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Summary. We show that:(1) It is provable in ZF (i.e., Zermelo�Fraenkel set theory minus the Axiom of Choi
eAC) that every 
ompa
t s
attered T2 topologi
al spa
e is zero-dimensional.(2) If every 
ountable union of 
ountable sets of reals is 
ountable, then a 
ountable
ompa
t T2 spa
e is s
attered i� it is metrizable.(3) If the real line R 
an be expressed as a well-ordered union of well-orderable sets,then every 
ountable 
ompa
t zero-dimensional T2 spa
e is s
attered.(4) It is not provable in ZF+¬AC that there exists a 
ountable 
ompa
t T2 spa
ewhi
h is dense-in-itself.

1. Notation and terminology. Let (X, T ) be a topologi
al spa
e.(i) X is said to be 
ompa
t i� every open 
over of X has a �nite sub-
over.(ii) X is said to be dense-in-itself i� it has no isolated points.(iii) X is said to be zero-dimensional i� ea
h of its points has a neigh-borhood base 
onsisting of 
lopen (
losed and open) sets.(iv) X is said to be a Baire spa
e i� ⋂

D = X for every 
ountable family
D of dense open sets of X. (In ZF, a 
ompa
t T2 spa
e is Baire i� it
annot be 
overed by 
ountably many nowhere dense sets, i.e., setswhose 
losure has empty interior; see [3℄).2000Mathemati
s Subje
t Classi�
ation: 03E25, 03E35, 54A35, 54D10, 54D30, 54D80,54E35, 54E52, 54G12.Key words and phrases: axiom of 
hoi
e, weak axioms of 
hoi
e, 
ompa
t spa
es,Hausdor� spa
es, 
ountable spa
es, metrizable spa
es, zero-dimensional spa
es, s
atteredspa
es, Baire spa
es. [75℄
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For any topologi
al spa
e (X, T ), let

Iso(X) = {x ∈ X : x is isolated in X}.By trans�nite re
ursion we de�ne a de
reasing sequen
e (Xα)α∈Ord of 
losedsubspa
es of X as follows:
X0 = X,

Xα+1 = Xα \ Iso(Xα),

Xα =
⋂

{Xβ : β < α} for α limit.The set Xα, α ∈ Ord, is 
alled the αth Cantor�Bendixson derivative of X.A topologi
al spa
e (X, T ) is 
alled s
attered i� Iso(Y ) 6= ∅ for ea
hnon-empty subspa
e Y of X. Clearly, X is s
attered i� there exists an or-dinal α0 su
h that Xα0
= ∅. If X is s
attered, then the ordinal number

min{α : Xα = ∅} is 
alled the Cantor�Bendixson rank of the s
attered spa
e
X and it is denoted by |X|CB. It is straightforward to see that if (X, T ) is a
ompa
t s
attered spa
e, then |X|CB is a su

