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Regularity and Uniqueness of Solutions to BoundaryBlow-up Problems for theComplex Monge�Ampère OperatorbyBjörn IVARSSONPresented by Józef SICIAK
Summary. We prove that plurisubharmoni
 solutions to 
ertain boundary blow-up prob-lems for the 
omplex Monge�Ampère operator are Lips
hitz 
ontinuous. We also provethat in 
ertain 
ases these solutions are unique.1. Introdu
tion. In [3℄, Cheng and Yau studied the problem





det

(
∂2u

∂zj∂zk
(z)

)
= f(z)eKu(z), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,where Ω is a bounded strongly pseudo
onvex domain in C
n with smoothboundary, f is a smooth stri
tly positive fun
tion and K > 0 a 
onstant.They showed that there is a unique smooth plurisubharmoni
 solution tothis problem. In this paper we study a similar problem, namely

(1) 



det

(
∂2u

∂zj∂zk
(z)

)
= f(z, u(z)), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,where the right hand side is a fun
tion f ∈ C∞(Ω × R) whi
h is stri
tlypositive, in
reasing in the se
ond variable and satis�es the following three
onditions:2000 Mathemati
s Subje
t Classi�
ation: 32W20, (32U10, 35B65, 35J60).Key words and phrases: 
omplex Monge�Ampère operator, interior regularity, pluri-subharmoni
 fun
tion, strongly pseudo
onvex domain.[13℄



14 B. Ivarsson
A: There exist fun
tions h ∈ C∞(Ω) and f1 ∈ C∞(R) and two stri
tlypositive 
onstants c1 and c2 su
h that

lim
t→∞

f(z, t)

f1(t)
= h(z)uniformly in Ω and c1f1(t) ≤ f(z, t) ≤ c2f1(t) for all (z, t) ∈ Ω × R.B: The fun
tion f1 is stri
tly positive and in
reasing.C: The fun
tion

Ψn(a) =

∞\
a

((n + 1)F (y))−1/(n+1) dyexists for a > 0, where F ′(s) = f1(s) and F (0) = 0.Certain aspe
ts of this problem has been studied by the author and Materoin [7℄.The following theorem proven by Ca�arelli, Kohn, Nirenberg and Spru
kin [2℄ will be useful.Theorem 1.1. Let Ω be a bounded , strongly pseudo
onvex domain in
C

n with smooth boundary. Let f ∈ C∞(Ω × R) be a stri
tly positive fun
-tion whi
h is in
reasing in the se
ond variable. Let ϕ ∈ C∞(∂Ω). Then theproblem
(2) 




det

(
∂2u

∂zj∂zk

)
= f(z, u) in Ω,

u = ϕ on ∂Ω,has a unique stri
tly plurisubharmoni
 solution u. Moreover , u ∈ C∞(Ω).This result is used to 
onstru
t solutions to Problem (1). A sequen
e ofplurisubharmoni
 fun
tions uN whi
h solve Problem (2) on 
ertain pseudo-
onvex domains ΩN is 
onstru
ted. We 
onstru
t upper and lower boundsfor these solutions and sin
e Ω =
⋃

N ΩN we 
an 
on
lude that the sequen
e
uN 
onverges to a solution for Problem (1) on Ω. This is done in Se
tion 2.In Se
tion 3 the regularity of the solution is studied in some spe
ial 
ases.There it is assumed that the right hand side f depends only on u, that is,
f(z, u) = f(u), and also satis�es an extra 
ondition. The extra assumption isused to get a priori estimates for the �rst derivatives of solutions, whi
h letsus 
on
lude that solutions to Problem (1) are Lips
hitz under these assump-tions. Finally, in Se
tion 4 uniqueness of solutions is studied. Here the righthand side 
an depend on the z-variable but we need to make another extraassumption. This extra assumption together with estimates on the bound-ary behavior of the solution, whi
h were proved in [7℄, lets us 
on
lude thatsolutions to Problem (1) are unique.
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We will use the notation

uj =
∂u

∂zj
, uk =

∂u

∂zk
, ujk =

∂2u

∂zj∂zk
.

