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Summary. We consider an initial-boundary value problem for a fourth order degenerate
parabolic equation. Under some assumptions on the initial value, we establish the existence
of weak solutions by the discrete-time method. The asymptotic behavior and the finite
speed of propagation of perturbations of solutions are also discussed.

1. Introduction. This paper is concerned with a fourth order degen-
erate parabolic equation of the form

(1.1)
∂u

∂t
+ ∆(|∆u|p−2∆u) + λ|u|p−2u = 0, x ∈ Ω, t > 0, p > 2,

where λ > 0 and Ω ⊂ R
N is a bounded domain with smooth boundary.

On the basis of physical considerations, as usual the equation (1.1) is
supplemented with the natural boundary conditions

(1.2) u = ∆u = 0, x ∈ ∂Ω, t > 0,

and the initial condition

(1.3) u(x, 0) = u0(x), x ∈ Ω.

The equation (1.1) is a typical higher order equation, which has a rich
theoretical connotation. In the past years, there have been many contribu-
tions devoted to the p-biharmonic equation. Jǐŕı Benedikt [1] studied the
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p-biharmonic equation

(|u′′|p−2u′′)′′ = λ|u|q−2u,

where λ ∈ R and p, q > 1. He proved existence and uniqueness of a so-
lution of the initial value problem. He also considered the equation with
general Robin-type boundary conditions [2], and showed that every positive
eigenvalue λ is simple.

Pavel Drábek and Mitsuharu Ôtani [6] considered the equation

(1.4) ∆(|∆u|p−2∆u) = λ|u|p−2u

and proved that (1.4), (1.2) has a principal positive eigenvalue λ1 which is
simple and isolated.

Our equation resembles the p-Laplacian equation, but many methods
used for the latter, like those based on the maximum principle, are no longer
valid for this equation. Because of the degeneracy, the problem (1.1)–(1.3)
does not admit classical solutions in general. So, we introduce weak solutions
in the sense of the following

Definition. A function u is said to be a weak solution of the problem
(1.1)–(1.3) if the following conditions are satisfied:

1) u∈L∞(0, T ; W 2,p
0 (Ω))∩C(0, T ; L2(Ω)), ∂u/∂t∈L∞(0, T ; W−2,p′(Ω)),

where p′ is the conjugate exponent of p.
2) For any ϕ ∈ C∞

0 (QT ), where QT = Ω × (0, T ), the following integral
equality holds:

−
\\
QT

u
∂ϕ

∂t
dx dt +

\\
QT

|∆u|p−2∆u∆ϕdxdt + λ
\\
QT

|u|p−2uϕdx dt = 0.

3) u(x, 0) = u0(x) in L2(Ω).

This paper is organized as follows. We first discuss the existence of weak
solutions in Section 2. Our method is based on the discrete-time method to
construct approximate solutions. By means of uniform estimates on solutions
of the time-difference equations, we prove the existence of weak solutions
of the problem (1.1)–(1.3). Using energy techniques, the Poincaré inequality
and Hardy inequality, we also prove the asymptotic behavior and finite speed
of propagation of perturbations.

2. Existence of weak solutions. In this section, we prove

Theorem 2.1. Let u0 ∈ W 2,p
0 (Ω), p > 2. Then the problem (1.1)–(1.3)

admits at least one weak solution.

We first consider the following discrete-time problem:

(2.1)
1

h
(uk+1 − uk) + ∆(|∆uk+1|

p−2∆uk+1) + λ|uk+1|
p−2uk+1 = 0,
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(2.2) uk+1|∂Ω = ∆uk+1|∂Ω = 0, k = 0, 1, . . . , N − 1,

where h = T/N , u0 is the initial value.

