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Exhaustivity in Topologi
al Riesz Spa
es with thePrin
ipal Proje
tion PropertybyKimberly MULLERPresented by Stanisªaw KWAPIE�
Summary. Exhaustive and uniformly exhaustive elements are studied in the setting oflo
ally solid topologi
al Riesz spa
es with the prin
ipal proje
tion property. We study thestru
ture of the order interval [0, x] when x is an exhaustive element and the stru
ture ofthe solid hull of a set of uniformly exhaustive elements.1. Introdu
tion. In fun
tional analysis there has been a large amountof study on the embeddability of the 
lassi
al Bana
h spa
es c0, ℓ1 and ℓ∞in other Bana
h spa
es. Be
ause of results from ve
tor measure theory su
has the Diestel�Faires theorem [8℄, these studies are often done in 
onjun
tionwith studies on strongly additive measures. In many of these studies the mainemphasis is on normed ve
tor spa
es, or more spe
i�
ally, Bana
h spa
es.Although many of these spa
es are partially ordered, less attention has beengiven to the properties that are inherent to the partial ordering on the spa
e.In the 1940's mathemati
ians began studying these partially ordered ve
torspa
es in more detail and many results have been obtained, espe
ially inthe study of Bana
h latti
es. In this paper we spe
i�
ally want to study the
on
epts of exhaustivity, (absolute) 
ontinuity, and strong additivity in themore general setting of topologi
al Riesz spa
es. Many of these results willgeneralize results known for Bana
h latti
es.As is pointed out in the introdu
tion of [9℄, early interest in weak andweak∗ 
ompa
tness was often motivated by ve
tor measure theory. This isillustrated by the following two well-known results.2000 Mathemati
s Subje
t Classi�
ation: 46A40, 46B20, 46B42.Key words and phrases: uniform exhaustivity, 
ontinuity, prin
ipal proje
tion prop-erty, Riesz spa
e, lo
ally solid topology. [53℄
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Theorem 1.1. A set K ⊆ ca(Σ) is weakly sequentially 
ompa
t i� it isbounded and the 
ountable additivity of µ on Σ is uniform for µ ∈ K.
Theorem 1.2. A set K ⊆ ca(Σ) is weakly sequentially 
ompa
t i� it isbounded and , for some positive λ ∈ ca(Σ), µ≪ λ uniformly for µ ∈ K.As the following theorems illustrate, there is a strong 
onne
tion betweenstrong additivity and 
ountable additivity. These theorems 
an be extendedto the setting of topologi
al Riesz spa
es. The extensions use the latti
eproperties of the spa
e of ve
tor-valued measures and minimize set-theoreti
manipulations.
Theorem 1.3 (Bell�Bilyeu�Lewis [3℄). A positive element k of a σ-Dedekind 
omplete Bana
h latti
e X is exhaustive if and only if the norm is
ountably order 
ontinuous on the order interval [0, k].
Theorem 1.4 (Brooks [5℄, Drewnowski [11℄). Suppose (µn) is a sequen
eof 
ountably additive s
alar fun
tions on the σ-algebra Σ, and µ is a �nitelyadditive (possible in�nite) measure on Σ su
h that µn ≪ µ for ea
h n. Then

µn ≪ µ uniformly.A re
ent extension of Theorem 1.4 has been made in the study of sub-measures [13℄. Also, Drewnowski and Labuda [12℄ proved a result similarto Theorem 1.3 for a disjointly σ-Dedekind 
omplete TRS. Their methodswere quite di�erent due to the di�eren
e in hypotheses. Also the emphasison exhaustivity in [12℄ is on ve
tor measures and not exhaustive elements ina TRS. In [12℄, a 
hara
terization of exhaustive ve
tor measures is made forLebesgue and pre-Lebesgue topologies. That 
onne
tion will also be madein the setting of this paper. For more on Lebesgue and pre-Lebesgue topolo-gies see Aliprantis and Burkinshaw [1℄. Also the question was raised in [3℄ ofwhether or not [0, k] must be separable whenever k is exhaustive. A 
oun-terexample will be provided in Se
tion 3.2. Continuity in topologi
al Riesz spa
es. If X is a Riesz spa
e,
X is said to have the prin
ipal proje
tion property (PPP) provided that forea
h pair of x and y in X+ = {z : z ≥ 0} the element ∨

n nx∧ y exists. Thisde�nition is equivalent to that found in [17℄. If X is a Riesz spa
e with thePPP, de�ne Px(y) =
∨
n nx∧ y for all x, y ∈ X+. For arbitrary y ∈ X de�ne