essor ordinal.Next we list the topologi
al and set-theoreti
al statements involved inthis paper.CCM: Every 
ountable 
ompa
t T2 spa
e is metrizable.CCS: Every 
ountable 
ompa
t T2 spa
e is s
attered.CC0M and CC0S stand for CCM and CCS, respe
tively, with the addi-tional requirement that the spa
es involved are zero-dimensional.CAC(R): Every 
ountable family of non-empty sets of reals has a 
hoi
efun
tion.CUC(R): A 
ountable union of 
ountable sets of reals is 
ountable.WO-AC(R): For every family A of non-empty sets of reals there exists afun
tion f su
h that f(x) is a non-empty well-orderable subset of x for all
x ∈ A.2. Introdu
tion and some preliminary results. In [5, Theorem 2.2℄it is shown that the statement:CCM: Every 
ountable 
ompa
t T2 spa
e is metrizable,is a theorem of ZF+CAC(R). However, CCM is not a theorem of ZF. Inparti
ular, a Cohen for
ing model of ZF is 
onstru
ted in [5, Theorem 3.4℄in whi
h there exists a 
ountable 
ompa
t s
attered T2 spa
e whi
h is notse
ond 
ountable, hen
e not metrizable. Therefore, CCM, as well as thestatement that every 
ountable 
ompa
t s
attered T2 spa
e is metrizable, arenot dedu
ible from the ZF axioms alone.
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In the present paper, we shall show that a stri
tly weaker prin
iple thanCAC(R), namely CUC(R), su�
es in order to establish that CCS impliesCCM. This is done in Theorem 8. To a
hieve our goal, we �rst show in The-orem 7 that every 
ompa
t s
attered T2 spa
e is zero-dimensional is provablein ZF. The me
hanism of this proof is the key to establish Theorem 8. Fromthe above we infer that every 
ountable 
ompa
t s
attered T2 spa
e is metriz-able does not imply CAC(R) in ZF. (The original Cohen model, model M1in [2℄, satis�es CUC(R) and the negation of CAC(R).)In the realm of 
ountable 
ompa
t T2 spa
es, we prove in Theorem 10that the weak 
hoi
e prin
iple WO-AC(R) implies CC0S. Thus, under theaforementioned axiom, the notions of �zero-dimensional� and �s
attered� 
o-in
ide for the 
lass of 
ountable 
ompa
t T2 spa
es. In Theorem 12 it isshown that CC0S is stri
tly weaker than WO-AC(R) in ZF. Furthermore,in the latter theorem we prove that the statement that there exists a 
ount-able 
ompa
t zero-dimensional T2 spa
e whi
h is dense-in-itself (i.e., thenegation of CC0S) is not dedu
ible from the axioms of ZF set theory.As might be expe
ted, for 
ountable 
ompa
t T2 spa
es the notions of�s
attered� and �Baire spa
e� are 
losely related. Arnold Miller's list of in-teresting problems, posted on his webpage, in
ludes the following question(Problem 13.3 in Se
tion 13 titled �not AC�):In ZF, does every 
ountable 
ompa
t T2 spa
e have an isolated point?The above problem is referred to as Marianne Morillon's question. Mo-rillon (http://www2.univ-reunion.fr/�mar/question.html) also poses the fol-lowing question:In ZF, is every 
ountable 
ompa
t T2 spa
e a Baire spa
e?Our �rst easy result shows that the topologi
al statements of the abovetwo questions are equivalent to CCS.Theorem 1. The following statements are equivalent in ZF:(a) Every 
ountable 
ompa
t T2 spa
e is a Baire spa
e.(b) Every 
ountable 
ompa
t T2 spa
e has at least one isolated point.(
) CCS.(d) In every 
ountable 
ompa
t T2 spa
e (X, T ) the set of isolated pointsis dense. In parti
ular , every 
ountably in�nite 
ompa
t T2 spa
e

(X, T ) has an in�nite dis
rete subspa
e.Proof. Let (X, T ) be a 
ountable 
ompa
t T2 spa
e.(a)⇒(b). If X has no isolated points then X is not a Baire spa
e (sin-gletons in a dense-in-itself T2 spa
e are 
losed nowhere dense sets), 
ontra-di
ting our hypothesis.
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(b)⇒(
), (
)⇒(d). These are straightforward.(d)⇒(a). By hypothesis X has at least one isolated point x. Sin
e x is inevery dense open subset of X it follows that X is a Baire spa
e as required.From Theorem 1 it follows that the answer to Morillon's question dependson the answer to the following question:Does there exist a model of ZF in whi
h there is a 
ountable, dense-in-itself , 
ompa
t Hausdor� spa
e?In the next theorem, we give equivalent versions of the above problem.Theorem 2. The following statements are equivalent in ZF:(i) There is a 
ountable dense-in-itself 
ompa
t T2 spa
e.(ii) On every 
ountably in�nite set one 
an de�ne a dense-in-itself 
om-pa
t T2 topology.(iii) Every 
ountable 
ompa
t T2 spa
e embeds in a 
ountable dense-in-itself 
ompa
t T2 spa
e.Proof. (i)⇒(ii). Let (Y,Q) be a 
ountable dense-in-itself 
ompa
t T2spa
e and X a 
ountably in�nite set. Let f : Y → X be a bije
tion. It 
anbe readily veri�ed that T = {f(O) : O ∈ Q} is a dense-in-itself 
ompa
t T2topology on X.(ii)⇒(iii). Fix a 
ountable 
ompa
t T2 spa
e (X, T ). Let Q be a dense-in-itself 
ompa
t T2 topology on ω. Clearly, the Tikhonov produ
t (Y,W) of