Lemma 2.1. For any fixed k, if uk ∈ L2(Ω), then the problem (2.1)–(2.2)

admits a weak solution uk+1 ∈ W 2,p
0 (Ω) such that for any ϕ ∈ C∞

0 (Ω),

(2.3)
1

h

\
Ω

(uk+1 − uk)ϕdx +
\
Ω

|∆uk+1|
p−2∆uk+1∆ϕdx

+ λ
\
Ω

|uk+1|
p−2uk+1ϕdx = 0.

Proof. Consider the following functionals on the space W 2,p
0 (Ω):

F [u] =
1

p

\
Ω

|∆u|p dx,

G[u] =
1

2

\
Ω

|u|2 dx,

E[u] =
1

p

\
Ω

|u|p dx,

H[u] = F [u] +
1

h
G[u] + λE[u] −

\
Ω

fu dx,

where f ∈ L2(Ω) is a known function. By the Young inequality, we see that
for C1 > 0,

H[u] =
1

p

\
Ω

|∆u|p dx +
1

2h

\
Ω

|u|2 dx +
λ

p

\
Ω

|u|p dx −
\
Ω

fu dx

≥
1

p

\
Ω

|∆u|p dx − C1

\
Ω

|f |2 dx.

We need to check that H[u] satisfies the coercivity condition. For this
purpose, we notice that since u|∂Ω = 0 and using the Lp theory for elliptic
equations (see [5]),

‖u‖W 2,p ≤ C‖∆u‖Lp .

Therefore H[u] → +∞ if ‖u‖W 2,p → +∞. On the other hand, H[u] is clearly

weakly lower semicontinuous on W 2,p
0 (Ω). So, it follows from the theory in

[4] that there exists u∗ ∈ W 2,p
0 (Ω) such that

H[u∗] = inf H[u],

and u∗ is a weak solution of the Euler equation corresponding to H[u],
namely

1

h
u + ∆(|∆u|p−2∆u) + λ|u|p−2u = f.
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Choosing f = (1/h)uk, we get the conclusion of the lemma. The proof is
complete.

Now, we construct an approximate solution uh of the problem (1.1)–(1.3)
by defining

uh(x, t) = uk(x), kh < t ≤ (k + 1)h, k = 0, 1, . . . , N − 1,

uh(x, 0) = u0(x).

The desired solution of the problem (1.1)–(1.3) will be obtained as the limit
of some subsequence of {uh}. For this purpose, we need some uniform esti-
mates on uh.

Lemma 2.2. For the weak solution uk of the problem (2.1)–(2.2), the

following estimates hold :

(2.4) h
N

∑

k=1

\
Ω

|∆uk|
p dx ≤ C,

(2.5) sup
0<t<T

(\
Ω

|uh|p dx +
\
Ω

|∆uh(x, t)|p dx
)

≤ C,

where C is a constant independent of h, k.

Proof. (i) We take ϕ = uk+1 in the integral equality (2.3) (we can easily

prove that for ϕ ∈ W 2,p
0 (Ω), (2.3) also holds) and obtain

1

h

\
Ω

|uk+1|
2 dx +

\
Ω

|∆uk+1|
p dx + λ

\
Ω

|uk+1|
p dx =

1

h

\
Ω

ukuk+1 dx.

Then by the Young inequality, we have

1

h

\
Ω

|uk+1|
2 dx +

\
Ω

|∆uk+1|
p dx + λ

\
Ω

|uk+1|
p dx

≤
1

2h

\
Ω

|uk|
2 dx +

1

2h

\
Ω

|uk+1|
2 dx,

i.e.,

(2.6)
1

2

\
Ω

|uk+1|
2 dx + h

\
Ω

|∆uk+1|
p dx + hλ

\
Ω

|uk+1|
p dx ≤

1

2

\
Ω

|uk|
2 dx.

Summing up these inequalities for k from 0 to N − 1, we have

h

N
∑

k=1

\
Ω

|∆uk|
p dx ≤

\
Ω

|u0|
2 dx.

So, (2.4) holds.