Px(y) to be Px(y+) − Px(y
−). These proje
tions have proved to be usefulin many di�erent areas. For instan
e, if µ and ν are s
alar valued measuresthese proje
tions 
an be used to �nd the absolutely 
ontinuous and singularparts of ν with respe
t to µ only using the order properties of the reals.These proje
tions have also been applied to abstra
t L-spa
es [14℄, measurespa
es [4℄, and more re
ently, submeasures [13℄. Note that if x, y ∈ X+ the
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following properties hold. The majority of them 
an be found in the resultsof Kakutani [14℄.(a) 2Px(y) ∧ y = Px(y).(b) Px(y) ∧ (y − Px(y)) = 0.(
) x ∧ (y − Px(y)) = x ∧ y − x ∧ Px(y) = 0.(d) If x = ψ+η, where ψ∧η = 0, then Pψ(y)+Pη(y) = Px(y) = Pψ∨η(y).(e) Px is linear.(f) PPx(y) = PxPy = Px∧y.(g) |Px(y)| = Px(|y|).Let O = {Px : x ∈ X+}. A sequen
e (Pi) from O is said to be disjoint(or pairwise disjoint) if PiPj = 0 for i 6= j. Assume that (X, τ) is a TRSwith the PPP.
Definitions.(1) A subset K of X is said to be (uniformly) 
ontinuous with respe
t toan element m ∈ X if Pi(u) → 0 (uniformly) for u ∈ K whenever Piis a sequen
e from O su
h that Pi(m) → 0.(2) A subset K of X is said to be (uniformly) exhaustive if Pi(u) → 0(uniformly) for u ∈ K whenever (Pi) is a disjoint sequen
e from O.If K = {k} is a singleton we say that k is exhaustive.Note that if X = ba(Σ), then µ ∈ X is exhaustive if and only if it isstrongly additive and µ is absolutely 
ontinuous with respe
t to ν ∈ X ifand only if it is 
ontinuous with respe
t to ν using the above de�nition.The following lemmas will be helpful in establishing the main result of thisse
tion. The �rst lemma is true for any Riesz spa
e with the PPP and 
an befound in [3℄. For the remaining results we will assume that we have a TRS.
Lemma 2.1. Suppose X is a Riesz spa
e with the PPP. If x and y arein X and 0 ≤ y ≤ x, then there is a z in X+ so that Px − Py = Pz.Proof. Suppose the hypotheses are satis�ed. From property (b) above wesee that Py(x)∧(x−Py(x)) = 0 and from (d) we have Px = PPy(x)+Px−Py(x).Using property (f) and the fa
t that y ≤ x we obtain PPy(x) = Px∧y = Py.Therefore Px = Py + Px−Py(x). Sin
e Py(x) ≤ x we have Px − Py ∈ O.
Lemma 2.2. Suppose X is a TRS with the PPP. If K is a uniformlyexhaustive subset of X, then |K| = {|x| : x ∈ K} is uniformly exhaustive.Proof. Suppose K is uniformly exhaustive. Suppose (xn) is a disjointsequen
e from X+. Let V be a solid neighborhood of the origin. From (g)we have |Px(u)| = Px(|u|) for all u ∈ K. Choose a natural number N su
hthat Pxn(u) ∈ V for every n ≥ N and every u ∈ K. Re
all that V is solid,

Pxn(|u|) = |Pxn(u)|, and Pxn(u) ∈ V . Therefore Pxn(|u|) ∈ V for all n ∈ Nand all u ∈ K. Consequently, |K| is uniformly exhaustive.
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Theorem 2.3. Suppose that X is a TRS with the PPP and K is asubset of X. If K is a uniformly exhaustive subset of X and (Pxi