(X, T ) and (ω,Q) is a dense-in-itself 
ompa
t T2 spa
e and (X, T ) embedsin (Y,W).(iii)⇒(i). This is straightforward.We will need the following results. We leave the proof of Theorem 5 asan easy exer
ise for the interested reader.Theorem 3 (Good�Tree, [1℄). (ZF) Urysohn's metrization theorem:Every regular , se
ond 
ountable topologi
al spa
e is metrizable.Theorem 4 (Keremedis-Ta
htsis, [5℄). (ZF) Every 
ountable 
ompa
tT2 spa
e (X, T ) with a well-orderable base for T is metrizable.Theorem 5. (ZF) Every 
ompa
t T2 spa
e is T4.Theorem 6 (Keremedis�Ta
htsis, [4℄). The following statements areequivalent in ZF:

(i) WO-AC(R).
(ii) R is the union of a well-orderable family of well-orderable sets.
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3. Main results. A. J. Ostaszewski ([7, p. 515℄) proves that 
ompa
ts
attered T2 topologi
al spa
es are zero-dimensional. However, his proof is
arried out in the ZFC axiom system. We show next that the axiom of 
hoi
eis not really needed.Theorem 7. (ZF) Every 
ompa
t s
attered T2 spa
e is zero-dimensional.Proof. Fix a 
ompa
t s
attered T2 spa
e (X, T ) and let α = |X|CB beits Cantor�Bendixson rank. Then α = β + 1 for some β ∈ Ord.For every i ≤ β, let Gi = Iso(Xi). Clearly, X =

⋃

i≤β Gi. We shall showthat for every i ≤ β and every point x ∈ Gi there exists a subset Vx of Tsu
h that:(1) For every x ∈ Gi, Vx is a neighborhood base at x 
onsisting of 
lopensubsets of X.(2) For every x ∈ Gi and every V ∈ Vx, V ⊂ (
⋃

j<i Gj) ∪ {x}.For i = 0, if x ∈ G0 = Iso(X), then we set Vx = {{x}}.For i ≤ β, assume that (1) and (2) hold for all x ∈ Gj , j < i, and let
x ∈ Gi. We �rst note that there exists an open neighborhood Vx of x su
hthat V x ⊂ (

⋃

j<i Gj) ∪ {x}. To see this, 
onsider the following two 
ases:(a) i = β. Then Gi is �nite. Let Vx be an open neighborhood of x su
hthat V x ⊂ (Gi\{x})
c. Clearly V x∩Gi = {x} and sin
e X =

⋃

j≤β Gjit follows that Vx is as required.(b) i < β. Sin
e Xi+1 is 
losed and Gi = Iso(Xi), and x /∈ Xi+1, thereis an open neighborhood Ox of x whi
h avoids Xi+1 and meets Gionly in x. Let Vx be an open neighborhood of x su
h that V x ⊂ Ox.Then Vx is as required.Clearly, ∂Vx = V x\Vx ⊂
⋃

j<i Gj , and by the indu
tion hypothesis itfollows that U =
⋃

y∈∂Vx
Vy is a 
over of ∂Vx. Let W be a �nite sub
overof U . Then W =

⋃

W is a 
lopen set in
luding ∂Vx and Fx = V x\W = Vx\Wis a 
lopen neighborhood of x su
h that Fx ⊂ (
⋃

j<i Gj) ∪ {x}.From the above it follows that the 
olle
tion
Vx =

{

V ⊂
(

⋃

j<i

Gj

)