(ii) We choose ϕ = uk+1−uk in the integral equality (2.3) and integrating
by parts, we have
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1

h

\
Ω

|uk+1 − uk|
2 dx +

\
Ω

|∆uk+1|
p−2∆uk+1∆(uk+1 − uk) dx

= −λ
\
Ω

|uk+1|
p−2uk+1(uk+1 − uk) dx.

Since the first term on the left hand side of the above equality is nonnegative,
it follows that

λ
\
Ω

|uk+1|
p dx +

\
Ω

|∆uk+1|
p dx

≤
\
Ω

|∆uk+1|
p−2∆uk+1∆uk dx + λ

\
Ω

|uk+1|
p−2uk+1uk dx

≤
p − 1

p

\
Ω

|∆uk+1|
p dx +

1

p

\
Ω

|∆uk|
p dx

+ λ
p − 1

p

\
Ω

|uk+1|
p dx +

λ

p

\
Ω

|uk|
p dx,

which implies that

λ
\
Ω

|uk+1|
p dx +

\
Ω

|∆uk+1|
p dx ≤

\
Ω

|∆uk|
p dx + λ

\
Ω

|uk|
p dx.

For any m with 1 ≤ m ≤ N − 1, summing up the above inequality for k
from 0 to m − 1, we have

λ
\
Ω

|um|p dx +
\
Ω

|∆um|p dx ≤
\
Ω

|∆u0|
p dx + λ

\
Ω

|u0|
p dx.

Hence (2.5) holds.

Lemma 2.3. Let uk+1 be the weak solution of the problem (2.1)–(2.2).
Then the following estimate holds:

(2.7) −Ch ≤
\
Ω

|uk+1|
2 dx −

\
Ω

|uk|
2 dx ≤ 0,

where C is a constant independent of h.

Proof. To prove the first inequality, we choose ϕ = uk in (2.3), and
integrating by parts and using the boundary condition, we obtain

1

h

\
Ω

|uk|
2 dx =

1

h

\
Ω

uk+1uk dx +
\
Ω

|∆uk+1|
p−2∆uk+1∆uk dx

+ λ
\
Ω

|uk+1|
p−2uk+1uk dx.
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Applying the Hölder inequality and the estimate (2.5), we have

1

h

\
Ω

|uk|
2 dx ≤

1

h

\
Ω

uk+1uk dx +
p − 1

p

\
Ω

|∆uk+1|
p +

1

p

\
Ω

|∆uk|
p dx

+ λ
p − 1

p

\
Ω

|uk+1|
p dx +

λ

p

\
Ω

|uk|
p dx

≤
1

2h

\
Ω

|uk+1|
2 dx +

1

2h

\
Ω

|uk|
2 dx + C,

that is,

−Ch ≤
\
Ω

|uk+1|
2 dx −

\
Ω

|uk|
2 dx.

By (2.6) again, we have\
Ω

|uk+1|
2 dx −

\
Ω

|uk|
2 dx ≤ 0.

The proof is complete.

Proof of Theorem 2.1. First, we define the operator At by At(∆uh) =
|∆uk|

p−2∆uk, ∆huh = uk+1 − uk, where kh < t ≤ (k + 1)h, k = 0, 1, . . . ,
N −1. From the discrete equation (2.1) and (2.4) in Lemma 2.2, we see that

(2.8)
1

h
∆huh is bounded in L∞(0, T ; (W 2,p(Ω))′).

By (2.3), (2.5), (2.8) and using compactness results (see [8]), we see that
there exists a subsequence of {uh} (which we denote as the original sequence)
such that

uh ⋆
⇀ u in L∞(0, T ; W 2,p(Ω)),

uh → u in C(0, T ; L2(Ω)),

1

h
(uk+1 − uk)

⋆
⇀

∂u

∂t
in L∞(0, T ; (W 2,p(Ω))′),

At(∆uh)
⋆
⇀ w in L∞(0, T ; Lp′(Ω)),

where p′ is the conjugate exponent of p. Then from (2.3), we see that, for
any ϕ ∈ C∞

0 (QT ),\\
QT

(

1

h
∆huhϕ + At(∆uh)∆ϕ + λ|uh|p−2uhϕ

)

dx dt = 0.