) is asequen
e from O, then for every solid neighborhood V of the origin thereexists a natural number N so that (Pxk
− Pxk∧

∨n
i=1

xi
)(u) ∈ V for all u ∈ Kwhenever k ≥ n ≥ N .Proof. Suppose the 
on
lusion is false. Then there is a solid neighbor-hood V of the origin, an in
reasing sequen
e (ni) of positive integers, anda sequen
e (ui) from K so that for all i, (Pxni

− P
xni

∧
∨ni−1

k=1
xk

)(ui) is notin V . A 
al
ulation using properties (
), (d), and (f) shows that the aboveproje
tions are pairwise disjoint. Lemma 2.1 shows the proje
tions are in O.This 
ontradi
ts the uniform exhaustivity of K.The following theorem is the main result of this se
tion. If X is a Bana
hlatti
e and |x| ≤ |y|, we have by de�nition ‖x‖ ≤ ‖y‖. In many 
ases whenworking with Bana
h latti
es, it is this property of the norm that is usedand not the fa
t that the norm is 
omplete. In parti
ular, if X is a TRSand y belongs to a lo
ally solid neighborhood V of the origin, then x ∈ Vwhenever |x| ≤ |y|. This property fa
ilitates the proof of the following gen-eralization of Theorem 1.4. Theorem 1.4 was established independently byL. Drewnowski [11℄ and James K. Brooks [5℄. This argument also simpli�esarguments in [6℄.
Theorem 2.4. Suppose that X is a metrizable TRS with the PPP and

K is a uniformly exhaustive subset of X. If K is 
ontinuous with respe
t to
m ∈ X+, then K is uniformly 
ontinuous with respe
t to m.Proof. Suppose that ̺ is a metri
 for the TRS X. Further suppose that
m ∈ X+ and that K is a uniformly exhaustive subset of X so that K is
ontinuous with respe
t to m but not uniformly 
ontinuous with respe
tto m. Then there exists a sequen
e xi from X+, a lo
ally solid neighborhood
V of the origin, and a sequen
e yi from K so that Pxi

(m) → 0 and
(I) Pxi

(yi) 6∈ 2V for all i.We 
an assume without loss of generality that
(II)

∑
̺(0, Pxi

(m)) <∞.Applying Theorem 2.3, let n1 be a positive integer so that if n ≥ n1 then
(Pxn − Pxn∧

∨n1
k=1

xk
(u)) ∈ 1

2V for all u ∈ K.Let z1 =
∨n1

k=1 xk. Then from (I) and the statement above we �nd that
Pz1∧xn(yn) is not in (

2 − 1
2

)
V for all n ≥ n1. Now let a1 = z1 ∧ xn1

, a2 =

z1 ∧ xn1+1, . . . . Applying Theorem 2.3 to (Pai
), let n2 (> n1) be a positive
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integer so that if n ≥ n2, then

(Pan − Pan∧
∨n2

k=1
ak

(u)) ∈ 1
4V for all u ∈ K.Let z2 =

∨n2

k=1 ak. By a similar argument to that above, there is a se-quen
e (bn) in K su
h that Pz2∧an(bn) is not in (
2− 1

2 −
1
4

)
V for all n ≥ n2.Sin
e (

2 − 1
2 − 1

4

)
V is lo
ally solid and |Pz2(bn)| = Pz2(|bn|) ≥ Pan∧z2(bn),we see that |Pz2(bn)| is not in (

2 − 1
2 − 1

4

)
V for all n ≥ n2.Continue indu
tively to manufa
ture a sequen
e (zk) from X+ and asubsequen
e (dk) of (yn) su
h that

zk+1 ≤ zk,(III)

Pzk
(|dk|) 6∈ V for ea
h k.(IV)Next observe that if {q1, . . . , qt} ⊆ X+, u ∈ X+, and w =

∨
qi, then Pw(u) ≤∑t

i=1 Pqi(u). Therefore, using (II) and the fa
t that the sequen
e (zk) wasde�ned indu
tively in terms of (xk) (zk ≤
∨nk

i=nk−1
xi), we get

(V) Pzk
(m) → 0.Now use (IV), (V), and the fa
t that K (and therefore |K|) is 
ontinuouswith respe
t to m to sele
t subsequen
es (Pzki

