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Summary. We show that:

(1) It is provable in ZF (i.e., Zermelo—Fraenkel set theory minus the Axiom of Choice
AC) that every compact scattered T2 topological space is zero-dimensional.

(2) If every countable union of countable sets of reals is countable, then a countable
compact T2 space is scattered iff it is metrizable.

(3) If the real line R can be expressed as a well-ordered union of well-orderable sets,
then every countable compact zero-dimensional T2 space is scattered.

(4) It is not provable in ZF+—-AC that there exists a countable compact T2 space
which is dense-in-itself.

1. Notation and terminology. Let (X,7) be a topological space.

(i) X is said to be compact iff every open cover of X has a finite sub-
cover.
(ii) X is said to be dense-in-itself iff it has no isolated points.
(iii) X is said to be zero-dimensional iff each of its points has a neigh-
borhood base consisting of clopen (closed and open) sets.
(iv) X is said to be a Baire space iff ﬂ—D = X for every countable family
D of dense open sets of X. (In ZF, a compact Ty space is Baire iff it
cannot be covered by countably many nowhere dense sets, i.e., sets

whose closure has empty interior; see [3]).
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For any topological space (X,7), let
Iso(X) = {z € X : x is isolated in X}.

By transfinite recursion we define a decreasing sequence (X, )acorq Of closed
subspaces of X as follows:

Xo=X,
Xat1 = Xa \ Iso(Xa),
Xo = ﬂ{Xg : B <a} for a limit.
The set X, a € Ord, is called the ath Cantor-Bendizson derivative of X.
A topological space (X,7T) is called scattered iff Iso(Y) # () for each
non-empty subspace Y of X. Clearly, X is scattered iff there exists an or-
dinal agp such that X,, = (. If X is scattered, then the ordinal number
min{a : X, = 0} is called the Cantor-Bendizson rank of the scattered space

X and it is denoted by | X|cp. It is straightforward to see that if (X,7) is a
compact scattered space, then |X|cp is a successor ordinal.

Next we list the topological and set-theoretical statements involved in
this paper.
CCM: Every countable compact To space is metrizable.
CCS: Every countable compact T2 space is scattered.

CCyM and CCgS stand for CCM and CCS, respectively, with the addi-
tional requirement that the spaces involved are zero-dimensional.

CAC(R): Ewvery countable family of non-empty sets of reals has a choice
function.

CUC(R): A countable union of countable sets of reals is countable.

WO-AC(R): For every family A of non-empty sets of reals there exists a
function f such that f(x) is a non-empty well-orderable subset of = for all

e A

2. Introduction and some preliminary results. In [5, Theorem 2.2]
it is shown that the statement:

CCM: Fuvery countable compact Ty space is metrizable,

is a theorem of ZF+CAC(R). However, CCM is not a theorem of ZF. In
particular, a Cohen forcing model of ZF is constructed in [5, Theorem 3.4]
in which there exists a countable compact scattered Ty space which is not
second countable, hence not metrizable. Therefore, CCM, as well as the
statement that every countable compact scattered To space is metrizable, are
not deducible from the ZF axioms alone.
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In the present paper, we shall show that a strictly weaker principle than
CAC(R), namely CUC(R), suffices in order to establish that CCS implies
CCM. This is done in Theorem 8. To achieve our goal, we first show in The-
orem 7 that every compact scattered To space is zero-dimensional is provable
in ZF. The mechanism of this proof is the key to establish Theorem 8. From
the above we infer that every countable compact scattered To space is metriz-
able does not imply CAC(R) in ZF. (The original Cohen model, model M1
in [2], satisfies CUC(R) and the negation of CAC(R).)