Letting h → 0 yields

(2.9)
∂u

∂t
+ ∆w + λ|u|p−2u = 0

in the sense of distributions.
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It remains to prove that w = |∆u|p−2∆u a.e. in QT . Set

fh(t) =
t − kh

2h

(\
Ω

|uk+1|
2 dx −

\
Ω

|uk|
2 dx

)

+
1

2

\
Ω

|uk|
2 dx,

where kh < t ≤ (k + 1)h, k = 0, 1, . . . , N − 1. By (2.7), we have

1

2

\
Ω

|uk|
2 dx − Ch ≤ fh(t) ≤

1

2

\
Ω

|uk|
2 dx,

and

−C ≤ f ′
h(t) ≤ 0.

According to the Ascoli–Arzelà theorem, there exists a function f(t) ∈
C([0, T ]) such that

lim
h→0

fh(t) = f(t) uniformly for t ∈ [0, T ].

Using (2.7), we have

(2.10) lim
h→0

1

2

\
Ω

|uh|2 dx = f(t) uniformly for t ∈ [0, T ].

It follows from (2.6) that

1

2

\
Ω

|uN |2 dx +
\\
QT

|∆uh|p dx dt + λ
\\
QT

|uh|p dx dt ≤
1

2

\
Ω

|u0|
2 dx.

Letting h → 0 in the above inequality and using (2.10), we have

lim
h→0

\\
QT

|∆uh|p dx dt

≤ f(0) − f(T ) = lim
ε→0

1

ε

T−ε\
0

(f(t) − f(t + ε)) dt

= lim
ε→0

lim
h→0

1

2ε

T−ε\
0

\
Ω

(|uh(x, t)|2 − |uh(x, t + ε)|2) dx dt.

Consider the functional G[u] = 1
2

T
Ω |u|2 dx. Clearly G[u] is convex and

δG[u]/δu = u. Thus, we have

1

2

\
Ω

|uh(x, t)|2 dx −
1

2

\
Ω

|uh(x, t + ε)|2 dx

≤
\
Ω

(uh(x, t) − uh(x, t + ε))uh(x, t) dx.
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Thus

lim
h→0

1

2ε

T−ε\
0

\
Ω

(|uh(x, t)|2 − |uh(x, t + ε)|2) dx dt

≤
1

ε

T−ε\
0

\
Ω

(u(x, t) − u(x, t + ε))u dx dt,

hence

lim
h→0

\\
QT

|∆uh|p dx dt ≤ −

T\
0

〈

∂u

∂t
, u

〉

dt,

where 〈·, ·〉 denotes the inner product. From (2.9), we have

(2.11) lim
h→0

\\
QT

|∆uh|p dx dt ≤

T\
0

\
Ω

w∆udxdt + λ

T\
0

\
Ω

|u|p dx dt.

Again since δF [u]/δu = ∆(|∆u|p−2∆u)) and by the convexity of F [u], for

any g ∈ L∞(0, T ; W 2,p
0 (Ω)) we have

1

p

\\
QT

|∆g|p dx dt −
1

p

\\
QT

|∆uh|p dx dt ≥
\\
QT

(|∆uh|p−2∆uh)∆(g − uh) dx dt.

By (2.11) and the fact that F (u) is weakly lower semicontinuous, letting
h → 0 in the above equality, we have

1

p

\\
QT

|∆g|p dx dt −
1

p

\\
QT

|∆u|p dx dt ≥ −
\\
QT

w∆(u − g) dx dt.

Replacing g by εg + u, we see that

1

ε
(F [u + εg] − F [u]) ≥

\\
QT

w∆g dx dt.