) of (Pzk
) and (dki

) of (dk)su
h that
(Pzki

− Pzki+1
)(|dki

|) 6∈ 1
2V for ea
h i.But (III) implies this sequen
e of di�eren
es of proje
tions is a disjoint se-quen
e from O. This 
ontradi
ts the uniform exhaustivity of |K|.3. Exhaustivity. The results of this se
tion further 
hara
terize exhaus-tivity in a TRS. If A is a subset of X, then Â denotes the solid hull of A,i.e. Â = {y ∈ X : |y| ≤ |x| for some x ∈ A}. The next theorem des
ribes thestru
ture of K̂ when K is a uniformly exhaustive subset of X. Re
all thatan ideal in a TRS X is a solid ve
tor subspa
e of X.

Theorem 3.1. Suppose X is a TRS with the PPP. A subset K of Xis uniformly exhaustive i� ea
h disjoint sequen
e in K̂ 
onverges to zero.Furthermore, if I is an ideal in X and K is a subset of I so that Pxi
(k) → 0uniformly for k ∈ K whenever (xi) is a disjoint sequen
e from I+, then Kis uniformly exhaustive in X.Proof. First suppose K is uniformly exhaustive and (xi) is a disjointsequen
e from K̂ (|xi| ∧ |xj| = 0 if i 6= j). For ea
h i 
hoose yi ∈ K so that

|xi| ≤ |yi|. Sin
e Pu(u) = u for all u ∈ X and Pxi
is monotone on X+, itfollows that

0 ≤ |xi| = P|xi|(|xi|) ≤ P|xi|(|yi|) = |P|xi|(yi)|.
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Sin
e (xi) is a disjoint sequen
e, property (f) ensures (P|xi|) is a disjointsequen
e from O. Suppose V is a solid neighborhood of the origin. Choose anatural number N so that for every i ≥ N , P|xi|(y) ∈ V for all y ∈ K. Then
learly P|xi|(yi) ∈ V for all i ≥ N . Sin
e V is solid we infer that xi is in Vfor all i ≥ N . Consequently, xn → 0.Conversely, suppose that ea
h disjoint sequen
e in K̂ 
onverges to zero.Suppose Pxi

is a disjoint sequen
e from O, and (|ui|) is a sequen
e from K̂.Then (xi) is a disjoint sequen
e from X+ and Pxi
(|ui|) is a disjoint se-quen
e. Sin
e Pxi

(|ui|) ≤ |ui| and |ui| is in K̂, we have Pxi
(|ui|) ∈ K̂.Thus Pxi

(|ui|) → 0. Again using property (g) and the fa
t that X has alo
ally solid topology, we �nd that Pxi
(ui) → 0. Sin
e the 
hoi
e of thesequen
e |ui| from K̂ was arbitrary, it follows that K is uniformly exhaus-tive.Next suppose I is an ideal in X, K is a subset of I satisfying the hy-potheses of the �nal statement of the theorem, and (ψi) is a disjoint sequen
ein X+. Let (ui) be an arbitrary sequen
e in K. Then ψi ∧ |ui| ∈ I for all iand (ψi ∧ |ui|) is a disjoint sequen
e. By the hypothesis Pψi∧|ui|(|ui|) → 0.Also

Pψi
(|ui|) =

∨
nψi ∧ |ui| =

∨
[n(ψi ∧ |ui|) ∧ |ui|] = Pψi∧|ui|(|ui|).Sin
e X has a lo
ally solid topology, Pψi

(|ui|) → 0.The next main result 
hara
terizes exhaustivity in a TRS with the PPP.The �nal statement of Theorem 3.3 is similar to the results in [12℄ for ve
tormeasures. However, the initial statement of Theorem 3.3 sheds light on thestru
ture of the order interval [0, k] when k is exhaustive. This theorem is
losely akin to some of the major theorems on Bana
h latti
es in Se
tion 5 ofChapter 2 of [19℄. If a spa
e X is not pre-Lebesgue, the exhaustive elementsin X are often of interest. Note that the set of exhaustive elements of X = l∞is c0. In order to prove Theorem 3.3, we use the following lemma, whi
h 
anbe found in [16℄. It is a generalization of the Meyer-Nieberg lemma found onpage 92 of [19℄.
Lemma 3.2. Let (X, τ) be a lo
ally solid topologi
al Riesz spa
e. Supposethat νn is a sequen
e in X+ with νn 6→ 0 and {

