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Summary. Emmanuele showed that if Σ is a σ-algebra of sets, X is a Bana
h spa
e,and µ : Σ → X is 
ountably additive with �nite variation, then µ(Σ) is a Dunford�Pettisset. An extension of this theorem to the setting of bounded and �nitely additive ve
tormeasures is established.A new 
hara
terization of strongly bounded operators on abstra
t 
ontinuous fun
tionspa
es is given. This 
hara
terization motivates the study of the set of (sb) operators.This 
lass of maps is used to extend results of P. Saab dealing with un
onditionally
onverging operators. A 
hara
terization of the existen
e of a 
ountably additive, non-strongly bounded representing measure in terms of c0 is presented. This 
hara
terizationresolves a question posed in 1970.1. Introdu
tion. If R is a ring of sets, X is a (real) Bana
h spa
e, and
µ : R → X is a �nitely additive set fun
tion, then µ is said to be stronglyadditive if µ(Ai) → 0 whenever (Ai) is a pairwise disjoint sequen
e from R.The notion of strong additivity has permeated mu
h of ve
tor measure theorysin
e its introdu
tion by Ri
kart [24℄ in 1943. The �Notes and Remarks�se
tion of Chapter 1 of [13℄ 
ontains an ex
ellent a

ounting of the mainresults asso
iated with strong additivity from 1943 through the mid 70's.We brie�y mention two 
lassi
ally important results in whi
h strong ad-ditivity (either expli
itly or impli
itly) played a pivotal role. In [7℄, Brooksand Jewett established the following generalization of the Vitali�Hahn�Sakstheorem.Theorem 1.1. Suppose that R is a σ-ring and for ea
h n, µn : R → Xis �nitely additive. Let µn ≪ λ, n = 1, 2, . . . , where λ is a nonnegativebounded �nitely additive measure. If limµn(R) exists for all R ∈ R, then2000 Mathemati
s Subje
t Classi�
ation: 46B20, 46B28, 46G10, 28B05.Key words and phrases: ve
tor measure, representing measure, strongly additive,strongly bounded, (sb) operator. [63℄
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µn ≪ λ uniformly in n. If the µn are strongly additive, then the boundednessassumption on λ may be omitted.In [3℄, Bartle, Dunford, and S
hwartz showed that if K is a 
ompa
tHausdor� spa
e and L : C(K) → X is an operator with representing measure
µ, then L is weakly 
ompa
t if and only if µ is 
ountably additive. It is notdi�
ult at all to see that a representing measure in this setting is 
ountablyadditive if and only if it is strongly additive. Thus the Bartle�Dunford�S
hwartz theorem 
an be stated as follows.Theorem 1.2. If T : C(K) → X is an operator with representing mea-sure µ, then T is weakly 
ompa
t if and only if µ is strongly additive.It is well known that if E and F are Bana
h spa
es, T : C(K, E) → F isa weakly 
ompa
t operator with representing measure m, and m̃(A) denotesthe semivariation ([14, p. 51℄) of m on A, then m̃(Ai) → 0 whenever (Ai) isany pairwise disjoint sequen
e of Borel subsets of K. That is, if T is weakly
ompa
t, then its representing measure is strongly bounded. (The reader may
onsult [8℄, [9℄, [4℄, [25℄, [1℄, or [5℄ for details 
on
erning representing measuresin this setting.) However, examples in [15℄, [19℄, and [22℄ show that a stronglyadditive representing measure need not be strongly bounded in general. Thestru
ture of non-strongly additive and non-strongly bounded measures arestudied in this paper.Our notation and terminology is 
onsistent with that used in Diestel [11℄and in Lindenstrauss and Tzafriri [23℄. We do note spe
i�
ally that the 
anon-i
al unit ve
tor basis of c0 will be denoted by (en) and the 
anoni
al basisof ℓ1 will be denoted by (e∗n).2. Non-strongly additive ve
tor measures. Joe Diestel and BarbaraFaires did mu
h to reveal the behavior of a non-strongly additive but �nitelyadditive and bounded ve
tor measure de�ned on an algebra of sets in [12℄and [13, p. 20℄. Their result makes it 
lear that the 
lassi
al Bana
h spa
e
c0 and non-strongly additive ve
tor measures are 
losely related. Our �rstresult demonstrates that ℓ1 and hereditary Dunford�Pettis sets are also veryprominent in the stru
ture of a non-strongly additive ve
tor measure.Re
all that a subset A of the Bana
h spa
e E is a Dunford�Pettis subsetof E if T (A) is relatively 
ompa
t in F whenever T : E → F is a weakly
ompa
t operator [2℄. Further, a sequen
e (xn) in X is a hereditary Dunford�Pettis sequen
e if {xni