∪ {x} : V is a 
lopen neighborhood of x
}

is non-empty and obviously Vx is a neighborhood base at x. This 
ompletesthe proof of the theorem.Theorem 8. Under CUC(R), CCS i� CCM.Proof. (CCS ⇒ CCM). Let (X, T ) be a 
ountable 
ompa
t s
atteredT2 spa
e. Let α = |X|CB, Gi = Iso(Xi) for all i ∈ α, and for ea
h x ∈ X,let Vx be the 
lopen neighborhood base at x whi
h was 
onstru
ted in the



80 K. Keremedis et al.
proof of Theorem 7. We will show that the 
lopen base B =

⋃

{Vx : x ∈ X}for T is 
ountable. Then Theorem 3 will imply that X is metrizable.For every i ∈ α, put Bi =
⋃

{Vx : x ∈
⋃

j≤i Gj}.
Claim. For ea
h i ∈ α, Bi is a 
ountable set.Proof of Claim. For i = 0, B0 = {{x} : x ∈ G0} is 
learly 
ountable.For i < α, assume that Bj , j < i, is 
ountable. By CUC(R) it followsthat ⋃

{Bj : j < i} is 
ountable. To terminate the indu
tion, it su�
es toshow that for every x ∈ Gi, Vx is 
ountable. Fix any H ∈ Vx. For every
F ∈ Vx we set
U = {F ∩ H} ∪

{

V ∈
⋃

j<i

Bj : V ⊂ F \ H
}

∪
{

V ∈
⋃

j<i

Bj : V ⊂ H \ F
}

.Then U is a 
over of the 
lopen set F ∪ H. Let W be a �nite sub
over of Uand put
W1 =

⋃

{W ∈ W : W ⊂ F \ H}, W2 =
⋃

{W ∈ W : W ⊂ H \ F}.It follows that F = (H \
⋃

W2) ∪ (
⋃

W1). Thus, every set F ∈ Vx 
an beexpressed in terms of the set H and a �nite subset W of ⋃

j<i Bj . Sin
e
⋃

j<i Bj is 
ountable, the set [
⋃

j<i Bj ]
<ω is also 
ountable and 
onsequently

Vx is 
ountable as required.From the Claim it readily follows that for all x ∈ X, Vx is 
ountable.Thus, by CUC(R), the 
lopen base B for T is 
ountable. Hen
e, X is metriz-able as desired.(CCM ⇒ CCS) This is straightforward.Theorem 9. (ZF)(i) CCS+CC0M i� CCM.(ii) CCM i� every 
ountable 
ompa
t T2 spa
e topologi
ally embeds inthe set Q of all rational numbers.Proof. (i) In view of Theorem 7, this is straightforward.(ii)(⇒) Let (X, T ) be a 
ountable 
ompa
t metrizable spa
e. Then X iss
attered and has a 
ountable base C. Let {Dn : n ∈ ω} be an enumerationfor the set [C]<ω of all �nite subsets of C. Let also B be the 
lopen basefor T de�ned in the proof of Theorem 8. We show that B is 
ountable.To this end, de�ne a fun
tion f : B → [C]<ω by setting for ea
h V ∈ B,
f(V ) = DnV

, where nV = min{n ∈ ω : V =
⋃

Dn}. Sin
e ea
h V ∈ B is a
ompa
t set and C is a base for T , it follows that f(V ) is de�nable for all
V ∈ B. Furthermore, it 
an be readily veri�ed that f is one-to-one, hen
e Bis 
ountable. Follow now the proof of Theorem 2 in [6, p. 287℄, in order toverify that X topologi
ally embeds in Q.(ii)(⇐) This is straightforward.
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Theorem 10. WO-AC(R) implies CC0S.Proof. Let (X, T ) be a 
ountable, zero-dimensional, 
ompa
t T2 spa
e.In view of Theorem 1 it su�
es to show that Iso(X) 6= ∅. Assume on the
ontrary that X is dense-in-itself. We shall rea
h a 
ontradi
tion by provingthat |R| ≤ |X|.Let B be a base for X 
onsisting of 
lopen sets, and by WO-AC(R) let