Letting ε → 0 implies that\\
QT

δF [u]

δu
g dx dt =

\\
|∆u|p−2∆u∆g dx dt ≥

\\
QT

w∆g dx dt.

Due to the arbitrariness of g, we also get the opposite inequality to the
above inequality. Therefore

w = |∆u|p−2∆u.

The strong convergence of uh in C(0, T ; L2(Ω)) and the fact that uh(x, 0)
= u0(x) imply that u satisfies the initial condition. The proof is complete.

3. Asymptotic behavior. We first show

Theorem 3.1. The weak solution u obtained in Theorem 2.1 satisfies,
for any 0 ≤ ̺ ∈ C2(Ω),
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(3.1)
1

2

\
Ω

̺(x)|u(x, t)|2 dx −
1

2

\
Ω

̺(x)|u0(x)|2 dx

= −
\\
Qt

|∆u|p−2∆u∆(̺(x)u(x, τ)) dxdτ − λ
\\
Qt

̺(x)|u(x, τ)|p dxdτ,

where Qt = Ω × (0, t).

Proof. In the proof of Theorem 2.1, we have

f(t) =
1

2

\
Ω

|u(x, t)|2 dx ∈ C([0, T ]).

Similarly, we can also easily prove that for any 0 ≤ ̺ ∈ C2(Ω),

f̺(t) =
1

2

\
Ω

̺(x)|u(x, t)|2 dx ∈ C([0, T ]).

Consider the functional

Φ̺[v] =
1

2

\
Ω

̺(x)|v(x)|2 dx.

It is easy to see that it is a convex functional on L2(Ω).

For any τ ∈ (0, T ) and h > 0, we have

Φ̺[u(τ + h)] − Φ̺[u(τ)] ≥ 〈u(τ + h) − u(τ), ̺(x)u(x, τ)〉.

Since δΦ̺[v]/δv = ̺(x)v, for any fixed t1, t2 ∈ [0, T ], t1 < t2, integrating the
above inequality with respect to τ over (t1, t2), we have

t2+h\
t2

Φ̺[u(τ)] dτ −

t1+h\
t1

Φ̺[u(τ)] dτ ≥

t2\
t1

〈u(τ + h) − u(τ), ̺(x)u〉 dτ.

Multiplying both sides of the above inequality by 1/h, and letting h → 0,
we obtain

Φ̺[u(t2)] − Φ̺[u(t1)] ≥

t2\
t1

〈

∂u

∂t
, ̺(x)u

〉

dτ.

Similarly, we have

Φ̺[u(τ)] − Φ̺[u(τ − h)] ≤ 〈(u(τ) − u(τ − h)), ̺(x)u〉.

Thus

Φ̺[u(t2)] − Φ̺[u(t1)] ≤

t2\
t1

〈

∂u

∂t
, ̺(x)u

〉

dτ,

and hence

Φ̺[u(t2)] − Φ̺[u(t1)] =

t2\
t1

〈

∂u

∂t
, ̺(x)u

〉

dτ.
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Taking t1 = 0, t2 = t, from the definition of solutions we get

Φ̺[u(t)] − Φ̺[u(0)] =

t\
0

〈−∆(|∆u|p−2∆u) − λ|u|p−2u, ̺(x)u(τ)〉 dτ

= −

t\
0

〈|∆u|p−2∆u, ∆[̺(x)u(τ)]〉 dτ −

t\
0

〈λ|u|p−2u, ̺(x)u(τ)〉 dτ.

Theorem 3.2. Let u be the weak solution of the problem (1.1)–(1.3),
p > 2. Then\

Ω

|u(x, t)|2 dx ≤
C3

(C1t + C2)α
, Ci > 0 (i = 1, 2, 3), α =

2

p − 2
.

Proof. Taking ̺(x) = 1 in the equality (3.1), we have

(3.2)
1

2

\
Ω

|u(x, t)|2 dx−
1

2

\
Ω

|u0(x)|2 dx = −

t\
0

\
Ω

|∆u|p dx dt−λ
\\
Qt

|u|p dx dt.