2. Constru
tion of solutions. In order to prove existen
e of a solutionof the problem




det (ujk(z)) = f(z, u(z)), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,we shall begin by 
onstru
ting approximate solutions. Let ̺ : Ω → R bea stri
tly negative plurisubharmoni
 fun
tion su
h that ̺ ∈ C∞(Ω) and
limz→z0

̺(z) = 0 for all z0 ∈ ∂Ω. Take a stri
tly in
reasing 
onvex fun
tion
g : R

− → R su
h that limx→0− g(x) = ∞. Put ϕ(z) = g(̺(z)). This is aplurisubharmoni
 fun
tion whi
h satis�es limz→z0
ϕ(z) = ∞ for all z0 ∈ ∂Ω.Let

(̺jk) = (̺jk)
−1and

‖d̺‖2
̺ = ̺jk̺j̺k.We see that

∂ϕ

∂zk
= ̺kg

′(̺)and
ϕjk = ̺jkg

′(̺) + ̺j̺kg
′′(̺).Let Mjk be the minor

det




̺11 . . . ̺
1(k−1)

̺
1(k+1)

. . . ̺1n... . . . ... ... . . . ...
̺(j−1)1 . . . ̺

(j−1)(k−1)
̺
(j−1)(k+1)

. . . ̺(j−1)n

̺(j+1)1 . . . ̺
(j+1)(k−1)

̺
(j+1)(k+1)

. . . ̺(j+1)n... . . . ... ... . . . ...
̺n1 . . . ̺n(k−1) ̺n(k+1) . . . ̺nn




.

We see that
det (ϕjk) = det (̺jkg

′(̺) + ̺j̺kg
′′(̺))

= g′(̺)n det (̺jk) + g′′(̺)g′(̺)n−1
n∑

j,k=1

Mjk̺j̺k

= (g′(̺)n + ‖d̺‖2
̺g

′′(̺)g′(̺)n−1) det (̺jk).
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Sin
e

g′(̺(z)) = 1/(g−1)′(ϕ(z))and
g′′(̺(z)) = −(g−1)′′(ϕ(z))/(g−1)′(ϕ(z))3,this 
an be rewritten as

det (ϕjk) =
1

(g−1)′(ϕ(z))n
det (̺jk) −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺ det (̺jk).We shall show that we 
an 
hoose g so that
1

(g−1)′(ϕ(z))n
≤ −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺near the boundary. This will show that the last term is the important term.Hopf's lemma, sometimes also referred to as Zaremba's prin
iple, impliesthat a plurisubharmoni
 fun
tion u ∈ C1(Ω)∩C2(Ω) whi
h satis�es u(z) <
u(z0) for all z ∈ Ω and a boundary point z0 also satis�es (∂u/∂ν)(z0) < 0where ν denotes the inward-pointing normal to ∂Ω. A proof of Hopf's lemma
an be found in Taylor's book [9℄. Sin
e every boundary point is a globalmaximum for ̺ and ∂Ω is 
ompa
t we see that ‖d̺‖2

̺ > ε, for some ε > 0,near the boundary.We are interested in solving




det (ujk(z)) = f(z, u(z)), z ∈ Ω,

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,where f is stri
tly positive, in
reasing in the se
ond variable and satis�es
onditions A,B and C. We dedu
e what g should be by solving
−

(g−1)′′(x)

(g−1)′(x)n+2
= f1(x).Rewriting this we get

d

dx

(
1

(n + 1)(g−1)′(x)n+1

)
= f1(x).Integrating we see that

1

(g−1)′(x)n+1
= (n + 1)F (x).This implies that

g−1(x) =
\
((n + 1)F (x))−1/(n+1) dx.In parti
ular, we 
an 
hoose g−1(x) = −Ψn(x). Making this 
hoi
e we get

(g−1)′(x) = ((n + 1)F (x))−1/(n+1) .