In the realm of countable compact Ts spaces, we prove in Theorem 10
that the weak choice principle WO-AC(R) implies CC(S. Thus, under the
aforementioned axiom, the notions of “zero-dimensional” and “scattered” co-
incide for the class of countable compact Ts spaces. In Theorem 12 it is
shown that CCgS is strictly weaker than WO-AC(R) in ZF. Furthermore,
in the latter theorem we prove that the statement that there exists a count-
able compact zero-dimensional To space which is dense-in-itself (i.e., the
negation of CCyS) is not deducible from the axioms of ZF set theory.

As might be expected, for countable compact T spaces the notions of
“scattered” and “Baire space” are closely related. Arnold Miller’s list of in-
teresting problems, posted on his webpage, includes the following question
(Problem 13.3 in Section 13 titled “not AC”):

In ZF, does every countable compact T space have an isolated point?

The above problem is referred to as Marianne Morillon’s question. Mo-
rillon (http://www2.univ-reunion.fr/ mar/question.html) also poses the fol-
lowing question:

In ZF, is every countable compact To space a Baire space?

Our first easy result shows that the topological statements of the above
two questions are equivalent to CCS.

THEOREM 1. The following statements are equivalent in ZF:

(a) FEwvery countable compact To space is a Baire space.

(b) Ewvery countable compact Ty space has at least one isolated point.
(c) CCS.

(d) In every countable compact T space (X, T) the set of isolated points
1s dense. In particular, every countably infinite compact To space
(X,T) has an infinite discrete subspace.

Proof. Let (X,7) be a countable compact Ty space.

(a)=-(b). If X has no isolated points then X is not a Baire space (sin-
gletons in a dense-in-itself Ty space are closed nowhere dense sets), contra-
dicting our hypothesis.
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(b)=(c), (c)=>(d). These are straightforward.

(d)=(a). By hypothesis X has at least one isolated point z. Since z is in
every dense open subset of X it follows that X is a Baire space as required. =

From Theorem 1 it follows that the answer to Morillon’s question depends
on the answer to the following question:

Does there exist a model of ZF in which there is a countable, dense-
in-itself, compact Hausdorff space?

In the next theorem, we give equivalent versions of the above problem.
THEOREM 2. The following statements are equivalent in ZF:

(i) There is a countable dense-in-itself compact To space.
(ii) On every countably infinite set one can define a dense-in-itself com-
pact To topology.
(iii) Every countable compact Ty space embeds in a countable dense-in-
itself compact Ty space.

Proof. (i)=(ii). Let (Y,Q) be a countable dense-in-itself compact To
space and X a countably infinite set. Let f : Y — X be a bijection. It can
be readily verified that 7 = {f(O) : O € Q} is a dense-in-itself compact T
topology on X.

(ii)=-(iii). Fix a countable compact T2 space (X, 7). Let Q be a dense-
in-itself compact T2 topology on w. Clearly, the Tikhonov product (Y, W) of
(X,7) and (w, Q) is a dense-in-itself compact T9 space and (X,7) embeds
in (Y,W).

(iii)=-(i). This is straightforward. =

We will need the following results. We leave the proof of Theorem 5 as
an easy exercise for the interested reader.

THEOREM 3 (Good-Tree, [1]). (ZF) Urysohn’s metrization theorem:
FEvery reqular, second countable topological space is metrizable.

THEOREM 4 (Keremedis-Tachtsis, [5]). (ZF) Every countable compact
Ty space (X, T) with a well-orderable base for T is metrizable.

THEOREM 5. (ZF) Every compact Ty space is Ty.

THEOREM 6 (Keremedis-Tachtsis, [4]). The following statements are
equivalent in ZF:

(i) WO-AC(R).

(ii) R is the union of a well-orderable family of well-orderable sets.
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3. Main results. A. J. Ostaszewski (|7, p. 515]) proves that compact
scattered Ty topological spaces are zero-dimensional. However, his proof is
carried out in the ZFC axiom system. We show next that the axiom of choice
is not really needed.

THEOREM 7. (ZF) Every compact scattered Ty space is zero-dimensional.

