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Summary. Emmanuele showed that if X' is a o-algebra of sets, X is a Banach space,
and p: ¥ — X is countably additive with finite variation, then p(X) is a Dunford—Pettis
set. An extension of this theorem to the setting of bounded and finitely additive vector
measures is established.

A new characterization of strongly bounded operators on abstract continuous function
spaces is given. This characterization motivates the study of the set of (sb) operators.
This class of maps is used to extend results of P. Saab dealing with unconditionally
converging operators. A characterization of the existence of a countably additive, non-
strongly bounded representing measure in terms of ¢y is presented. This characterization
resolves a question posed in 1970.

1. Introduction. If R is a ring of sets, X is a (real) Banach space, and
W R — X is a finitely additive set function, then p is said to be strongly
additive if p(A;) — 0 whenever (A;) is a pairwise disjoint sequence from R.
The notion of strong additivity has permeated much of vector measure theory
since its introduction by Rickart [24] in 1943. The “Notes and Remarks”
section of Chapter 1 of [13]| contains an excellent accounting of the main
results associated with strong additivity from 1943 through the mid 70’s.

We briefly mention two classically important results in which strong ad-
ditivity (either explicitly or implicitly) played a pivotal role. In [7], Brooks
and Jewett established the following generalization of the Vitali-Hahn-Saks
theorem.

THEOREM 1.1. Suppose that R is a o-ring and for each n, p, : R — X
is finitely additive. Let p, < A\, n = 1,2,..., where X\ is a nonnegative
bounded finitely additive measure. If lim pu,(R) ezists for all R € R, then
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tn < X\ uniformly in n. If the p, are strongly additive, then the boundedness
assumption on A may be omitted.

In [3], Bartle, Dunford, and Schwartz showed that if K is a compact
Hausdorff space and L : C(K) — X is an operator with representing measure
1, then L is weakly compact if and only if y is countably additive. It is not
difficult at all to see that a representing measure in this setting is countably
additive if and only if it is strongly additive. Thus the Bartle-Dunford-
Schwartz theorem can be stated as follows.

THEOREM 1.2. If T : C(K) — X is an operator with representing mea-
sure [, then T is weakly compact if and only if u is strongly additive.

It is well known that if £ and F' are Banach spaces, T : C(K,E) — F'is
a weakly compact operator with representing measure m, and m(A) denotes
the semivariation ([14, p. 51]) of m on A, then m(A4;) — 0 whenever (A;) is
any pairwise disjoint sequence of Borel subsets of K. That is, if T" is weakly
compact, then its representing measure is strongly bounded. (The reader may
consult [8], [9], [4], [25], [1], or [5] for details concerning representing measures
in this setting.) However, examples in [15], [19], and [22] show that a strongly
additive representing measure need not be strongly bounded in general. The
structure of non-strongly additive and non-strongly bounded measures are
studied in this paper.

Our notation and terminology is consistent with that used in Diestel [11]
and in Lindenstrauss and Tzafriri [23]. We do note specifically that the canon-
ical unit vector basis of ¢y will be denoted by (e,,) and the canonical basis
of /! will be denoted by (e).

2. Non-strongly additive vector measures. Joe Diestel and Barbara
Faires did much to reveal the behavior of a non-strongly additive but finitely
additive and bounded vector measure defined on an algebra of sets in [12]
and [13, p. 20]. Their result makes it clear that the classical Banach space
co and non-strongly additive vector measures are closely related. Our first
result demonstrates that ¢! and hereditary Dunford—Pettis sets are also very
prominent in the structure of a non-strongly additive vector measure.

Recall that a subset A of the Banach space F is a Dunford—Pettis subset
of E if T(A) is relatively compact in F' whenever T : E — F' is a weakly
compact operator |2]. Further, a sequence (z,,) in X is a hereditary Dunford—
Pettis sequence if {x,, : i € N} is a Dunford—Pettis subset of [z,,] for all
subsequences (z,,) of (x,). Emmanuele [17] showed that if ¥ is a o-algebra,
X is a Banach space, and p : X — X is countably additive and has finite vari-
ation, then p(X') is a Dunford-Pettis subset of X. (The survey article [10] by
Diestel contains a wealth of information about the Dunford—Pettis property
and Dunford-Pettis sets.) The following theorem establishes an extension
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of Emmanuele’s result to the finitely additive case and provides substantial
additional information about the nature of a non-strongly additive vector
measure defined on a ring of sets.