Complex Monge�Ampère Operator 17
Let us now turn to the question if

1

(g−1)′(ϕ(z))n
≤ −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺near the boundary. But this is the same as
ε−1 ≤ −

(g−1)′′(x)

(g−1)′(x)2
=

d

dx

(
1

(g−1)′(x)

)

as x tends to ∞. Here ε is the in�mum of ‖d̺‖2
̺ in some neighborhood ofthe boundary. Assume that

d

dx

(
1

(g−1)′(x)

)
=

d

dx
((n + 1)F (x))1/(n+1) < ε−1for large x. We get

((n + 1)F (x))1/(n+1) < ε−1x + Cfor large x but this 
ontradi
ts the integrability of ((n + 1)F (x))−1/(n+1).Hen
e
d

dx

(
1

(g−1)′(x)

)
≥ ε−1and we 
on
lude that

1

(g−1)′(ϕ(z))n
≤ −

(g−1)′′(ϕ(z))

(g−1)′(ϕ(z))n+2
‖d̺‖2

̺near the boundary.Having this at our disposal we 
an 
onstru
t plurisubharmoni
 fun
tionswhi
h are approximate solutions to the problem we are interested in. Namely,given f and f1 use the method above to 
hoose g. Take a plurisubharmoni
fun
tion ̺ whi
h solves



det (̺jk(z)) = 1, z ∈ Ω,

lim
z→z0

̺(z) = 0 for all z0 ∈ ∂Ω.By Theorem 1.1 we know that ̺ ∈ C∞(Ω). It is also stri
tly plurisub-harmoni
 on Ω. Hen
e ‖d̺‖2
̺ ∈ C∞(Ω). Put ϕ = g ◦ ̺. We see that

limz→z0
ϕ(z) = ∞ for all z0 ∈ ∂Ω and
det (ϕjk(z)) =

1

(g−1)′(ϕ)n
−

(g−1)′′(ϕ)

(g−1)′(ϕ)n+2
‖d̺‖2

̺ = κ(z)f1(ϕ)where
0 < C ≤ κ(z) = ‖d̺‖2

̺ −
(g−1)′(ϕ)2

(g−1)′′(ϕ)
≤ C ′.The existen
e of the upper bound C ′ is 
lear. The lower bound is a little tri
k-ier. At points near the boundary we know, by Hopf's lemma, that ‖d̺‖2

̺ > ε.
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At points where ‖d̺‖2

̺ ≤ ε (these points are not 
lose to the boundary), wesee that ϕ is bounded and hen
e
−

(g−1)′(ϕ)2

(g−1)′′(ϕ)
≥ ε′for some ε′ > 0. We see that there is a lower bound C so that 0 < C < κ(z).Now noti
e that ̺K = K̺ satis�es




det (̺K,jk(z)) = Kn, z ∈ Ω,

lim
z→z0

̺K(z) = 0 for all z0 ∈ ∂Ω.The fun
tion ϕK = g ◦ ̺K satis�es g−1(̺K) = Kg−1(̺). Therefore
det (ϕK,jk(z)) = det (̺K,jk(z))

(
‖d̺K‖2

̺K
−

(g−1)′(ϕK)2

(g−1)′′(ϕK)

)
f1(ϕK)

= Kn

(
K‖d̺‖2

̺ −
(g−1)′(ϕK)2

(g−1)′′(ϕK)

)
f1(ϕK)

= Kn+1

(
‖d̺‖2

̺K
−

(g−1)′(ϕ)2

(g−1)′′(ϕ)

)
f1(ϕK) = Kn+1κ(z)f1(ϕK).We see that by 
hoosing K and K̃ suitably we have K̃n+1κ ≤ c1 and c2 ≤

