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Exhaustivity in Topologial Riesz Spaes with thePrinipal Projetion PropertybyKimberly MULLERPresented by Stanisªaw KWAPIE�
Summary. Exhaustive and uniformly exhaustive elements are studied in the setting ofloally solid topologial Riesz spaes with the prinipal projetion property. We study thestruture of the order interval [0, x] when x is an exhaustive element and the struture ofthe solid hull of a set of uniformly exhaustive elements.1. Introdution. In funtional analysis there has been a large amountof study on the embeddability of the lassial Banah spaes c0, ℓ1 and ℓ∞in other Banah spaes. Beause of results from vetor measure theory suhas the Diestel�Faires theorem [8℄, these studies are often done in onjuntionwith studies on strongly additive measures. In many of these studies the mainemphasis is on normed vetor spaes, or more spei�ally, Banah spaes.Although many of these spaes are partially ordered, less attention has beengiven to the properties that are inherent to the partial ordering on the spae.In the 1940's mathematiians began studying these partially ordered vetorspaes in more detail and many results have been obtained, espeially inthe study of Banah latties. In this paper we spei�ally want to study theonepts of exhaustivity, (absolute) ontinuity, and strong additivity in themore general setting of topologial Riesz spaes. Many of these results willgeneralize results known for Banah latties.As is pointed out in the introdution of [9℄, early interest in weak andweak∗ ompatness was often motivated by vetor measure theory. This isillustrated by the following two well-known results.2000 Mathematis Subjet Classi�ation: 46A40, 46B20, 46B42.Key words and phrases: uniform exhaustivity, ontinuity, prinipal projetion prop-erty, Riesz spae, loally solid topology. [53℄
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Theorem 1.1. A set K ⊆ ca(Σ) is weakly sequentially ompat i� it isbounded and the ountable additivity of µ on Σ is uniform for µ ∈ K.
Theorem 1.2. A set K ⊆ ca(Σ) is weakly sequentially ompat i� it isbounded and , for some positive λ ∈ ca(Σ), µ≪ λ uniformly for µ ∈ K.As the following theorems illustrate, there is a strong onnetion betweenstrong additivity and ountable additivity. These theorems an be extendedto the setting of topologial Riesz spaes. The extensions use the lattieproperties of the spae of vetor-valued measures and minimize set-theoretimanipulations.
Theorem 1.3 (Bell�Bilyeu�Lewis [3℄). A positive element k of a σ-Dedekind omplete Banah lattie X is exhaustive if and only if the norm isountably order ontinuous on the order interval [0, k].
Theorem 1.4 (Brooks [5℄, Drewnowski [11℄). Suppose (µn) is a sequeneof ountably additive salar funtions on the σ-algebra Σ, and µ is a �nitelyadditive (possible in�nite) measure on Σ suh that µn ≪ µ for eah n. Then

µn ≪ µ uniformly.A reent extension of Theorem 1.4 has been made in the study of sub-measures [13℄. Also, Drewnowski and Labuda [12℄ proved a result similarto Theorem 1.3 for a disjointly σ-Dedekind omplete TRS. Their methodswere quite di�erent due to the di�erene in hypotheses. Also the emphasison exhaustivity in [12℄ is on vetor measures and not exhaustive elements ina TRS. In [12℄, a haraterization of exhaustive vetor measures is made forLebesgue and pre-Lebesgue topologies. That onnetion will also be madein the setting of this paper. For more on Lebesgue and pre-Lebesgue topolo-gies see Aliprantis and Burkinshaw [1℄. Also the question was raised in [3℄ ofwhether or not [0, k] must be separable whenever k is exhaustive. A oun-terexample will be provided in Setion 3.2. Continuity in topologial Riesz spaes. If X is a Riesz spae,
X is said to have the prinipal projetion property (PPP) provided that foreah pair of x and y in X+ = {z : z ≥ 0} the element ∨

n nx∧ y exists. Thisde�nition is equivalent to that found in [17℄. If X is a Riesz spae with thePPP, de�ne Px(y) =
∨
n nx∧ y for all x, y ∈ X+. For arbitrary y ∈ X de�ne

Px(y) to be Px(y+) − Px(y
−). These projetions have proved to be usefulin many di�erent areas. For instane, if µ and ν are salar valued measuresthese projetions an be used to �nd the absolutely ontinuous and singularparts of ν with respet to µ only using the order properties of the reals.These projetions have also been applied to abstrat L-spaes [14℄, measurespaes [4℄, and more reently, submeasures [13℄. Note that if x, y ∈ X+ the