: i ∈ N} is a Dunford�Pettis subset of [xni
] for allsubsequen
es (xni

) of (xn). Emmanuele [17℄ showed that if Σ is a σ-algebra,
X is a Bana
h spa
e, and µ : Σ → X is 
ountably additive and has �nite vari-ation, then µ(Σ) is a Dunford�Pettis subset of X. (The survey arti
le [10℄ byDiestel 
ontains a wealth of information about the Dunford�Pettis propertyand Dunford�Pettis sets.) The following theorem establishes an extension
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of Emmanuele's result to the �nitely additive 
ase and provides substantialadditional information about the nature of a non-strongly additive ve
tormeasure de�ned on a ring of sets.Theorem 2.1. If R is a ring of sets, m : R → X is a bounded and�nitely additive set fun
tion, and (Ai) is a pairwise disjoint sequen
e from R,then (m(Ai)) is a weakly null hereditary Dunford�Pettis set. If (x∗

i ) is anybounded sequen
e in X∗ so that x∗
i m(Ai) = 1 for all i , then there is asequen
e (w∗

n) in {x∗
i − x∗

j : i, j ∈ N} so that (w∗
n) ∼ (e∗n) and [w∗

n] is
omplemented in X∗. In fa
t , if ‖m(Ai)‖ 6→ 0, then there is a subsequen
e
(m(Aij)) of (m(Ai)) and a sequen
e (f∗

j ) in X∗ so that (m(Aij), f
∗
j ) isbiorthogonal in X × X∗, (m(Aij)) ∼ (ej), and (f∗

j ) ∼ (e∗j).Proof. If m : R → X is bounded and �nitely additive and x∗ ∈ X∗, thenthe s
alar measure x∗m has �nite variation. Thus x∗m(Ai) → 0 and (m(Ai))is weakly null.Now suppose that Y is a Bana
h spa
e, and T : X → Y is a weakly
ompa
t operator. Then T ◦m : R → Y is a �nitely additive ve
tor measurewith relatively weakly 
ompa
t range. By the 
orollary on p. 1000 of [6℄,
T ◦m is strongly additive. Therefore T ◦m(Ai) → 0, and T ({m(Ai) : i ∈ N})is relatively 
ompa
t. Hen
e {m(Ai) : i ∈ N} is a Dunford�Pettis subsetof X.Now suppose that (m(Aij)) is a subsequen
e of (m(Ai)), and let Z =
[m(Aij)]. Let A denote the algebra of subsets of N 
onsisting of the �niteand 
o�nite sets. Denote the 
omplement of F by F̃ . De�ne ν : A → Xby

ν(F ) =

{ ∑
j∈F m(Aij) if F is �nite,

−
∑

j∈F̃
m(Aij) if F is 
o�nite.It is straightforward to 
he
k that ν is bounded and �nitely additive on A. Bythe proof in the pre
eding paragraph, {ν({j}) : j ∈ N} = {m(Aij) : j ∈ N}is a Dunford�Pettis subset of Z.Next let (x∗

i ) be a bounded sequen
e in X∗ so that x∗
i (m(Ai)) = 1 forea
h i. Sin
e (m(Ai)) is a weakly null hereditary Dunford�Pettis set whi
h isnot norm null, we appeal to the dis
ussion on pp. 26�28 of [10℄ and 
on
ludethat there is a subsequen
e (m(Aij)) of (m(Ai)) so that (m(Aij)) ∼ (ej).Certainly

∞∑

j=1

|〈m(Aij), x
∗
ij〉 − 1| < ∞.