Kn+1κ. Let ΩN = {z ∈ Ω; ϕK(z) < N} and uN be the solution of



det (uN,jk(z)) = f(z, uN(z)), z ∈ ΩN ,

lim
z→z0

uN (z) = N for all z0 ∈ ∂ΩN .whi
h exists by Theorem 1.1. By Lemma 2.2 in [6℄ we get ϕK ≤ uN ≤
uN+1 ≤ ϕK̃ on ΩN . De�ne u(z) = limN→∞ uN (z). We now investigate theregularity of u.3. A priori estimate of �rst derivatives of solutions. In this se
tionwe assume that f(z, u) = f(u) is a fun
tion satisfying B, C and the te
hni
al
ondition

n − 1

n + 1
≤

F (x)f ′(x)

f(x)2
.We shall estimate the norm of the gradient of uN on 
ompa
t subsets of Ω.We do this by studying the fun
tions vN = |∇uN |2(g−1)′(uN )2. Noti
ethat |∇̺K |2 = |∇ϕ|2(g−1)′(ϕ)2 ≤ C and that vN = |∇uN |2(g−1)′(uN )2 ≤

|∇ϕ|2(g−1)′(ϕ)2 on ∂ΩN sin
e uN = ϕ on ∂ΩN and ϕ ≤ uN in ΩN . We
laim that sup(vN (z); z ∈ ΩN ) ≤ sup(vN (z); z ∈ ∂ΩN ) ≤ C. We shall showthat vN does not have any interior maximum in ΩN to establish the 
laim.This 
al
ulation was inspired by Bo Guan's work on the regularity of thepluri
omplex Green fun
tion [4℄, [5℄. Readers interested in the regularity ofthe pluri
omplex Green fun
tion should also 
onsult Bªo
ki's paper [1℄.
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Assume that a lo
al maximum for vN is attained at p ∈ ΩN . We knowthat ∇vN (p) = 0. Choose 
oordinates near p so that uN,jk(p) = uN,jk(p) = 0and uN,jk(p) = 0 if j 6= k. It is known that su
h 
oordinates 
an be found if

∇uN (p) 6= 0, whi
h is the 
ase at a maximum point of vN . A proof 
an beextra
ted from the 
al
ulation on page 130 of [8℄. Remember that
vN =

n∑

l=1

uN,luN,l(g
−1)′(uN )2and hen
e

vN,j =

n∑

l=1

(uN,luN,jl(g
−1)′(uN )2

+ uN,jluN,l(g
−1)′(uN )2 + 2(g−1)′(uN )(g−1)′′(uN )uN,luN,luN,j).Evaluating this at p yields

vN,j =
n∑

l=1

(uN,luN,jl(g
−1)′(uN )2 + 2(g−1)′(uN )(g−1)′′(uN )uN,luN,luN,j)

= uN,juN,jj(g
−1)′(uN )2 +

n∑

l=1

2(g−1)′(uN )(g−1)′′(uN )uN,luN,luN,j

= uN,j(g
−1)′(uN )2

(
uN,jj + 2

(g−1)′′(uN )

(g−1)′(uN )
|∇uN |2

)
= 0.At the relevant lo
al maximum point we have |∇uN | > 0 and therefore

n∏

j=1

(
uN,jj + 2

(g−1)′′(uN )

(g−1)′(uN )
|∇uN |2

)
= 0.Thus we have

|∇uN |2 = −
(g−1)′(uN )

2(g−1)′′(uN )
uN,jjfor some j. We see that

|∇uN |2 ≤ −
(g−1)′(uN )

2(g−1)′′(uN )

n∑

j=1

uN,jjwith equality if and only if uN,jj = 0 for all but one j. Hen
e
|∇uN |2 < −

(g−1)′(uN )

2(g−1)′′(uN )

n∑

j=1

uN,jjbe
ause otherwise det (uN,jk) = 0. Remembering that
(g−1)′(x) = ((n + 1)F (x))−1/(n+1)
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we get

|∇uN |2 <
(n + 1)F (uN )

2f(uN )

n∑

j=1

uN,jj .