Let f(t) = 1
2

T
Ω |u(x, t)|2 dx. By (3.2), we have

f ′(t) = −
\
Ω

|∆u|p dx − λ
\
Ω

|u|p dx ≤ 0.

Since u ∈ W 2,p
0 (Ω) and using the Poincaré inequality, we see that\

Ω

|u(x, t)|2 dx ≤ C
\
Ω

|∆u|2 dx ≤ C
(\

Ω

|∆u|p dx
)2/p

,

that is, f(t) ≤ C|f ′(t)|2/p.
Again since f ′(t) ≤ 0, we have f ′(t) ≤ −Cf(t)p/2, and hence\

Ω

|u(x, t)|2 dx ≤
1

(C1t + C2)α
, α =

2

p − 2
, Ci > 0, i = 1, 2.

The proof is complete.

4. Finite speed of propagation of solutions

Theorem 4.1. Assume p > 2, |σn(0)| ≤ b, and u is the weak solution of

the problem (1.1)–(1.3). Then for any fixed t > 0, we have

σn(t) − σn(0) ≤ Ctα
(

t\
0

\
Ω

|∆u|p dx dt
)β

,

where C is constant depending on p, n, b; σn(t) = sup{z : x ∈ supp u(·, t)},
z = xn; α > 0, β > 0, b > 0 are constants independent of t.

To prove Theorem 4.1, we need the following lemma.
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Lemma 4.1 ([3]). Let fs(z) =
T∞
z (x−z)sg(x) dx, 0 ≤ g ∈ L1(R+), k > 0,

α > 0, θ > 0, s ≥ 1, and 0 < h ≤ s < w = θh/(θ − 1). Assume fs−h(0) is

finite and

fs(z) ≤ kα(fs−h(z))θ, ∀z ≥ 0.

Then the support of f0 is a bounded interval [0, l] and

l ≤ (w − s + 1)kα/(θ−1)(w−s)f0(0)1/(w−s).

Proof of Theorem 4.1 Without loss of generality, we assume σn(t) > 0.
By (3.1), taking ̺(z) = (z − z0)

s
+, z0 ≥ b, s ≥ 2p, we have

1

2

\
Ω

(z − z0)
s
+|u(x, t)|2 dx

= −

t\
0

\
Ω

|∆u|p−2∆u∆[(z − z0)
s
+u] dx dτ − λ

\\
Qt

(z − z0)
s
+|u(τ)|p dx dτ.

Denote the left side of the above equality by I. Then we have

I = −

t\
0

\
Ω

|∆u|p−2∆u∆[(z − z0)
s
+u] dx dτ − λ

\\
Qt

(z − z0)
s
+|u(τ)|p dx dτ

= −

t\
0

\
Ω

(z − z0)
s
+|∆u|p dx dτ − 2

t\
0

\
Ω

∇[(z − z0)
s
+]∇u|∆u|p−2∆udxdτ

−

t\
0

\
Ω

s(s − 1)(z − z0)
s−2
+ u|∆u|p−2∆udxdτ − λ

\\
Qt

(z − z0)
s
+|u(τ)|p dx dτ.

By the Hölder inequality,

I ≤ −

t\
0

\
Ω

(z − z0)
s
+|∆u|p dx dτ +

1

4

t\
0

\
Ω

(z − z0)
s
+|∆u|p dx dτ

+ C1

t\
0

\
Ω

(z − z0)
s−p
+ |∇u|p dx dτ +

1

4

t\
0

\
Ω

|∆u|p(z − z0)
s
+ dx dτ

+ C2

t\
0

\
Ω

(z − z0)
s−2p
+ |u|p dx dτ − λ

t\
0

\
Ω

(z − z0)
s
+|u(τ)|p dx dτ

≤ −
1

2

t\
0

\
Ω

(z − z0)
s
+|∆u|p dx dτ + C1

t\
0

\
Ω

(z − z0)
s−p
+ |∇u|p dx dτ

+ C2

t\
0

\
Ω

(z − z0)
s−2p
+ |u|p dx dτ.
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Applying the Hardy inequality [7], we obtain\
Ω

(z − z0)
s−2p
+ |u|p dx ≤

(

p

s − 2p + 1

)p \
Ω

(z − z0)
s−p
+ |Dzu|

p dx.