Exhaustivity in Topologial Riesz Spaes 55
following properties hold. The majority of them an be found in the resultsof Kakutani [14℄.(a) 2Px(y) ∧ y = Px(y).(b) Px(y) ∧ (y − Px(y)) = 0.() x ∧ (y − Px(y)) = x ∧ y − x ∧ Px(y) = 0.(d) If x = ψ+η, where ψ∧η = 0, then Pψ(y)+Pη(y) = Px(y) = Pψ∨η(y).(e) Px is linear.(f) PPx(y) = PxPy = Px∧y.(g) |Px(y)| = Px(|y|).Let O = {Px : x ∈ X+}. A sequene (Pi) from O is said to be disjoint(or pairwise disjoint) if PiPj = 0 for i 6= j. Assume that (X, τ) is a TRSwith the PPP.
Definitions.(1) A subset K of X is said to be (uniformly) ontinuous with respet toan element m ∈ X if Pi(u) → 0 (uniformly) for u ∈ K whenever Piis a sequene from O suh that Pi(m) → 0.(2) A subset K of X is said to be (uniformly) exhaustive if Pi(u) → 0(uniformly) for u ∈ K whenever (Pi) is a disjoint sequene from O.If K = {k} is a singleton we say that k is exhaustive.Note that if X = ba(Σ), then µ ∈ X is exhaustive if and only if it isstrongly additive and µ is absolutely ontinuous with respet to ν ∈ X ifand only if it is ontinuous with respet to ν using the above de�nition.The following lemmas will be helpful in establishing the main result of thissetion. The �rst lemma is true for any Riesz spae with the PPP and an befound in [3℄. For the remaining results we will assume that we have a TRS.
Lemma 2.1. Suppose X is a Riesz spae with the PPP. If x and y arein X and 0 ≤ y ≤ x, then there is a z in X+ so that Px − Py = Pz.Proof. Suppose the hypotheses are satis�ed. From property (b) above wesee that Py(x)∧(x−Py(x)) = 0 and from (d) we have Px = PPy(x)+Px−Py(x).Using property (f) and the fat that y ≤ x we obtain PPy(x) = Px∧y = Py.Therefore Px = Py + Px−Py(x). Sine Py(x) ≤ x we have Px − Py ∈ O.
Lemma 2.2. Suppose X is a TRS with the PPP. If K is a uniformlyexhaustive subset of X, then |K| = {|x| : x ∈ K} is uniformly exhaustive.Proof. Suppose K is uniformly exhaustive. Suppose (xn) is a disjointsequene from X+. Let V be a solid neighborhood of the origin. From (g)we have |Px(u)| = Px(|u|) for all u ∈ K. Choose a natural number N suhthat Pxn(u) ∈ V for every n ≥ N and every u ∈ K. Reall that V is solid,

Pxn(|u|) = |Pxn(u)|, and Pxn(u) ∈ V . Therefore Pxn(|u|) ∈ V for all n ∈ Nand all u ∈ K. Consequently, |K| is uniformly exhaustive.
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Theorem 2.3. Suppose that X is a TRS with the PPP and K is asubset of X. If K is a uniformly exhaustive subset of X and (Pxi

) is asequene from O, then for every solid neighborhood V of the origin thereexists a natural number N so that (Pxk
− Pxk∧

∨n
i=1

xi
)(u) ∈ V for all u ∈ Kwhenever k ≥ n ≥ N .Proof. Suppose the onlusion is false. Then there is a solid neighbor-hood V of the origin, an inreasing sequene (ni) of positive integers, anda sequene (ui) from K so that for all i, (Pxni

− P
xni

∧
∨ni−1

k=1
xk

)(ui) is notin V . A alulation using properties (), (d), and (f) shows that the aboveprojetions are pairwise disjoint. Lemma 2.1 shows the projetions are in O.This ontradits the uniform exhaustivity of K.The following theorem is the main result of this setion. If X is a Banahlattie and |x| ≤ |y|, we have by de�nition ‖x‖ ≤ ‖y‖. In many ases whenworking with Banah latties, it is this property of the norm that is usedand not the fat that the norm is omplete. In partiular, if X is a TRSand y belongs to a loally solid neighborhood V of the origin, then x ∈ Vwhenever |x| ≤ |y|. This property failitates the proof of the following gen-eralization of Theorem 1.4. Theorem 1.4 was established independently byL. Drewnowski [11℄ and James K. Brooks [5℄. This argument also simpli�esarguments in [6℄.
Theorem 2.4. Suppose that X is a metrizable TRS with the PPP and