So far we have only used the fa
t that p is a 
riti
al point. Now we shalluse the fa
t that it is a lo
al maximum point. We have log det (uN,jk) =

log f(u). Di�erentiating we see that
∂

∂zj
log det (uN,kl) =

n∑

k,l=1

Mkl

det (uN,kl)
uN,klj =

n∑

k,l=1

ukl
NuN,klj =

n∑

l=1

ull
NuN,llj

and hen
e we get the relation
n∑

l=1

ull
NuN,llj =

f ′(uN )

f(uN )
uN,j .

We also have
n∑

l=1

ull
NuN,llj =

f ′(uN )

f(uN )
uN,j .If we di�erentiate vN twi
e we get

vN,jk = (g−1)′(uN )2
n∑

l=1

(uN,ljkuN,l + uN,lkuN,jl + uN,luN,jlk)

+ 2(g−1)′(uN )(g−1)′′(uN )uN,k

n∑

l=1

uN,luN,jl

+ 2(g−1)′(uN )(g−1)′′(uN )uN,j

n∑

l=1

uN,lkuN,l

+ 2(g−1)′(uN )(g−1)′′(uN )uN,jk

n∑

l=1

uN,luN,l

+ (2(g−1)′(uN )(g−1)′′′(uN ) + 2(g−1)′′(uN )2)uN,juN,k

n∑

l=1

uN,luN,l.Here we have used the fa
t that the Hessian of uN is diagonal to simplify theexpression. Sin
e p is assumed to be a lo
al maximum point we know that
n∑

j,k=1

ujk
N vN,jk ≤ 0.
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Therefore

n∑

j,k=1

ujk
N vN,jk =

n∑

j=1

ujj
NvN,jj

= (g−1)′(uN )2
( n∑

j,l=1

(ujj
NuN,ljjuN,l + ujj

NuN,luN,jlj) +

n∑

j=1

uN,jj

)

+ (4 + 2n)(g−1)′(uN )(g−1)′′(uN )
n∑

j=1

uN,juN,j

+ (2(g−1)′(uN )(g−1)′′′(uN ) + 2(g−1)′′(uN )2)
n∑

j,l=1

ujj
NuN,juN,juN,luN,l

= 2(g−1)′(uN )2
f ′(uN )

f(uN )
|∇uN |2 + (g−1)′(uN )2

n∑

j=1

uN,jj

+ (4 + 2n)(g−1)′(uN )(g−1)′′(uN )|∇uN |2

+ (2(g−1)′(uN )(g−1)′′′(uN ) + 2(g−1)′′(uN )2)|∇uN |2
n∑

j=1

ujj
NuN,juN,j ≤ 0

at p. We need to analyze ∑n
j=1 ujj

NuN,juN,j . At p we have
uN,jj = −2

(g−1)′′(uN )

(g−1)′(uN )
|∇uN |2if uN,j 6= 0. Therefore

n∑

j=1

ujj
NuN,juN,j =

n∑

j=1

uN,juN,j

uN,jj

= −
(g−1)′(uN )

2(g−1)′′(uN )
.

Using this gives the inequality
n∑

j=1

uN,jj ≤ |∇uN |2
(

(g−1)′′′(uN )

(g−1)′′(uN )
−

2f ′(uN )

f(uN)
−

(3 + 2n)(g−1)′′(uN )

(g−1)′(uN )

)
.