THEOREM 2.1. If R is a ring of sets, m : R — X is a bounded and
finitely additive set function, and (A;) is a pairwise disjoint sequence from R,
then (m(A;)) is a weakly null hereditary Dunford—Pettis set. If (x}) is any
bounded sequence in X* so that xim(A;) = 1 for all i, then there is a
sequence (wy,) in {z] —x} : i,j € N} so that (wy,) ~ (e3,) and [wy] is
complemented in X*. In fact, if |m(A4;)| # 0, then there is a subsequence
(m(Aij)) of (m(A;)) and a sequence (f}) in X* so that (m(Ay), f7) is

biorthogonal in X x X*, (m(Aij)) ~ (e;), and (f7) ~ (e]).

Proof. If m : R — X is bounded and finitely additive and «* € X*, then
the scalar measure x*m has finite variation. Thus 2*m(4;) — 0 and (m(A4;))
is weakly null.

Now suppose that Y is a Banach space, and T : X — Y is a weakly
compact operator. Then T'om : R — Y is a finitely additive vector measure
with relatively weakly compact range. By the corollary on p. 1000 of [6],
T om is strongly additive. Therefore Tom(A;) — 0, and T'({m(4;) : i € N})
is relatively compact. Hence {m(A;) : i € N} is a Dunford-Pettis subset
of X.

Now suppose that (m(A;;)) is a subsequence of (m(A4;)), and let Z =
[m(A;j;)]. Let A denote the algebra of subsets of N consisting of the finite
and cofinite sets. Denote the complement of F' by F. Define v : A — X
by

ZjEF m(AU) if F' is finite,
v(F) = PR .
- Zjeﬁ m(A;j) if F is cofinite.

It is straightforward to check that v is bounded and finitely additive on A. By
the proof in the preceding paragraph, {v({j}) : j € N} = {m(4;;) : j € N}
is a Dunford-Pettis subset of Z.

Next let (z}) be a bounded sequence in X* so that x(m(A4;)) = 1 for
each i. Since (m(A4;)) is a weakly null hereditary Dunford—Pettis set which is
not norm null, we appeal to the discussion on pp. 26-28 of [10] and conclude
that there is a subsequence (m(A;;)) of (m(A;)) so that (m(Ai;)) ~ (ej).

Certainly
Z | 7 'Lj 1| < 0.

Consequently, the main theorem in [20] applies and produces a sequence
(wy) in {z} — 27 :i,7 € N} so that (wy;) ~ (e};) and [wy] is complemented

n n n

in X*.
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Now suppose that (m(4;;));2; is as before. Let y; denote the coeffi-
cient functional (in [(m(A4;;))52,]") of the Schauder basis element m(A;;),
and let f* be a Hahn-Banach extension of y; to all of X. Suppose that
(f7) has a weakly Cauchy subsequence, say (fj ). Then (f; =—— f)
= (uy) is weakly null in X*. Thus, since (m(A4;))52; is hereditary Dunford-
Pettis, u;’;(m(Aiij)) — 0 (e.g., see [2] or Theorem 1 of [10]). However,
s )) = 1 for each k. Therefore Rosen-

thal’s ¢!-theorem ensures that there is a subsequence ( 5 ) of (ff) so that
(f5) ~ (ex). =

COROLLARY 2.2 ([16, p. 318]). If X is a o-algebra and p: X — X is
weakly countably additive, then p is countably additive.

this is a contradiction since uj (m(A

Proof. Note first that a weakly countably additive set function p: X2 —
X is bounded and finitely additive. Further, as was noted earlier, a weakly
countably additive set function is countably additive if and only if it is
strongly additive. Suppose then that € > 0 and (A4;) is a pairwise dis-
joint sequence from X' so that ||u(A;)|| > e for each i. Since (u(A;)) is
a hereditary Dunford—Pettis sequence which is not norm null, we may as-
sume that (u(A4;)) ~ (e;). This immediately leads to a contradiction since
(O, 1(Ag))ee converges weakly (to p(U;2, Ai)) and (307 ;)52 does
not converge weakly. m

COROLLARY 2.3. If R is a ring of sets, each of E and F is a Banach
space, L(E, F) is the Banach space of all bounded linear operators from E
to F, and m: R — L(E,F) is a finitely additive vector measure with finite
semivariation which is not strongly bounded, then co embeds isomorphically
in F.

Proof. Suppose that (A4;) is a pairwise disjoint sequence from R and
e > 0 so that m(A;) > ¢ for each i. Let (A;;)7Z, be a partition of A; and let
(2ij)j~, be norm one vectors in X so that

H > m(Ai)i
j=1

for each i. Use the partitions of (A;) to form a natural partition of N:

> €

{1,...,n1,n1+1,...,n1 +ng,ny +na+1,...,n1 +ny +ns,...}.