∑n
i=1 νi | n ∈ N} bounded.Suppose further that one of the following 
onditions is satis�ed :(i) (νn) is majorized by some x ∈ X+.(ii) X is Dedekind σ-
omplete with an order 
ontinuous topology on [0, νn]for ea
h n.Then there exists a sequen
e (k(n)) of natural numbers and a disjoint se-quen
e (xn) in X+ so that xn 6→ 0 and xn ≤ νk(n) for every n.
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Theorem 3.3. Suppose X is a TRS with the PPP. A positive element kis exhaustive i� (ui) is Cau
hy whenever 0 ≤ ui↑ ≤ k. Consequently , X ispre-Lebesgue i� every positive element of X is exhaustive.Proof. Suppose 0 ≤ ui↑ ≤ k implies (un) is Cau
hy, and suppose k isnot exhaustive. Then there is a disjoint sequen
e (xn) from X+ and a solidneighborhood V of the origin so that Pxi

(k) 6∈ V for all i ∈ N. Let
un =

n∑

i=1

Pxi
(k) = P∑n

i=1
xi

(k) ≤ k.Then 0 ≤ ui↑ ≤ k. By our hypothesis, (un) is a Cau
hy sequen
e. Choosean N so that if m,n ≥ N , then un − um ∈ V . If n ≥ m, then un − um =∑n
i=m+1 Pxi

(k) ∈ V . Sin
e V is solid, Pxn(k) ∈ V , whi
h 
ontradi
ts theassumption.Conversely, suppose k is exhaustive and suppose there is a sequen
e (un)so that 0 ≤ ui↑ ≤ k and (un) is not Cau
hy. Choose a solid neighborhood Vof the origin and intertwining sequen
es (ni) and (mi) so that yi = uni
−umi

6∈ V for ea
h i. Then for all n, ∑n
i=1 yi ≤ k. Now apply Lemma 3.2 to �nda disjoint sequen
e (xn) in X+ and (k(n)) so that xn 6∈ V for all n and

xn ≤ yk(n) ≤ k. Consequently, Pxn(k) ≥ Pxn(xn) = xn 6∈ V and k is notexhaustive.We 
an now use the above theorem to establish a generalization of The-orem 1.3. It is known that X is Lebesgue i� ea
h element of X is exhaustivewhenever X is a sequentially 
omplete and Dedekind σ-
omplete TRS. Thefollowing result investigates the stru
ture of the order interval [0, k] if k isexhaustive.
Corollary 3.4. Suppose X is a sequentially 
omplete and Dedekind σ-
omplete TRS. A positive element k is exhaustive i� yi → 0 whenever yi ↓ 0in the order interval [0, k].Proof. Suppose k is exhaustive and (yn) is a sequen
e from [0, k] so that

yn ↓ 0. Then k−yn is an in
reasing sequen
e in [0, k]. By Theorem 3.3, k−ynis Cau
hy. Sin
e X is sequentially 
omplete, k−yn 
onverges. Therefore (yn)
onverges. Sin
e yn ↓ 0, we have yn → 0.Now suppose for every sequen
e (yn) in [0, k] with yn ↓ 0 we have yn → 0.Suppose that k is not exhaustive. Then there is a disjoint sequen
e (Pxi
) from

O and a solid neighborhood V of the origin so that Pxi
(k) 6∈ V for ea
h i. Let

ln = P∨n
i=1

xi
(k) and l =

∨
n ln. Then l−ln ↓ 0. By our assumption l−ln → 0.Then ln is a Cau
hy sequen
e. However, ln+1− ln = Pxn+1

(k) 6∈ V . Thereforewe have a 
ontradi
tion and k is exhaustive.When studying uniform absolute 
ontinuity and uniform exhaustivity, itis natural to 
onsider the following two 
lassi
al results from measure theory.
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Theorem 3.5 (Vitali�Hahn�Saks). Let (S,Σ, µ) be a measure spa
e and