Consequently, the main theorem in [20℄ applies and produ
es a sequen
e
(w∗

n) in {x∗
i − x∗

j : i, j ∈ N} so that (w∗
n) ∼ (e∗n) and [w∗

n] is 
omplementedin X∗.
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Now suppose that (m(Aij))

∞
j=1 is as before. Let y∗j denote the 
oe�-
ient fun
tional (in [(m(Aij))

∞
j=1]

∗) of the S
hauder basis element m(Aij),and let f∗
j be a Hahn�Bana
h extension of y∗j to all of X. Suppose that

(f∗
j ) has a weakly Cau
hy subsequen
e, say (f∗

jk
). Then (f∗

jk+1
− f∗

jk
)

= (u∗
k) is weakly null in X∗. Thus, sin
e (m(Ai))

∞
i=1 is hereditary Dunford�Pettis, u∗

k(m(Aijk+1
)) → 0 (e.g., see [2℄ or Theorem 1 of [10℄). However,this is a 
ontradi
tion sin
e u∗

k(m(Aijk+1
)) = 1 for ea
h k. Therefore Rosen-thal's ℓ1-theorem ensures that there is a subsequen
e (f∗

jk
) of (f∗

j ) so that
(f∗

jk
) ∼ (e∗k).Corollary 2.2 ([16, p. 318℄). If Σ is a σ-algebra and µ : Σ → X isweakly 
ountably additive, then µ is 
ountably additive.Proof. Note �rst that a weakly 
ountably additive set fun
tion µ : Σ →

X is bounded and �nitely additive. Further, as was noted earlier, a weakly
ountably additive set fun
tion is 
ountably additive if and only if it isstrongly additive. Suppose then that ε > 0 and (Ai) is a pairwise dis-joint sequen
e from Σ so that ‖µ(Ai)‖ > ε for ea
h i. Sin
e (µ(Ai)) isa hereditary Dunford�Pettis sequen
e whi
h is not norm null, we may as-sume that (µ(Ai)) ∼ (ei). This immediately leads to a 
ontradi
tion sin
e
(
∑n

i=1 µ(Ai))
∞
n=1 
onverges weakly (to µ(

⋃∞
i=1 Ai)) and (

∑n
i=1 ei)

∞
n=1 doesnot 
onverge weakly.Corollary 2.3. If R is a ring of sets, ea
h of E and F is a Bana
hspa
e, L(E, F ) is the Bana
h spa
e of all bounded linear operators from Eto F , and m : R → L(E, F ) is a �nitely additive ve
tor measure with �nitesemivariation whi
h is not strongly bounded , then c0 embeds isomorphi
allyin F .Proof. Suppose that (Ai) is a pairwise disjoint sequen
e from R and

ε > 0 so that m̃(Ai) > ε for ea
h i. Let (Aij)
ni

j=1 be a partition of Ai and let
(xij)

ni

j=1 be norm one ve
tors in X so that
∥∥∥

ni∑

j=1

m(Aij)xij

∥∥∥ > ε

for ea
h i. Use the partitions of (Ai) to form a natural partition of N:
{1, . . . , n1, n1 + 1, . . . , n1 + n2, n1 + n2 + 1, . . . , n1 + n2 + n3, . . .}.Let n0 = 0, and let Pi = {j ∈ N : n0 + n1 + · · · + ni−1 < j ≤ n0 + · · · + ni}.If S is a �nite subset of N, set

µ(S) =

∞∑

i=1

∑

j∈Pi∩S

m(Ai(j−(n0+···+ni−1)))xi(j−(n0+···+ni−1)).
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If S̃ is �nite, set µ(S) = −µ(S̃). Then µ is bounded, �nitely additive, andnot strongly additive on the �nite-
o�nite algebra of subsets of N. Then
(
∑ni

j=1 m(Aij)xij)
∞
i=1 is a hereditary Dunford�Pettis sequen
e in F whi
h isnot norm null. Thus F 
ontains an isomorphi
 