We have
(g−1)′(x) = ((n + 1)F (x))−1/(n+1),

(g−1)′′(x) = − f(x)((n + 1)F (x))−1−1/(n+1),

(g−1)′′′(x) = − f ′(x)((n + 1)F (x))−1−1/(n+1)

+ (n + 2)f(x)2((n + 1)F (x))−2−1/(n+1).
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Hen
e

(g−1)′′′(uN )

(g−1)′′(uN )
−

2f ′(uN )

f(uN )
−

(3 + 2n)(g−1)′′(uN )

(g−1)′(uN )

=
(g−1)′′′(uN )

(g−1)′′(uN )
−

2f ′(uN )

f(uN)
+

(3 + 2n)f(uN)

(n + 1)F (uN )
= −

f ′(uN )

f(uN )
+

f(uN )

F (uN )
.Combining the two inequalities

|∇uN |2 <
(n + 1)F (uN )

2f(uN )

n∑

j=1

uN,jjand
n∑

j=1

uN,jj ≤ |∇uN |2
(

f(uN )

F (uN )
−

f ′(uN )

f(uN )

)

yields
|∇uN |2 <

n + 1

2

F (uN )

f(uN )

n∑

j=1

uN,jj ≤
n + 1

2

(
1 −

F (uN )f ′(uN )

f(uN )2

)
|∇uN |2,whi
h gives a 
ontradi
tion if

n + 1

2

(
1 −

F (uN )f ′(uN )

f(uN )2

)
≤ 1.We see that, on the assumption

n − 1

n + 1
≤

F (uN )f ′(uN )

f(uN )2
,the fun
tion |∇uN |2(g−1)′(uN )2 attains its maximum on the boundary andhen
e we have

|∇uN |2(g−1)′(uN )2 ≤ Con ΩN . Sin
e any 
ompa
t set K ⊆ Ω is 
ontained in ΩN for su�
ientlylarge N we have proven that
sup(|∇uN(z)|2(g−1)′(uN (z)); z ∈ K) < Cfor all N large enough. Hen
e

|∇uN(z)|2 ≤ Cg′(uN (z))2in K and sin
e uN (z) ≤ ϕ(z) ≤ C in K we see that ‖uN‖C1(K) ≤ C. Sin
ethe sequen
e of uN 's 
onverges uniformly on 
ompa
ts we 
an 
on
lude that
u is Lips
hitz. We state this in a theorem.Theorem 3.1. Let Ω be a bounded strongly pseudo
onvex domain in C

nwith smooth boundary. Suppose that f satis�es B, C and
n − 1

n + 1
≤

f ′(x)F (x)

f(x)2
.
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Then the problem 




(ddcu)n = f(u(z)), z ∈ Ω

lim
z→z0

u(z) = ∞ for all z0 ∈ ∂Ω,has a solution u that is Lips
hitz.Remark 3.2. Note that f(u) = eKu, K > 0, and f(u) = uγ (suitablymodi�ed for u < 1) where γ ≥ (n − 1)/2, satis�es all the 
onditions in thetheorem.4. Uniqueness. We shall now establish a uniqueness result. Uniquenessfor boundary blow-up problems is not as straightforward as for the Diri
hletproblem. This is be
ause the 
omparison prin
iples in [6℄ and [7℄ are notformulated with the situation in mind where both plurisubharmoni
 fun
tionstend to ∞ as we approa
h the boundary.We need the following de�nition and theorem from [7℄.Definition 4.1. Assume that Ω = {z ∈ C
n; ̺(z) < 0} where ̺ ∈

C∞(Ω). For z0 ∈ ∂Ω suppose that |∇̺(z0)| = 1. Let Π(z0) be the produ
tof the eigenvalues of the form
n∑

j,k=1

∂2̺

∂zj∂zk
(z0) dzj ∧ dzk

restri
ted to the ve
tor spa
e {w ∈ C
n;

∑n
j=1

∂̺
∂zj

(z0)wj = 0}.Theorem 4.2. Let Ω be a bounded , strongly pseudo
onvex domain in
C

n with smooth boundary. Let f ∈ C∞(Ω×R) be a stri
tly positive fun
tionwhi
h is in
reasing in the se
ond variable and satis�es assumptions A, Band C. For boundary points z0 ∈ ∂Ω let Π(z0) be the number des
ribed inDe�nition 4.1. Then any solution u to Problem (1) satis�es
lim

z→z0

Ψn(u(z))

dΩ(z)
= 41/(n+1)h(z0)