K is a uniformly exhaustive subset of X. If K is ontinuous with respet to
m ∈ X+, then K is uniformly ontinuous with respet to m.Proof. Suppose that ̺ is a metri for the TRS X. Further suppose that
m ∈ X+ and that K is a uniformly exhaustive subset of X so that K isontinuous with respet to m but not uniformly ontinuous with respetto m. Then there exists a sequene xi from X+, a loally solid neighborhood
V of the origin, and a sequene yi from K so that Pxi

(m) → 0 and
(I) Pxi

(yi) 6∈ 2V for all i.We an assume without loss of generality that
(II)

∑
̺(0, Pxi

(m)) <∞.Applying Theorem 2.3, let n1 be a positive integer so that if n ≥ n1 then
(Pxn − Pxn∧

∨n1
k=1

xk
(u)) ∈ 1

2V for all u ∈ K.Let z1 =
∨n1

k=1 xk. Then from (I) and the statement above we �nd that
Pz1∧xn(yn) is not in (

2 − 1
2

)
V for all n ≥ n1. Now let a1 = z1 ∧ xn1

, a2 =

z1 ∧ xn1+1, . . . . Applying Theorem 2.3 to (Pai
), let n2 (> n1) be a positive
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integer so that if n ≥ n2, then

(Pan − Pan∧
∨n2

k=1
ak

(u)) ∈ 1
4V for all u ∈ K.Let z2 =

∨n2

k=1 ak. By a similar argument to that above, there is a se-quene (bn) in K suh that Pz2∧an(bn) is not in (
2− 1

2 −
1
4

)
V for all n ≥ n2.Sine (

2 − 1
2 − 1

4

)
V is loally solid and |Pz2(bn)| = Pz2(|bn|) ≥ Pan∧z2(bn),we see that |Pz2(bn)| is not in (

2 − 1
2 − 1

4

)
V for all n ≥ n2.Continue indutively to manufature a sequene (zk) from X+ and asubsequene (dk) of (yn) suh that

zk+1 ≤ zk,(III)

Pzk
(|dk|) 6∈ V for eah k.(IV)Next observe that if {q1, . . . , qt} ⊆ X+, u ∈ X+, and w =

∨
qi, then Pw(u) ≤∑t

i=1 Pqi(u). Therefore, using (II) and the fat that the sequene (zk) wasde�ned indutively in terms of (xk) (zk ≤
∨nk

i=nk−1
xi), we get

(V) Pzk
(m) → 0.Now use (IV), (V), and the fat that K (and therefore |K|) is ontinuouswith respet to m to selet subsequenes (Pzki

) of (Pzk
) and (dki

) of (dk)suh that
(Pzki

− Pzki+1
)(|dki

|) 6∈ 1
2V for eah i.But (III) implies this sequene of di�erenes of projetions is a disjoint se-quene from O. This ontradits the uniform exhaustivity of |K|.3. Exhaustivity. The results of this setion further haraterize exhaus-tivity in a TRS. If A is a subset of X, then Â denotes the solid hull of A,i.e. Â = {y ∈ X : |y| ≤ |x| for some x ∈ A}. The next theorem desribes thestruture of K̂ when K is a uniformly exhaustive subset of X. Reall thatan ideal in a TRS X is a solid vetor subspae of X.

Theorem 3.1. Suppose X is a TRS with the PPP. A subset K of Xis uniformly exhaustive i� eah disjoint sequene in K̂ onverges to zero.Furthermore, if I is an ideal in X and K is a subset of I so that Pxi
(k) → 0uniformly for k ∈ K whenever (xi) is a disjoint sequene from I+, then Kis uniformly exhaustive in X.Proof. First suppose K is uniformly exhaustive and (xi) is a disjointsequene from K̂ (|xi| ∧ |xj| = 0 if i 6= j). For eah i hoose yi ∈ K so that

|xi| ≤ |yi|. Sine Pu(u) = u for all u ∈ X and Pxi
is monotone on X+, itfollows that

0 ≤ |xi| = P|xi|(|xi|) ≤ P|xi|(|yi|) = |P|xi|(yi)|.
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Sine (xi) is a disjoint sequene, property (f) ensures (P|xi|) is a disjointsequene from O. Suppose V is a solid neighborhood of the origin. Choose anatural number N so that for every i ≥ N , P|xi|(y) ∈ V for all y ∈ K. Thenlearly P|xi|(yi) ∈ V for all i ≥ N . Sine V is solid we infer that xi is in Vfor all i ≥ N . Consequently, xn → 0.Conversely, suppose that eah disjoint sequene in K̂ onverges to zero.Suppose Pxi

is a disjoint sequene from O, and (|ui|) is a sequene from K̂.Then (xi) is a disjoint sequene from X+ and Pxi
(|ui|) is a disjoint se-quene. Sine Pxi