(λn) a sequen
e of µ-
ontinuous ve
tor or s
alar valued additive set fun
tionson Σ. If the limit limλn(E) exists for ea
h E in Σ then λn is uniformlyabsolutely 
ontinuous with respe
t to µ.
Theorem 3.6 (Brooks�Jewett, [6℄). Let (λn) be a sequen
e of stronglyadditive ve
tor or s
alar valued set fun
tions de�ned on Σ. If the limit

limλn(E) exists for ea
h E in Σ, then the sequen
e (λn) is uniformly ex-haustive.Re
all that in ca(Σ) weak 
onvergen
e and setwise 
onvergen
e are equiv-alent. Consider the unit ve
tor basis (ei) in c0. Ea
h ei is exhaustive and (ei)is weakly 
onvergent, but Pei
(ei) = ei, whi
h implies (ei) is not uniformlyexhaustive. Therefore, the Brooks�Jewett theorem does not hold in arbitraryBana
h latti
es if we repla
e setwise 
onvergen
e with weak 
onvergen
e. If

X is a S
hur spa
e then weak and norm 
onvergen
e will 
oin
ide. There-fore in a S
hur spa
e, the weak 
onvergen
e of the sequen
e (xi) is su�-
ient to guarantee that the sequen
e is uniformly exhaustive. Again 
onsider
(ei) in c0 and let x = (1/n)n be in c0. Ea
h ei is 
ontinuous with respe
tto x. However, Pei

(x) → 0 and Pei
(ei) = ei 6→ 0. Therefore the 
ontinu-ity is not uniform. Thus the Vitali�Hahn�Saks theorem does not hold inarbitrary Bana
h latti
es if we repla
e setwise 
onvergen
e with weak 
on-vergen
e.Now note that by 
ombining Lemma II.5.4 of [19℄, and Theorem 3.1and Corollary 3.4 above, we �nd that a positive element x of the Dedekind

σ-
omplete Bana
h latti
e X is exhaustive whenever [0, x] is separable. Thisis due to the fa
t that separability of the order interval [0, x] yields theseparability of the prin
ipal ideal Ix generated by x. Therefore Ix is Lebesgueand ea
h element of Ix is exhaustive. The question was raised in [3℄ of whetheror not it is also true that [0, x] is separable whenever x is exhaustive. Thefollowing 
ounterexample resolves this question.Let R represent the real numbers. Also let λ represent Lebesgue measureon the interval [0, 1]. Using the results of Kakutani in [15℄, we 
an de�nea 
ountably additive measure m on the produ
t spa
e ([0, 1], λ)R. Let Σdenote the measurable sets in ([0, 1], λ)R. Then m is an exhaustive elementof ca(Σ). However, [0,m] is not separable in ca(Σ). To see this letmα = m|Eαwhere Eα is the element of Σ whose αth proje
tion is [0, 1/2] and whose βthproje
tion is [0, 1] if α 6= β. Therefore we have an un
ountable number ofelements of [0,m] with ‖mγ − mβ‖ ≥ 1/4 whenever γ 6= β. Consequently,
[0,m] is not separable.Finally, Theorem 2.4(vi) in [3℄ is false as stated. It states that if X isa Dedekind σ-
omplete Bana
h latti
e and K is a subset of the exhaustiveelements of X, then K is 
ontinuous with respe
t to some exhaustive element
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in X i� ea
h pairwise disjoint subset of K is 
ountable. For a 
ounterexampleagain let R be the set of real numbers and let X = l∞(R). Let K = {e0+eα :
α ∈ R}. Then ea
h element of K is exhaustive. Va
uously, ea
h disjointsubset of K is 
ountable. However, K is not 
ontinuous with respe
t to anyexhaustive element of l∞(R). The theorem should have read as follows: If Xis a Dedekind σ-
omplete Bana
h latti
e and K is a subset of the exhaustiveelements of X, then K is 
ontinuous with respe
t to some exhaustive elementin X i� ea
h pairwise disjoint subset of K̂ is 
ountable. The proof runs asbefore.
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