Proof. Fix a compact scattered Ty space (X,7) and let a = |X|cp be
its Cantor-Bendixson rank. Then o = 8 + 1 for some § € Ord.

For every i < 3, let G; = Iso(X;). Clearly, X = UKﬁ G;. We shall show
that for every ¢ < § and every point = € G; there exists a subset V, of T
such that:

(1) Forevery x € G;, V, is a neighborhood base at x consisting of clopen
subsets of X.
(2) For every z € G; and every V € V,, V C (U, ; Gj) U {z}.

For i =0, if x € Gp = Iso(X), then we set V; = {{z}}.

For i < 3, assume that (1) and (2) hold for all z € G}, j < 4, and let
x € G;. We first note that there exists an open neighborhood V. of x such
that V, C (Uj<; Gj) U{z}. To see this, consider the following two cases:

(a) i = 8. Then G; is finite. Let V, be an open neighborhood of z such
that V, C (G;\{z})¢. Clearly V,NG; = {x} and since X = Uj<s Gy
it follows that V,, is as required.

(b) ¢ < (. Since X;y; is closed and G; = Iso(X;), and = ¢ X;41, there
is an open neighborhood O, of x which avoids X;;; and meets G;
only in z. Let V,, be an open neighborhood of = such that V, C O,.
Then V, is as required.

Clearly, 0V, = V \V, C Uj<z‘ Gj, and by the induction hypothesis it
follows that U = Uye@Vw Vy is a cover of dV,. Let W be a finite subcover
of . Then W = | JW is a clopen set including OV, and F, = V,\W = V,\W
is a clopen neighborhood of x such that F; C (U,; G;) U {z}.

From the above it follows that the collection

V, = {V - (U Gj) U {x} : V is a clopen neighborhood of :17}
7<i
is non-empty and obviously V, is a neighborhood base at x. This completes
the proof of the theorem. =
THEOREM 8. Under CUC(R), CCS iff CCM.

Proof. (CCS = CCM). Let (X,7) be a countable compact scattered
T, space. Let a = | X|cB, Gi = Iso(X;) for all i € a, and for each z € X,
let V., be the clopen neighborhood base at x which was constructed in the
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proof of Theorem 7. We will show that the clopen base B = (J{V, :x € X}
for 7 is countable. Then Theorem 3 will imply that X is metrizable.

For every i € o, put B; = {V, : 7 € U;,; G}

CLAIM. For each i € o, B; is a countable set.

Proof of Claim. For i =0, By = {{z} : x € Go} is clearly countable.
For i < a, assume that B;, j < i, is countable. By CUC(R) it follows
that (J{B; : j < i} is countable. To terminate the induction, it suffices to
show that for every x € G;, V; is countable. Fix any H € V,. For every
F eV, we set
u:{FmH}u{Ve UB]-:VCF\H}U{VE UBj:VCH\F}.
j<t 7<i
Then U is a cover of the clopen set F'U H. Let W be a finite subcover of U
and put

Wi=JWew:WcF\H}, Wo=|J{WeW:WcH\F}

It follows that F' = (H \ UW2) U (UW). Thus, every set F' € V, can be
expressed in terms of the set H and a finite subset W of |J._, B;. Since
U,<; Bj is countable, the set [|J
V. is countable as required.

j<i
i< B;]<“ is also countable and consequently
From the Claim it readily follows that for all x € X, V, is countable.
Thus, by CUC(R), the clopen base B for 7 is countable. Hence, X is metriz-
able as desired.
(CCM =- CCS) This is straightforward. =

THEOREM 9. (ZF)

(i) CCS+CCoM iff CCM.
(i) CCM iff every countable compact Ta space topologically embeds in
the set Q of all rational numbers.

Proof. (i) In view of Theorem 7, this is straightforward.