Hence

(4.1)
1

2

\
Ω

(z − z0)
s
+|u|

2 dx +
1

2

t\
0

\
Ω

(z − z0)
s
+|∆u|p dx dτ

≤ C3

t\
0

\
Ω

(z − z0)
s−p
+ |∇u|p dx dτ + C4

t\
0

\
Ω

(z − z0)
s−p
+ |Dzu|

p dx dτ

≤ C

t\
0

\
Ω

(z − z0)
s−p
+ |∇u|p dx dτ.

Thus

(4.2) sup
0<τ≤t

\
Ω

(z − z0)
s
+|u|

2 dx ≤ C
\\
Qt

(z − z0)
s−p
+ |∇u|p dx dτ

and

(4.3)
\\
Qt

(z − z0)
s
+|∆u|p dx dτ ≤ C

\\
Qt

(z − z0)
s−p
+ |∇u|p dx dτ.

From (4.2) again using the Hardy inequality, we have

(4.4) sup
0<τ≤t

\
Ω

(z − z0)
s
+|u|

2 dx ≤ C
\\
Qt

(z − z0)
s
+|∆u|p dx dτ.

Set

Es(z0) =
\\
Qt

(z − z0)
s
+|∆u|p dx dτ, E0(z0) =

t\
0

\
Ω

|∆u|p dx dτ.

From (4.3) and the weighted Nirenberg inequality, we have

E2p+1(z0) ≤ C1

\\
Qt

(z − z0)
p+1
+ |∇u|p dx dτ

≤ C

t\
0

(\
Ω

(z − z0)
p+1
+ |∆u|p dx

)a(\
Ω

(z − z0)
p+1
+ |u|2 dx

)(1−a)p/2
dτ,

where
1

p
=

1

p + 2
+ a

(

1

p
−

2

p + 2

)

+ (1 − a)
1

2
,

therefore

a =

1
p − 1

p+2 − 1
2

1
p − 2

p+2 − 1
2

< 1.
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Using (4.4) we obtain

E2p+1(z0) ≤ C
(\\

Qt

(z − z0)
p+1
+ |∆u|p dx dτ

)(1−a)p/2

×

t\
0

\
Ω

((z − z0)
p+1
+ |∆u|p dx)a dτ

≤ C[Ep+1(z0)]
(1−a)p/2

(\\
Qt

(z − z0)
p+1
+ |∆u|p dx dτ

)a
t1−a

≤ CEp+1(z0)
(1−a)p/2+at1−a.

From the above inequality we obtain ∆u = 0 a.e. for z0 > b and 0 < τ
< t. By (4.4), we know that u = 0 a.e. on the same set. By Lemma 4.1, we
obtain Theorem 4.1. The proof is complete.

References

[1] J. Benedikt, Uniqueness theorem for p-biharmonic equations, Electron. J. Differential
Equations 2002, no. 53, 17 pp.

[2] —, On simplicity of spectra of p-biharmonic equations, Nonlinear Anal. 58 (2004),
835–853.

[3] F. Bernis, Qualitative properties for some nonlinear higher order degenerate parabolic

equations, Houston J. Math. 14 (1988), 319–352.
[4] K. Chang, Critical Point Theory and its Applications, Shanghai Sci. Tech. Press,

Shanghai, 1986.
[5] Y. Chen and L. Wu, Second Order Elliptic Equations and Elliptic Systems, Science

Press, Beijing, 1991.
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