1/(n+1)Π(z0)
−1/(n+1)for any z0 ∈ ∂Ω.We 
an now prove the following proposition.Proposition 4.3. Let Ω be a bounded strongly pseudo
onvex domainwith smooth boundary and assume that f ∈ C∞(Ω × R) is a stri
tly posi-tive fun
tion, in
reasing in the se
ond variable and satisfying A,B and C.Assume also that

Ψn(t)/Ψ ′

n(t)is bounded for large t. If u and v are plurisubharmoni
 solutions of Prob-lem (1) then u ≡ v.
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Remark 4.4. The assumption that Ψn(t)/Ψ ′

n(t) is bounded for large t isful�lled when f1 has exponential growth but not when it has only polynomialgrowth.Proof of Proposition 4.3. Assume that we have two distin
t plurisubhar-moni
 solutions u and v of Problem (1). Assume for the moment that weknow that limz→z0
(u(z) − v(z)) = 0 for all z0 ∈ ∂Ω. We shall return tothis 
laim later to �nish the proof. Assume that sup(u(z) − v(z); z ∈ Ω) =

K > 0. Then there is a p ∈ Ω su
h that u(p) − v(p) = K. At p we have
det (ujk(p)) ≤ det (vjk(p)). However, sin
e u(p) > v(p) we see that

det (ujk(p)) = f(p, u(p)) > f(p, v(p)) = det (vjk(p)),whi
h is a 
ontradi
tion. Hen
e u(z) − v(z) ≤ 0 in Ω. Arguing in the sameway we also see that v(z) − u(z) ≤ 0 in Ω. This proves uniqueness.It remains to prove our 
laim that limz→z0
(u(z) − v(z)) = 0. We knowthat for all z0 ∈ ∂Ω we have

lim
z→z0

Ψn(u(z))

dΩ(z)
= lim

z→z0

Ψn(v(z))

dΩ(z)
= C(z0)where C(z0) is the 
onstant given in Theorem 4.2. Given ε > 0, for z 
loseto z0 we have

(C(z0) − ε)dΩ(z) ≤ Ψn(u(z)) ≤ (C(z0) + ε)dΩ(z)and
(C(z0) − ε)dΩ(z) ≤ Ψn(v(z)) ≤ (C(z0) + ε)dΩ(z).This gives

Ψ−1
n ((C(z0) + ε)dΩ(z)) ≤ u(z) ≤ Ψ−1

n ((C(z0) − ε)dΩ(z))and
−Ψ−1

n ((C(z0) − ε)dΩ(z)) ≤ −v(z) ≤ −Ψ−1
n ((C(z0) + ε)dΩ(z)).We get

u(z) − v(z) ≤ Ψ−1
n ((C(z0) − ε)dΩ(z)) − Ψ−1

n ((C(z0) + ε)dΩ(z))

= −2εdΩ(z)(Ψ−1
n )′(η(z))for some η(z) ∈ [(C(z0) − ε)dΩ(z), (C(z0) + ε)dΩ(z)] by the mean-valuetheorem. Hen
e

u(z) − v(z) ≤ −2εdΩ(z)(Ψ−1
n )′(η(z)) = −

2εdΩ(z)

η(z)
η(z)

1

Ψ ′

n(Ψ−1
n (η(z)))

= −
2εdΩ(z)

η(z)

Ψn(Ψ−1
n (η(z)))

Ψ ′

n(Ψ−1
n (η(z)))

≤ −
2ε

C(z0) − ε

Ψn(Ψ−1
n (η(z)))

Ψ ′

n(Ψ−1
n (η(z)))

.The assumption that Ψn(t)/Ψ ′

n(t) is bounded for large t lets us 
on
lude that,sin
e ε is arbitrary, limz→z0
(u(z) − v(z)) = 0.
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