A = {Bn : n ∈ ℵ}, ℵ a well-ordered 
ardinal and Bn an in�nite well-orderableset for ea
h n ∈ ℵ, be a family su
h that B =
⋃

A.By indu
tion on the length of sequen
es in <N2 =
⋃

{n2 : n ∈ N} weshall 
onstru
t a family {Bs : s ∈ <N2} su
h that:(1) For all s ∈ <N2, Bs is a 
ompa
t, zero-dimensional, dense-in-itselfsubspa
e of X.(2) For all s ∈ <N2 and t ∈ 2, B
s
a

t
⊂ Bs, where for s = (s1, . . . , sn)and t ∈ 2, sat = (s1, . . . , sn, t), n ∈ N, i.e. the 
on
atenation of thesequen
e s with the element t of 2.(3) For all s ∈ <N2, B

s
a

0
∩ B

s
a

1
= ∅.For the �rst step of the indu
tion we argue as follows: Without loss of gen-erality assume that X ∈ B0 and let Γ0 be the Boolean subalgebra of P(X)whi
h is generated by B0. Sin
e B0 is well-orderable, it follows that so is Γ0.Let S0 = Ult(Γ0) be the Stone spa
e of Γ0, i.e., the spa
e of ultra�lters of

Γ0 having the 
olle
tion U = {Up = {F ∈ S0 : p ∈ F} : p ∈ Γ0} as a base forits topology. Then S0 is a 
ompa
t zero-dimensional T2 spa
e (
ompa
tnessfollows without using any form of 
hoi
e sin
e Γ0 is well-orderable).We assert that S0 is a 
ountable set. To see this, �rst let A = {
⋂

F :
F ∈ S0}. By 
ompa
tness of X, it follows that ea
h member of A is anon-empty set. Moreover, A is pairwise disjoint. Indeed, let F ,G ∈ S0 besu
h that F 6= G. Let V ∈ F \G and assume that there exists an element x ∈
(
⋂

F)∩(
⋂

G). Then V c ∈ G for G is an ultra�lter of Γ0, and x ∈ V ∩V c = ∅,a 
ontradi
tion. Thus, A is 
ountable and the fun
tion f : S0 → A de�nedby f(F) =
⋂

F for all F ∈ S0 is one-to-one. It follows that S0 is a 
ountableset and 
an be e�e
tively enumerated.By Theorem 4 we dedu
e that S0 is a metrizable spa
e, moreover Iso(S0)
= S0. As |S0| ≥ 2 (if V ∈ Γ0, let F and G be the ultra�lters of Γ0 generatedby the �lters F = {U ∈ Γ0 : V ⊂ U} and G = {U ∈ Γ0 : V c ⊂ U}respe
tively; the 
onstru
tion of F and G 
an be done without employingany 
hoi
e prin
iple sin
e Γ0 is well-orderable) and Iso(S0) = S0, it followsthat S0 has at least two isolated points, say F and G. Assume that F is lessthan G a

ording to some pres
ribed enumeration of S0. It is well knownthat the atoms of a Boolean algebra 
orrespond to the isolated points ofits Stone spa
e. Thus, there exist unique disjoint elements pF , qG ∈ Γ0 su
h
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that UpF = {F} and UqG = {G}. Now, pF and qG , being 
lopen subsets of
(X, T ), are 
ompa
t, zero-dimensional, dense-in-itself subspa
es of X. Put
B〈0〉 = pF and B〈1〉 = qG .Assume now that we have 
onstru
ted sets Bs for all dyadi
 sequen
esof length n. Let s be any su
h sequen
e and let Sn be the Stone spa
e of theBoolean subalgebra Γn of P(Bs) whi
h is generated by {O ∩ Bs : O ∈ Bn}.As in the �rst step of the indu
tion we may prove that Sn is a 
ountable(with an e�e
tive enumeration) 
ompa
t metrizable spa
e, hen
e we may
hoose two isolated points of Sn, say F and G. Assume that F is less than
G a

ording to some pres
ribed enumeration of Sn. Let pF and qG be theunique atoms of Γn su
h that UpF = {F} and UqG = {G}. Put B