opy of c0.It is well known that there are (re�exive) in�nite-dimensional Bana
hspa
es E so that ℓ∞ embeds isomorphi
ally in L(E, E) (e.g., see [18, p. 267℄,and [17, Theorem 1℄). In fa
t, if E is any in�nite-dimensional Bana
h spa
ewith an un
onditional S
hauder de
omposition [23, p. 47℄, then the nexttheorem and 
orollary show that L(E, E) must 
ontain an isomorphi
 
opyof ℓ∞. These results also strengthen an impli
ation in Theorem 6 of [18℄.Theorem 2.4. If E is an in�nite-dimensional Bana
h spa
e and Fis an arbitrary Bana
h spa
e, then ℓ∞ embeds isomorphi
ally in L(E, F )if and only if there is a seminormalized sequen
e (Tn) in L(E, F ) so that∑

|〈Tn(x), y∗〉| < ∞ for ea
h x ∈ E and y∗ ∈ F ∗.Proof. Suppose that (Tn) is as in the statement of the theorem.Sin
e ∑∞
n=1 Tn(x) is weakly un
onditionally 
onvergent for all x ∈ E,

sup{‖
∑

n∈F Tn‖ : F is a �nite subset of N} < ∞. Let R denote the ringof all �nite subsets of N. De�ne µ : R → L(E, F ) by
µ(A) =

∑

n∈A

Tn, A 6= ∅,

µ(∅) = 0.Certainly µ is �nitely additive and bounded. Sin
e (Tn) is seminormalized, µis not strongly additive. Therefore c0 →֒ L(E, F ), and, by Theorem 1 of [21℄,
ℓ∞ →֒ L(E, F ).Conversely, suppose that φ : ℓ∞ → L(E, F ) is an isomorphism, and let
Tn = φ(en) for ea
h n. Sin
e φ is an isomorphism, (Tn) is seminormalized.Sin
e ∑

en is weakly un
onditionally 
onvergent, ∑
|〈Tn(x), y∗〉| < ∞ for

x ∈ E and y∗ ∈ F ∗.Corollary 2.5. Suppose the in�nite-dimensional Bana
h spa
e E hasan un
onditional S
hauder de
omposition (En)∞n=1 and Pn : E → En is theproje
tion of E onto En. If F is any Bana
h spa
e for whi
h there is anoperator T : E → F so that ∑∞
n=1 TPn does not 
onverge in norm, then ℓ∞embeds isomorphi
ally in L(E, F ). In parti
ular , ℓ∞ embeds isomorphi
allyin L(E, E).We 
on
lude this se
tion by noting that 2.3 and the proof of 2.4 showthat if E is in�nite-dimensional, m : R → L(E, F ) is �nitely additive with�nite semivariation, and m is not strongly bounded, then ℓ∞ →֒ L(E, F ).
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3. Strongly bounded measures and (sb) operators. The �rst theo-rem in this se
tion uses the Dvoretzky�Rogers theorem [11, Chapter VI℄ andte
hniques in [15℄, [19℄, and [22℄ to establish the 
onverse of Corollary 2.3 andto answer a question posed in a problem session at a meeting of the Amer-i
an Mathemati
al So
iety at the University of Illinois in the fall of 1970.Old examples of Dobrakov [15℄ and Lewis [19℄ showed that there exist rep-resenting measures whi
h are 
ountably additive and not strongly bounded.However, no 
hara
terization of the spa
es whi
h support a 
ountably ad-ditive and non-strongly bounded representing measure has been given. Inthis se
tion, we give a 
omplete des
ription of pairs (E, F ) of Bana
h spa
esand 
ompa
t Hausdor� spa
es H so that there exists a 
ountably additiverepresenting measure m : Σ → L(E, F ) whi
h fails to be strongly bounded.This result highlights a theme parti
ularly well enun
iated in Theorem 2.1of Saab [25℄.Theorem 3.1. If H is an in�nite 
ompa
t Hausdor� spa
e with Borelsets Σ, X is an in�nite-dimensional Bana
h spa
e, and Y is a Bana
hspa
e, then there exists a 
ountably additive, non-strongly bounded repre-senting measure m : Σ → L(X, Y ) if and only if there exists an isomorphi
embedding T : c0 → Y .Proof. Suppose that T : c0 → Y is an isomorphi
 embedding, and let