(|ui|) ≤ |ui| and |ui| is in K̂, we have Pxi
(|ui|) ∈ K̂.Thus Pxi

(|ui|) → 0. Again using property (g) and the fat that X has aloally solid topology, we �nd that Pxi
(ui) → 0. Sine the hoie of thesequene |ui| from K̂ was arbitrary, it follows that K is uniformly exhaus-tive.Next suppose I is an ideal in X, K is a subset of I satisfying the hy-potheses of the �nal statement of the theorem, and (ψi) is a disjoint sequenein X+. Let (ui) be an arbitrary sequene in K. Then ψi ∧ |ui| ∈ I for all iand (ψi ∧ |ui|) is a disjoint sequene. By the hypothesis Pψi∧|ui|(|ui|) → 0.Also

Pψi
(|ui|) =

∨
nψi ∧ |ui| =

∨
[n(ψi ∧ |ui|) ∧ |ui|] = Pψi∧|ui|(|ui|).Sine X has a loally solid topology, Pψi

(|ui|) → 0.The next main result haraterizes exhaustivity in a TRS with the PPP.The �nal statement of Theorem 3.3 is similar to the results in [12℄ for vetormeasures. However, the initial statement of Theorem 3.3 sheds light on thestruture of the order interval [0, k] when k is exhaustive. This theorem islosely akin to some of the major theorems on Banah latties in Setion 5 ofChapter 2 of [19℄. If a spae X is not pre-Lebesgue, the exhaustive elementsin X are often of interest. Note that the set of exhaustive elements of X = l∞is c0. In order to prove Theorem 3.3, we use the following lemma, whih anbe found in [16℄. It is a generalization of the Meyer-Nieberg lemma found onpage 92 of [19℄.
Lemma 3.2. Let (X, τ) be a loally solid topologial Riesz spae. Supposethat νn is a sequene in X+ with νn 6→ 0 and {

∑n
i=1 νi | n ∈ N} bounded.Suppose further that one of the following onditions is satis�ed :(i) (νn) is majorized by some x ∈ X+.(ii) X is Dedekind σ-omplete with an order ontinuous topology on [0, νn]for eah n.Then there exists a sequene (k(n)) of natural numbers and a disjoint se-quene (xn) in X+ so that xn 6→ 0 and xn ≤ νk(n) for every n.
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Theorem 3.3. Suppose X is a TRS with the PPP. A positive element kis exhaustive i� (ui) is Cauhy whenever 0 ≤ ui↑ ≤ k. Consequently , X ispre-Lebesgue i� every positive element of X is exhaustive.Proof. Suppose 0 ≤ ui↑ ≤ k implies (un) is Cauhy, and suppose k isnot exhaustive. Then there is a disjoint sequene (xn) from X+ and a solidneighborhood V of the origin so that Pxi

(k) 6∈ V for all i ∈ N. Let
un =

n∑

i=1

Pxi
(k) = P∑n

i=1
xi

(k) ≤ k.Then 0 ≤ ui↑ ≤ k. By our hypothesis, (un) is a Cauhy sequene. Choosean N so that if m,n ≥ N , then un − um ∈ V . If n ≥ m, then un − um =∑n
i=m+1 Pxi

(k) ∈ V . Sine V is solid, Pxn(k) ∈ V , whih ontradits theassumption.Conversely, suppose k is exhaustive and suppose there is a sequene (un)so that 0 ≤ ui↑ ≤ k and (un) is not Cauhy. Choose a solid neighborhood Vof the origin and intertwining sequenes (ni) and (mi) so that yi = uni
−umi

6∈ V for eah i. Then for all n, ∑n
i=1 yi ≤ k. Now apply Lemma 3.2 to �nda disjoint sequene (xn) in X+ and (k(n)) so that xn 6∈ V for all n and

xn ≤ yk(n) ≤ k. Consequently, Pxn(k) ≥ Pxn(xn) = xn 6∈ V and k is notexhaustive.We an now use the above theorem to establish a generalization of The-orem 1.3. It is known that X is Lebesgue i� eah element of X is exhaustivewhenever X is a sequentially omplete and Dedekind σ-omplete TRS. Thefollowing result investigates the struture of the order interval [0, k] if k isexhaustive.
Corollary 3.4. Suppose X is a sequentially omplete and Dedekind σ-omplete TRS. A positive element k is exhaustive i� yi → 0 whenever yi ↓ 0in the order interval [0, k].Proof. Suppose k is exhaustive and (yn) is a sequene from [0, k] so that

yn ↓ 0. Then k−yn is an inreasing sequene in [0, k]. By Theorem 3.3, k−ynis Cauhy. Sine X is sequentially omplete, k−yn onverges. Therefore (yn)onverges. Sine yn ↓ 0, we have yn → 0.Now suppose for every sequene (yn) in [0, k] with yn ↓ 0 we have yn → 0.Suppose that k is not exhaustive. Then there is a disjoint sequene (Pxi
) from

