [6] and [7] are not
formulated with the situation in mind where both plurisubharmonic functions
tend to oo as we approach the boundary.

We need the following definition and theorem from [7].

DEFINITION 4.1. Assume that 2 = {z € C"; o(z) < 0} where p €

C*°(£2). For zp € 012 suppose that |Vp(z)| = 1. Let II(zp) be the product
of the eigenvalues of the form

n
020
— (20) dz;j \ dZy,
=1 8Zj82k
restricted to the vector space {w € C"; X%, g—;(zo)wj = 0}.

THEOREM 4.2. Let {2 be a bounded, strongly pseudoconver domain in
C™ with smooth boundary. Let f € C°(£2 x R) be a strictly positive function
which is increasing in the second variable and satisfies assumptions A, B
and C. For boundary points zo € 02 let II(zy) be the number described in
Definition 4.1. Then any solution u to Problem (1) satisfies

lim ) g1/ 01/ ) 1)~V )
zZ—20 dQ(Z)
for any zg € 012.

We can now prove the following proposition.

PROPOSITION 4.3. Let {2 be a bounded strongly pseudoconver domain
with smooth boundary and assume that f € Coo(ﬁ x R) is a strictly posi-
tive function, increasing in the second variable and satisfying A, B and C.
Assume also that

W () /Py ()
18 bounded for large t. If uw and v are plurisubharmonic solutions of Prob-
lem (1) then u = v.
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REMARK 4.4. The assumption that ¥, (t)/¥, (t) is bounded for large ¢ is
fulfilled when f; has exponential growth but not when it has only polynomial
growth.

Proof of Proposition 4.3. Assume that we have two distinct plurisubhar-
monic solutions u and v of Problem (1). Assume for the moment that we
know that lim,_., (u(z) — v(z)) = 0 for all zp € 9f2. We shall return to
this claim later to finish the proof. Assume that sup(u(z) — v(z); z € £2) =
K > 0. Then there is a p € {2 such that u(p) — v(p) = K. At p we have
det (u,z(p)) < det (v;z(p)). However, since u(p) > v(p) we see that

det (uz(p)) = f(p, u(p)) > f(p,v(p)) = det (v(p)),

which is a contradiction. Hence u(z) —v(z) < 0 in 2. Arguing in the same
way we also see that v(z) —u(z) < 0 in {2. This proves uniqueness.
It remains to prove our claim that lim, .., (u(z) — v(z)) = 0. We know
that for all zg € 912 we have
4 4

L OB() ()

z—z0  do(z) z—z0  do(2)
where C(zp) is the constant given in Theorem 4.2. Given ¢ > 0, for z close
to zp we have

(C(20) — €)da(z) < ¥n(u(2)) < (C(20) +€)da(2)

= C(2)

and
(C(20) — €)do(z) < ¥n(v(2)) < (C(20) + €)de(2).
This gives
7, H((Cl20) + €)do(2)) < u(z) < ¥, ((Clz0) — €)dn(2))
and

~; 1 ((C(20) = €)dp(2)) < —v(2) < ~¥; 1 ((C(20) + €)dn(2)).
We get
u(z) = v(2) < ¥ ((C20) = €)da(2)) = ¥ ((C(20) + €)da(2))
= —2edg(2)(%, ) (n(2))
for some 7(z) € [(C(z0) — €)da(z),(C(20) + €)dp(z)] by the mean-value

theorem. Hence

u(z) — v(z) < —2edo(2)(%, ') (n(2)) = —

_ 2edg (2) ¥,

n(z) &,

The assumption that ¥, (t)/
since ¢ is arbitrary, lim,_,,,

2edn(2)

IO ATE)
(2) 2e  Wa(%,'(n(2)))
(2) C(z0) = ¥y, (Wi ' (1(2)))
ounded for large ¢ lets us conclude that,

2)=0. =

(@, ' (n
(@ (
(t)l b
(2) =

)
Dl

wl
(u
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