yn = T (en) for ea
h n ∈ N. Let (tn) be a sequen
e of distin
t pointsin H and ∑
x∗

n be an un
onditionally 
onverging series in X∗ su
h that∑∞
n=1 ‖x

∗
n‖ = ∞. Let (Ni) be a pairwise disjoint sequen
e of �nite subsetsof N so that(i) ‖
∑

n∈Z∩Ni
x∗

n‖ < 1/2i for all Z ⊂ N and for ea
h i,(ii) 1 ≥
∑

n∈Ni
‖x∗

n‖ > 1/2 for ea
h i.If A ∈ Σ and x ∈ X, de�ne
m(A)(x) =

∞∑

i=1

( ∑

n∈Ni∩Â

x∗
n(x)

)
yi,

where Â = {n : tn ∈ A}. It is 
lear that m(A) is a bounded linear operatorand m is �nitely additive. Further, (i) above and the fa
t that (yi) ∼ (ei)ensure that m is 
ountably additive. Also
m̃(H) ≤ sup

i

{ ∑

n∈Ni

‖x∗
n‖

}
‖T‖ ≤ ‖T‖.Moreover, if x ∈ X and y∗ ∈ Y ∗, then 〈m(·)x, y∗〉 : Σ → R is regular sin
e itis a 
onvergent in�nite sum of point-mass measures. However, (ii) guaranteesthat m is not strongly bounded. In fa
t, if Bi = {tj : j ∈ Ni}, then m̃(Bi) =

(
∑

n∈Ni
‖x∗

n‖)‖yi‖.
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Conversely, suppose that there is a 
ountably additive representing mea-sure m : Σ → L(X, Y ) so that m is not strongly bounded. An appeal toCorollary 2.3 �nishes the proof.We remark that the notion of semivariation m̃(A) used in this paperand in Din
uleanu [14℄ is not equivalent to the semivariation ‖m‖(A) whi
his de�ned in Diestel and Uhl ([13, p. 2℄). Perhaps it is appropriate at thispoint to note that a representing measure is 
ountably additive if and onlyif ‖m‖(Ai) → 0 for ea
h pairwise disjoint sequen
e (Ai) from Σ.In our next theorem, we state a 
hara
terization of strongly boundedoperators on C(H, X) whi
h does not seem to have been noti
ed previously.In this theorem, it is helpful to re
all that if E and F are Bana
h spa
es, thenthe algebrai
 tensor produ
t E⊗F 
an be viewed as a subset of L(E∗, F ). The
ompletion of E⊗F with respe
t to this identi�
ation and this operator normis 
alled the inje
tive tensor produ
t 
ompletion�or the least 
rossnorm
ompletion�of E⊗F and is denoted by E⊗λ F . In parti
ular, we note that

C(H, X) ∼= C(H) ⊗λ X (e.g., see Chapter VIII of [13℄).Theorem 3.2. If m ↔ T : C(H, X) → Y is a bounded linear operator ,then m is strongly bounded if and only if T (fi) → 0 whenever (fi) is abounded sequen
e in C(H) ⊗λ X so that fi(ϕ) → 0 for ea
h ϕ ∈ C(H)∗.This theorem follows almost immediately from the following lemmas. If
µ is a s
alar measure on H and f is Bo
hner integrable with respe
t to µ,we denote this integral by (B)-T

H
fdµ.Lemma 3.3. If f ∈ C(H, X) and ϕ ∈ C(H)∗, then f(ϕ) = (B)-T

H
f dµ,where µ is the unique member of rca(Σ) whi
h represents ϕ.Proof. Let f =

∑n
i=1 fi ⊗ xi, where fi ∈ C(H) and xi ∈ X for ea
h i.Let ϕ ∈ C(H)∗ and let µ be the unique element in rca(Σ) su
h that ϕ(g) =T

H
g dµ for every g ∈ C(H). Then

f(ϕ) =

n∑

i=1

fi ⊗ xi(ϕ) =

n∑

i=1

ϕ(fi)xi

=
n∑

i=1

( \
H

fi dµ
)
xi =

n∑

i=1

[
(B)- \

H

(fi · xi) dµ
]

= (B)- \
H

f dµ.