(ii)(=) Let (X,7) be a countable compact metrizable space. Then X is
scattered and has a countable base C. Let {D,, : n € w} be an enumeration
for the set [C]<“ of all finite subsets of C. Let also B be the clopen base
for 7 defined in the proof of Theorem 8. We show that B is countable.
To this end, define a function f : B — [C]<“ by setting for each V € B,
f(V) =D, where ny = min{n € w: V = |JD,}. Since each V € B is a
compact set and C is a base for 7, it follows that f(V') is definable for all
V' € B. Furthermore, it can be readily verified that f is one-to-one, hence B
is countable. Follow now the proof of Theorem 2 in [6, p. 287], in order to
verify that X topologically embeds in Q.

(ii)(«=) This is straightforward. m
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THEOREM 10. WO-AC(R) implies CCyS.

Proof. Let (X,7) be a countable, zero-dimensional, compact T2 space.
In view of Theorem 1 it suffices to show that Iso(X) # (). Assume on the
contrary that X is dense-in-itself. We shall reach a contradiction by proving
that |R| < |X]|.

Let B be a base for X consisting of clopen sets, and by WO-AC(R) let
A ={B, : n € X}, XN a well-ordered cardinal and B,, an infinite well-orderable
set for each n € N, be a family such that B = |J A.

By induction on the length of sequences in <N2 = [J{"2 : n € N} we
shall construct a family {B; : s € <N2} such that:

(1) For all s € <N2, B, is a compact, zero-dimensional, dense-in-itself
subspace of X.
(2) For all s € N2 and t € 2, B . C By, where for s = (s1,...,5,)
s t

and t € 2, s"t = (s1,...,8n,t), n € N, i.e. the concatenation of the
sequence s with the element ¢ of 2.
(3) Forallse€ <"2, B . NB . =0.

For the first step of the induction we argue as follows: Without loss of gen-
erality assume that X € By and let Iy be the Boolean subalgebra of P(X)
which is generated by By. Since By is well-orderable, it follows that so is 1.
Let Sop = Ult(Ip) be the Stone space of Iy, i.e., the space of ultrafilters of
Iy having the collection Y = {U, = {F € So: p€ F}:p € Iy} as a base for
its topology. Then Sy is a compact zero-dimensional Ty space (compactness
follows without using any form of choice since I} is well-orderable).

We assert that Sy is a countable set. To see this, first let A = {(F :
F € Sp}. By compactness of X, it follows that each member of A is a
non-empty set. Moreover, A is pairwise disjoint. Indeed, let F,G € Sy be
such that F # G. Let V' € F\ G and assume that there exists an element x €
(NF)N(NG)- Then V¢ € G for G is an ultrafilter of Iy, and z € VNV = 0,
a contradiction. Thus, A is countable and the function f : .Sy — A defined
by f(F) = F for all F € Sy is one-to-one. It follows that Sy is a countable
set and can be effectively enumerated.

By Theorem 4 we deduce that Sy is a metrizable space, moreover Iso(.Sy)
= So. As |So| =2 (if V € Iy, let F and G be the ultrafilters of Iy generated
by the filters FF = {U € [, : V C U} and G = {U € Iy : V¢ C U}
respectively; the construction of F and G can be done without employing
any choice principle since I} is well-orderable) and Iso(Sy) = Sy, it follows
that Sy has at least two isolated points, say F and G. Assume that F is less
than G according to some prescribed enumeration of Sp. It is well known
that the atoms of a Boolean algebra correspond to the isolated points of
its Stone space. Thus, there exist unique disjoint elements pr, gg € Iy such
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that U,, = {F} and Uy, = {G}. Now, pr and qg, being clopen subsets of
(X,T), are compact, zero-dimensional, dense-in-itself subspaces of X. Put
By = pr and By = qg.