O and a solid neighborhood V of the origin so that Pxi
(k) 6∈ V for eah i. Let

ln = P∨n
i=1

xi
(k) and l =

∨
n ln. Then l−ln ↓ 0. By our assumption l−ln → 0.Then ln is a Cauhy sequene. However, ln+1− ln = Pxn+1

(k) 6∈ V . Thereforewe have a ontradition and k is exhaustive.When studying uniform absolute ontinuity and uniform exhaustivity, itis natural to onsider the following two lassial results from measure theory.
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Theorem 3.5 (Vitali�Hahn�Saks). Let (S,Σ, µ) be a measure spae and

(λn) a sequene of µ-ontinuous vetor or salar valued additive set funtionson Σ. If the limit limλn(E) exists for eah E in Σ then λn is uniformlyabsolutely ontinuous with respet to µ.
Theorem 3.6 (Brooks�Jewett, [6℄). Let (λn) be a sequene of stronglyadditive vetor or salar valued set funtions de�ned on Σ. If the limit

limλn(E) exists for eah E in Σ, then the sequene (λn) is uniformly ex-haustive.Reall that in ca(Σ) weak onvergene and setwise onvergene are equiv-alent. Consider the unit vetor basis (ei) in c0. Eah ei is exhaustive and (ei)is weakly onvergent, but Pei
(ei) = ei, whih implies (ei) is not uniformlyexhaustive. Therefore, the Brooks�Jewett theorem does not hold in arbitraryBanah latties if we replae setwise onvergene with weak onvergene. If

X is a Shur spae then weak and norm onvergene will oinide. There-fore in a Shur spae, the weak onvergene of the sequene (xi) is su�-ient to guarantee that the sequene is uniformly exhaustive. Again onsider
(ei) in c0 and let x = (1/n)n be in c0. Eah ei is ontinuous with respetto x. However, Pei

(x) → 0 and Pei
(ei) = ei 6→ 0. Therefore the ontinu-ity is not uniform. Thus the Vitali�Hahn�Saks theorem does not hold inarbitrary Banah latties if we replae setwise onvergene with weak on-vergene.Now note that by ombining Lemma II.5.4 of [19℄, and Theorem 3.1and Corollary 3.4 above, we �nd that a positive element x of the Dedekind

σ-omplete Banah lattie X is exhaustive whenever [0, x] is separable. Thisis due to the fat that separability of the order interval [0, x] yields theseparability of the prinipal ideal Ix generated by x. Therefore Ix is Lebesgueand eah element of Ix is exhaustive. The question was raised in [3℄ of whetheror not it is also true that [0, x] is separable whenever x is exhaustive. Thefollowing ounterexample resolves this question.Let R represent the real numbers. Also let λ represent Lebesgue measureon the interval [0, 1]. Using the results of Kakutani in [15℄, we an de�nea ountably additive measure m on the produt spae ([0, 1], λ)R. Let Σdenote the measurable sets in ([0, 1], λ)R. Then m is an exhaustive elementof ca(Σ). However, [0,m] is not separable in ca(Σ). To see this letmα = m|Eαwhere Eα is the element of Σ whose αth projetion is [0, 1/2] and whose βthprojetion is [0, 1] if α 6= β. Therefore we have an unountable number ofelements of [0,m] with ‖mγ − mβ‖ ≥ 1/4 whenever γ 6= β. Consequently,
[0,m] is not separable.Finally, Theorem 2.4(vi) in [3℄ is false as stated. It states that if X isa Dedekind σ-omplete Banah lattie and K is a subset of the exhaustiveelements of X, then K is ontinuous with respet to some exhaustive element
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in X i� eah pairwise disjoint subset of K is ountable. For a ounterexampleagain let R be the set of real numbers and let X = l∞(R). Let K = {e0+eα :
α ∈ R}. Then eah element of K is exhaustive. Vauously, eah disjointsubset of K is ountable. However, K is not ontinuous with respet to anyexhaustive element of l∞(R). The theorem should have read as follows: If Xis a Dedekind σ-omplete Banah lattie and K is a subset of the exhaustiveelements of X, then K is ontinuous with respet to some exhaustive elementin X i� eah pairwise disjoint subset of K̂ is ountable. The proof runs asbefore.
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