The fa
t that f(ϕ) = (B)-T
H

f dµ for ea
h f ∈ C(H, Y ) readily follows.Lemma 3.4. If (fi) is a bounded sequen
e in C(H, X), then fi(h) → 0for every h ∈ H if and only if fi(ϕ) → 0 for every ϕ ∈ C(H)∗.
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Proof. Let (fi) be a bounded sequen
e in C(H, X). Suppose fi(h) → 0for every h ∈ H. Let ϕ ∈ C(H)∗, and let µ be the unique element in

rca(Σ) su
h that ϕ(g) =
T
H

g dµ for every g ∈ C(H). It then follows fromthe ve
tor-valued Dominated Convergen
e Theorem that fi(ϕ) =
T
H

fi dµ
→ 0 for ea
h ϕ ∈ C(H)∗.For the reverse dire
tion, observe that for ea
h h ∈ H one 
an de�ne
ĥ ∈ C(H)∗ by ĥ(f) ≡ f(h) for every f ∈ C(H). It is readily seen that if
f ∈ C(H, Y ) then f(ĥ) = f(h). Hen
e if fi(ϕ) → 0 for every ϕ ∈ C(H)∗,then fi(h) → 0 for every h ∈ H.In Theorem 2.8 of [1℄, the authors showed that a representing measure
m ↔ T is strongly bounded if and only if T (fi) → 0 for ea
h boundedsequen
e (fi) su
h that fi(h) → 0 for ea
h h ∈ H. Theorem 3.2 now followseasily from the pre
eding lemmas.We remark that Theorem 3.2 makes it plain that an operator

T : C(H) ⊗λ X (⊆ L(C(H)∗, X)) → Yis strongly bounded pre
isely when T maps sequen
es whi
h 
onverge inthe strong operator topology ([16, pp. 475�476℄) into norm 
onvergent se-quen
es. In general, if Z is a Bana
h spa
e and T : X ⊗λ Y → Z is abounded linear operator, we say that T is (sb) if T (µi) → 0 whenever (µi) isany bounded sequen
e in X ⊗λ Y (⊆ L(X∗, Y )) so that µi(x
∗) → 0 for ea
h

x∗ ∈ X∗. The following example is somewhat surprising 
onsidering the fa
tthat weakly 
ompa
t�even weakly 
ompletely 
ontinuous and un
ondition-ally 
onverging�operators on C(H, X) are strongly bounded [8℄.Example 3.5. Let X be an in�nite-dimensional re�exive spa
e, Y be anyBana
h spa
e and let y∗0 ∈ Y ∗ be su
h that y∗0 6= 0. De�ne S : Y ⊗λX → X by
S(µ) = µ(y∗0). Then S is linear, bounded by ‖y∗0‖, and S is weakly 
ompa
tsin
e X is re�exive. (It is easily 
he
ked that S is (sb).)Let I : X ⊗λ Y → Y ⊗λ X be the natural isometry, and T : X ⊗λ Y → Xbe de�ned by T = S ◦ I. Certainly T is weakly 
ompa
t. To see that T isnot (sb), 
hoose y0 ∈ Y su
h that y∗0(y0) 6= 0 and 
hoose (xn) in X su
hthat (xn) is weakly null but not norm null. Consider the sequen
e (xn⊗y0)nin X ⊗λ Y . It is bounded sin
e ‖xn ⊗ y0‖X⊗λY ≤ ‖xn‖ ‖y0‖ and (xn) isbounded in X. Also, if x∗ ∈ X∗ then (xn ⊗ y0)(x

∗) = x∗(xn)y0
‖·‖
−→ 0.However, T (xn ⊗ y0) = (y0 ⊗ xn)(y∗0) = y∗0(y0)xn 6→ 0 in norm.However, as the next theorem demonstrates, 
ompletely 
ontinuous op-erators on X ⊗λ Y are (sb).Theorem 3.6. If T : X ⊗λ Y → Z is 
ompletely 
ontinuous, then Tis (sb).
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Proof. Suppose T : X ⊗λ Y → Z is 
ompletely 
ontinuous and let (ϕi)be a bounded sequen
e in X ⊗λ Y su
h that ϕi(x