Let ng = 0, and let Pi:{jEN:no—l—nl—l—---—l—ni,l <j§n0+---+ni}.
If S is a finite subset of N, set

p(S) = D Aot tni ) TilG— (ot 1))
1=1 jeP;,NS
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If S is finite, set p(S) = —u(S). Then y is bounded, finitely additive, and
not strongly additive on the finite-cofinite algebra of subsets of N. Then
(2?2:1 m(A;j) xij)72, is a hereditary Dunford-Pettis sequence in F' which is
not norm null. Thus F' contains an isomorphic copy of ¢y. =

It is well known that there are (reflexive) infinite-dimensional Banach
spaces E so that ¢°° embeds isomorphically in L(E, E) (e.g., see [18, p. 267],
and [17, Theorem 1]). In fact, if F is any infinite-dimensional Banach space
with an unconditional Schauder decomposition [23, p. 47|, then the next
theorem and corollary show that L(F, E) must contain an isomorphic copy
of £>°. These results also strengthen an implication in Theorem 6 of [18].

THEOREM 2.4. If E is an infinite-dimensional Banach space and F
is an arbitrary Banach space, then {>° embeds isomorphically in L(E,F)

if and only if there is a seminormalized sequence (1,) in L(E,F) so that
Y {Th(x),y*)| < oo for each x € E and y* € F*.

Proof. Suppose that (7,) is as in the statement of the theorem.
Since Y >, Tn(x) is weakly unconditionally convergent for all x € E,
sup{|| >_,er Tnll © F is a finite subset of N} < oc. Let R denote the ring
of all finite subsets of N. Define p: R — L(E, F) by

neA
(@) = 0.

Certainly p is finitely additive and bounded. Since (7},) is seminormalized, p
is not strongly additive. Therefore ¢g — L(E, F'), and, by Theorem 1 of |21],
(> < L(B, F).

Conversely, suppose that ¢ : /> — L(E, F) is an isomorphism, and let
T, = ¢(ey) for each n. Since ¢ is an isomorphism, (7},) is seminormalized.
Since »_ e, is weakly unconditionally convergent, > [(T,,(x),y*)| < oo for
reFand y* € F*. u

COROLLARY 2.5. Suppose the infinite-dimensional Banach space E has
an unconditional Schauder decomposition (E,)52, and P, : E — E,, is the
projection of E onto E,. If F is any Banach space for which there is an
operator T : E — F so that Yo" | TP, does not converge in norm, then (>
embeds isomorphically in L(E, F). In particular, {>° embeds isomorphically
in L(E,E).

We conclude this section by noting that 2.3 and the proof of 2.4 show
that if E is infinite-dimensional, m : R — L(E, F) is finitely additive with
finite semivariation, and m is not strongly bounded, then ¢* — L(E, F).
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3. Strongly bounded measures and (sb) operators. The first theo-
rem in this section uses the Dvoretzky—Rogers theorem [11, Chapter VI] and
techniques in [15], [19], and [22] to establish the converse of Corollary 2.3 and
to answer a question posed in a problem session at a meeting of the Amer-
ican Mathematical Society at the University of Illinois in the fall of 1970.
Old examples of Dobrakov [15] and Lewis [19] showed that there exist rep-
resenting measures which are countably additive and not strongly bounded.
However, no characterization of the spaces which support a countably ad-
ditive and non-strongly bounded representing measure has been given. In
this section, we give a complete description of pairs (F, F') of Banach spaces
and compact Hausdorff spaces H so that there exists a countably additive
representing measure m : X — L(FE, F') which fails to be strongly bounded.
This result highlights a theme particularly well enunciated in Theorem 2.1
of Saab [25].

THEOREM 3.1. If H is an infinite compact Hausdorff space with Borel
sets X, X is an infinite-dimensional Banach space, and Y 1is a Banach
space, then there exists a countably additive, non-strongly bounded repre-
senting measure m : X — L(X,Y) if and only if there exists an isomorphic
embedding T : co — Y.