Assume now that we have constructed sets By for all dyadic sequences
of length n. Let s be any such sequence and let \S,, be the Stone space of the
Boolean subalgebra I, of P(B;) which is generated by {O N B, : O € B,}.
As in the first step of the induction we may prove that S, is a countable
(with an effective enumeration) compact metrizable space, hence we may
choose two isolated points of Sy, say F and G. Assume that F is less than
G according to some prescribed enumeration of S,,. Let pr and gg be the
unique atoms of I, such that U,, = {F} and U,, = {G}. Put B ~, =pr
and BSA1 = gg. The induction is terminated.

For every g € 2%, let Gy = ({B,, : n € N}. Since {By|, : n € N} is a
descending family of non-empty closed subsets of X, it follows that G # ()
and we may choose uy = min(G,) where the minimum is taken with respect
to some prescribed enumeration of X. By condition (3) it follows that for all
s,t€ 2N if s£t, then for some n€N, By, N By, =(). Therefore, the function
F : 2N — X defined by F(g) = u, for all g € 2" is injective, hence |R| < |X].
This is a contradiction, thus X has at least one isolated point as desired. =

From the proof of Theorem 10 it is apparent that all the Boolean algebras
involved in the inductive construction have the same cardinality as their
metrizable Stone spaces. In particular, they are both countable. Motivated
by this observation we prove the following result.

THEOREM 11. Assume that for every Boolean algebra (B,+,-), |B|] <
|P(B)|, where P(B) is the set of all prime ideals of B. Then every com-
pact zero-dimensional To space (X,7) has a base of size at most | X|. In
particular, every countable compact zero-dimensional To space is metrizable.

Proof. Fix a compact zero-dimensional Ty space (X,7) and let B be
the Boolean algebra of all clopen subsets of X under union and intersection.
Clearly B has no free ultrafilters (i.e., ultrafilters 7 C B such that (| F = 0).
Thus, | X| = |P(B)| and our assumption implies that |B| < |X]|. Since B is
a base for X the desired result follows. =

THEOREM 12.

(i) The negation of CCqS, i.e. the statement “there exists a countable
compact zero-dimensional To space which is dense-in-itself”, is not
provable in ZF + - AC.

(ii) CCyS is strictly weaker than CAC(R) in ZF.

(iii) Nome of the statements CCS, CCM, CCS, and CCyM implies
WO-AC(R) in ZF.
(iv) In ZF, CCyS does not imply CUC(R).
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Proof. (i) By Theorem 10 we know that =CCgS implies “-WO-AC(R),
i.e., R cannot be written as a well-orderable union of well-orderable sets.
Since “WO-AC(R) fails in the Feferman-Lévy forcing model (model M9
in [2]; in it, R can be expressed as a countable union of countable sets) it
follows that ~CCgS is not provable in ZF.

(ii) From the proof of (i) and from Theorem 10 it follows that CCyS
holds in the model M9. Since in M9, R is a countable union of countable
sets and the axiom CAC(R) implies CUC(R), it follows that CAC(R) fails
in M09.

(iii) In Feferman’s forcing model (model M2 in [2]) CAC(R) holds, hence
each of the topological statements listed in (iii) holds true in this model
(CAC(R) implies each of these statements, see [5]). On the other hand,
as the axiom of choice for well-ordered families of non-empty sets holds
in M2 and R is not well-orderable in that model (see [2]), it follows that
WO-AC(R) fails in M2.

(iv) CCopS holds in M9, whereas CUC(R) fails in that model (see the
proof of (i)). =

4. Summary. In the following table, if the entry in the row labeled ‘A’
and column labeled ‘B’ is:

(1) “?”, then it is unknown whether A — B in ZF;

(2) “=”, then A — B in ZF;
(3) “A”, then A /4 B in ZF.

CAC(R) | WO - AC(R) | CCS | CCM | CCoM | CCoS
CAC(R) — > — — — —
WO — AC(R) + — ? ? ? —
CCS ? + — ? ? —
CCM ? +» — — — —
CC\M ? > ? ? — —
CCoS Y > ? ? ? —
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