∗) → 0Y for every x∗ ∈ X∗.Let K = (BX∗ , w∗). Then we may 
onsider X⊗λY to be a 
losed subspa
e of
C(K) ⊗λ Y ∼= C(K, Y ). As ϕi(x

∗)
‖·‖
−→ 0Y for every x∗ ∈ BX∗ , ϕi(x

∗)
w
→ 0Yfor every x∗ ∈ BX∗ . It follows from Lemma 3.2 in [1℄ that (ϕi) is weaklynull in C(K, Y ), and thus in X ⊗λ Y . Sin
e T is 
ompletely 
ontinuous,

T (ϕi)
‖·‖
−→ 0Y . Therefore T is (sb).At this time we point out that the 
olle
tion of (sb) operators is a 
losedlinear subspa
e of L(X ⊗λ Y, Z). It is also 
lear that if T : X ⊗λ Y → Z is(sb) and S : Z → W then S ◦ T is (sb). However in Example 3.5 we de�nedoperators S : Y ⊗λ X → X and I : X ⊗λ Y → Y ⊗λ X su
h that S is (sb),but T = S ◦ I is not (sb). This example also indi
ates that the de�nition ofan (sb) operator is dependent on the �rst fa
tor in the tensor produ
t.Paulette Saab [25℄ showed that if m ↔ T : C(H, X) → Y is a stronglybounded operator, then (1) T is un
onditionally 
onverging if c0 does notembed in X and (2) T is 
ompletely 
ontinuous if X is a S
hur spa
e. Thenext theorem generalizes ea
h of these results and 
ontinues the theme ofCorollary 2.3 and Theorem 3.1.Theorem 3.7.(i) The Bana
h spa
e Y does not 
ontain c0 if and only if for ea
h pair
(X, Z) of Bana
h spa
es it follows that every operator T : X⊗λY → Zwhi
h is (sb) is also un
onditionally 
onverging.(ii) The Bana
h spa
e Y is a S
hur spa
e if and only if for ea
h pair
(X, Z) of Bana
h spa
es it follows that every operator T : X ⊗λ Y →Zwhi
h is (sb) is also 
ompletely 
ontinuous.Proof. (i) Suppose T : X ⊗λ Y → Z is (sb) and further suppose that c0does not embed into Y . To see that T is un
onditionally 
onverging, it suf-�
es to show that whenever ∑∞

i=1 µi is a weakly un
onditionally 
onvergingseries in X ⊗λ Y , then T (µi) → 0. Let ∑∞
i=1 µi be a weakly un
ondition-ally 
onverging series in X ⊗λ Y and let x∗ ∈ X∗. Then (µi) is bounded in

X ⊗λ Y , and ∑∞
i=1 µi(x

∗) is weakly un
onditionally 
onverging in Y . Sin
e
c0 does not embed into Y , ∑∞

i=1 µi(x
∗) is un
onditionally 
onverging. Thus

µi(x
∗)

‖·‖
−→ 0 for ea
h x∗ ∈ X∗, and sin
e T is (sb), T (µi)

‖·‖
−→ 0. Thus T isun
onditionally 
onverging.Conversely, if ea
h (sb) operator is un
onditionally 
onverging, then everystrongly bounded operator m ↔ T : C(K, Y ) → Z is un
onditionally 
on-verging. Theorem 2.1 of [25℄ shows that Y does not 
ontain c0.(ii) Again assume that T : X ⊗λ Y → Z is (sb) and further suppose that

Y has the S
hur property. Let (µi) be a weakly null sequen
e in X ⊗λ Y
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and let x∗ ∈ X∗. Then (µi(x

∗)) is weakly null in Y . Sin
e Y has the S
hurproperty, µi(x
∗)

‖·‖
−→ 0. It follows that T (µi)

‖·‖
−→ 0 sin
e T is (sb). Therefore

T is 
ompletely 
ontinuous.The 
onverse follows exa
tly as in part (i).
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