Proof. Suppose that T' : ¢g — Y is an isomorphic embedding, and let
yn = T(e,) for each n € N. Let (t,) be a sequence of distinct points
in H and )z} be an unconditionally converging series in X* such that

>oo0  lzk |l = co. Let (IV;) be a pairwise disjoint sequence of finite subsets
of N so that

1) 1> nezan,nll < 1/2¢ for all Z C N and for each i,
(i) 1> >, enllanll > 1/2 for each i.
If A€ XY and z € X, define

m(A)(x)zi( > wi@)v

=1 pen,nA

where A = {n : t, € A}. It is clear that m(A) is a bounded linear operator
and m is finitely additive. Further, (i) above and the fact that (y;) ~ (e;)
ensure that m is countably additive. Also

w(H) <sup{ > I HITI < |17
v neN;

Moreover, if x € X and y* € Y*, then (m(-)z,y*) : X — R is regular since it
is a convergent infinite sum of point-mass measures. However, (ii) guarantees
that m is not strongly bounded. In fact, if B; = {t; : j € N;}, then m(B;) =

O nen, 12z 1D 11yl
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Conversely, suppose that there is a countably additive representing mea-
sure m : X — L(X,Y) so that m is not strongly bounded. An appeal to
Corollary 2.3 finishes the proof.

We remark that the notion of semivariation m(A) used in this paper
and in Dinculeanu [14] is not equivalent to the semivariation ||m/|/(A) which
is defined in Diestel and Uhl (|13, p. 2|). Perhaps it is appropriate at this
point to note that a representing measure is countably additive if and only
if ||m||(A;) — 0 for each pairwise disjoint sequence (A;) from X.

In our next theorem, we state a characterization of strongly bounded
operators on C'(H, X) which does not seem to have been noticed previously.
In this theorem, it is helpful to recall that if £ and F' are Banach spaces, then
the algebraic tensor product EQF can be viewed as a subset of L(E*, F'). The
completion of E® F with respect to this identification and this operator norm
is called the injective tensor product completion—or the least crossnorm
completion—of F ® I and is denoted by £ ®) F. In particular, we note that
C(H,X)=C(H)®) X (e.g., see Chapter VIII of [13]).

THEOREM 3.2. If m < T : C(H,X) — Y is a bounded linear operator,
then m is strongly bounded if and only if T(f;) — 0 whenever (f;) is a
bounded sequence in C(H) @y X so that fi(¢) — 0 for each ¢ € C(H)*.

This theorem follows almost immediately from the following lemmas. If
w1 is a scalar measure on H and f is Bochner integrable with respect to p,
we denote this integral by (B)-{,, fdp.

LEMMA 3.3. If fe C(H,X) and ¢ € C(H)*, then f(p) = (B)-{ f dp,
where (1 is the uniqgue member of rca(X) which represents .

Proof. Let f =", fi ® z;, where f; € C(H) and x; € X for each i.
Let ¢ € C(H)* and let u be the unique element in rca(X) such that p(g) =
§ ;7 9 dp for every g € C(H). Then

) =2 fiewile) =) e(fiw

= ZZZ; (;fid/i)mi =

= (B)-| fdu.
H

The fact that f(¢) = (B)-{ fdu for each f € C(H,Y) readily follows. m
LEMMA 3.4. If (f;) is a bounded sequence in C(H,X), then fi;(h) — 0

3

for every h € H if and only if fi(¢) — 0 for every ¢ € C(H)*.

{(B)' V(i «Tz‘)dﬂ}

1 H

n
1=
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Proof. Let (f;) be a bounded sequence in C(H, X). Suppose f;(h) — 0

for every h € H. Let ¢ € C(H)*, and let p be the unique element in
rca(X) such that (g) =, gdu for every g € C(H). It then follows from
the vector-valued Dominated Convergence Theorem that fi(¢) = {, fidu
— 0 for each p € C(H)*.
__ For the reverse direction, observe that for each h € H one can define
h € C(H)* by h(f) = f(h) for every f € C(H). It is readily seen that if
f € C(H,Y) then f(h) = f(h). Hence if fi(¢) — 0 for every ¢ € C(H)",
then f;(h) — 0 for every h € H. =

In Theorem 2.8 of [1], the authors showed that a representing measure
m <« T is strongly bounded if and only if T'(f;) — 0 for each bounded
sequence (f;) such that f;(h) — 0 for each h € H. Theorem 3.2 now follows
easily from the preceding lemmas.

We remark that Theorem 3.2 makes it plain that an operator

T:C(H)®)\X (CLIC(H)* X)) =Y

is strongly bounded precisely when T maps sequences which converge in
the strong operator topology (|16, pp. 475-476]) into norm convergent se-
quences. In general, if Z is a Banach space and T' : X ®, Y — Z is a
bounded linear operator, we say that 7" is (sb) if T'(y;) — 0 whenever (y;) is
any bounded sequence in X ®, Y (C L(X™*,Y)) so that u;(z*) — 0 for each
x* € X*. The following example is somewhat surprising considering the fact
that weakly compact—even weakly completely continuous and uncondition-
ally converging—operators on C'(H, X)) are strongly bounded [8§].