s
a

0
= pFand B

s
a

1
= qG . The indu
tion is terminated.For every g ∈ 2N, let Gg =

⋂

{Bg|n : n ∈ N}. Sin
e {Bg|n : n ∈ N} is ades
ending family of non-empty 
losed subsets of X, it follows that Gg 6= ∅and we may 
hoose ug = min(Gg) where the minimum is taken with respe
tto some pres
ribed enumeration of X. By 
ondition (3) it follows that for all
s, t∈2N, if s 6=t, then for some n∈N, Bs|n ∩Bt|n =∅. Therefore, the fun
tion
F : 2N → X de�ned by F (g) = ug for all g ∈ 2N is inje
tive, hen
e |R| ≤ |X|.This is a 
ontradi
tion, thus X has at least one isolated point as desired.From the proof of Theorem 10 it is apparent that all the Boolean algebrasinvolved in the indu
tive 
onstru
tion have the same 
ardinality as theirmetrizable Stone spa
es. In parti
ular, they are both 
ountable. Motivatedby this observation we prove the following result.Theorem 11. Assume that for every Boolean algebra (B, +, ·), |B| ≤
|P (B)|, where P (B) is the set of all prime ideals of B. Then every 
om-pa
t zero-dimensional T2 spa
e (X, T ) has a base of size at most |X|. Inparti
ular , every 
ountable 
ompa
t zero-dimensional T2 spa
e is metrizable.Proof. Fix a 
ompa
t zero-dimensional T2 spa
e (X, T ) and let B bethe Boolean algebra of all 
lopen subsets of X under union and interse
tion.Clearly B has no free ultra�lters (i.e., ultra�lters F ⊂ B su
h that ⋂

F = ∅).Thus, |X| = |P (B)| and our assumption implies that |B| ≤ |X|. Sin
e B isa base for X the desired result follows.Theorem 12.(i) The negation of CC0S, i.e. the statement �there exists a 
ountable
ompa
t zero-dimensional T2 spa
e whi
h is dense-in-itself", is notprovable in ZF + ¬AC.(ii) CC0S is stri
tly weaker than CAC(R) in ZF.(iii) None of the statements CCS, CCM, CC0S, and CC0M implies
WO-AC(R) in ZF.(iv) In ZF, CC0S does not imply CUC(R).
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Proof. (i) By Theorem 10 we know that ¬CC0S implies ¬WO-AC(R),i.e., R 
annot be written as a well-orderable union of well-orderable sets.Sin
e ¬WO-AC(R) fails in the Feferman�Lévy for
ing model (model M9in [2℄; in it, R 
an be expressed as a 
ountable union of 
ountable sets) itfollows that ¬CC0S is not provable in ZF.(ii) From the proof of (i) and from Theorem 10 it follows that CC0Sholds in the model M9. Sin
e in M9, R is a 
ountable union of 
ountablesets and the axiom CAC(R) implies CUC(R), it follows that CAC(R) failsin M9.(iii) In Feferman's for
ing model (modelM2 in [2℄)CAC(R) holds, hen
eea
h of the topologi
al statements listed in (iii) holds true in this model(CAC(R) implies ea
h of these statements, see [5℄). On the other hand,as the axiom of 
hoi
e for well-ordered families of non-empty sets holdsin M2 and R is not well-orderable in that model (see [2℄), it follows thatWO-AC(R) fails in M2.(iv) CC0S holds in M9, whereas CUC(R) fails in that model (see theproof of (i)).4. Summary. In the following table, if the entry in the row labeled `A'and 
olumn labeled `B' is:(1) �?�, then it is unknown whether A → B in ZF;(2) �→�, then A → B in ZF;(3) � 6→�, then A 6→ B in ZF.

CAC(R) WO − AC(R) CCS CCM CC0M CC0S

CAC(R) → 6→ → → → →

WO− AC(R) 6→ → ? ? ? →

CCS ? 6→ → ? ? →

CCM ? 6→ → → → →

CC0M ? 6→ ? ? → →

CC0S 6→ 6→ ? ? ? →
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