EXAMPLE 3.5. Let X be an infinite-dimensional reflexive space, Y be any
Banach space and let y; € Y* be such that y; # 0. Define S : Y®,X — X by
S(p) = p(ys). Then S is linear, bounded by ||y, and S is weakly compact
since X is reflexive. (It is easily checked that S is (sb).)

Let I : X®),Y — Y ®)X be the natural isometry, and T : X ®,Y — X
be defined by T" = S o I. Certainly T is weakly compact. To see that T is
not (sb), choose yo € Y such that y(yo) # 0 and choose (z,) in X such
that (z,,) is weakly null but not norm null. Consider the sequence (z, ® yo)n,
in X ®, Y. It is bounded since ||z, ® yolxg,y < [|zall o]l and (2y) is

bounded in X. Also, if z* € X* then (z, ® yo)(z*) = z*(zn)y0 LA
However, T'(z, ® yo) = (Yo ® n)(¥5) = ¥5(¥0)Tn 7 0 in norm.

However, as the next theorem demonstrates, completely continuous op-
erators on X ®) Y are (sb).

THEOREM 3.6. If T : X ®)Y — Z is completely continuous, then T
is (sb).
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Proof. Suppose T : X ®)Y — Z is completely continuous and let (¢;)
be a bounded sequence in X ®,Y such that ¢;(x*) — Oy for every z* € X*.

Let K = (Bx+,w*). Then we may consider X ®,Y to be a closed subspace of

C(K)®,Y 2C(K,Y). As p;i(z¥) M> Oy for every x* € Bx+, @;(z*) X 0y

for every z* € Bx-«. It follows from Lemma 3.2 in [1| that (¢;) is weakly

null in C(K,Y), and thus in X ®, Y. Since T is completely continuous,
T(pi) IkIN Oy . Therefore T is (sb). m

At this time we point out that the collection of (sb) operators is a closed
linear subspace of L(X ®, Y, Z). It is also clear that if T : X ®, Y — Z is
(sb) and S : Z — W then S o T is (sb). However in Example 3.5 we defined
operators S: Y ®\ X — X and [ : X ®), Y — Y ®, X such that S is (sb),
but T'= S o I is not (sb). This example also indicates that the definition of
an (sb) operator is dependent on the first factor in the tensor product.

Paulette Saab [25] showed that if m <~ T : C(H,X) — Y is a strongly
bounded operator, then (1) 7" is unconditionally converging if ¢y does not
embed in X and (2) T is completely continuous if X is a Schur space. The
next theorem generalizes each of these results and continues the theme of
Corollary 2.3 and Theorem 3.1.

THEOREM 3.7.

(i) The Banach space Y does not contain ¢y if and only if for each pair
(X, Z) of Banach spaces it follows that every operator T: X ®,Y — Z
which is (sb) is also unconditionally converging.

(ii) The Banach space Y is a Schur space if and only if for each pair
(X, Z) of Banach spaces it follows that every operator T: X ®)\Y —Z
which is (sb) is also completely continuous.

Proof. (i) Suppose T': X ®)Y — Z is (sb) and further suppose that cg
does not embed into Y. To see that T is unconditionally converging, it suf-
fices to show that whenever ) -°, i; is a weakly unconditionally converging
series in X ®, Y, then T'(1;) — 0. Let > .2, p1; be a weakly uncondition-
ally converging series in X ®), Y and let 2* € X*. Then (y;) is bounded in
X ®,Y, and ) ;2 pi(x*) is weakly unconditionally converging in Y. Since
co does not embed into Y, >~ p;(z*) is unconditionally converging. Thus

wi(x*) W, 0 for each z* < X*, and since T is (sb), T'(u;) W0, Thus 7 is

unconditionally converging.

Conversely, if each (sb) operator is unconditionally converging, then every
strongly bounded operator m < T : C(K,Y) — Z is unconditionally con-
verging. Theorem 2.1 of [25] shows that Y does not contain cj.

(ii) Again assume that 7': X ®,Y — Z is (sb) and further suppose that
Y has the Schur property. Let (u;) be a weakly null sequence in X ®, Y
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and let z* € X*. Then (u;(z*)) is weakly null in Y. Since Y has the Schur

property, f;(z*) WL 0. 1t follows that T (1) I, o since T is (sb). Therefore

T is completely continuous.

The converse follows exactly as in part (i). =
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