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GENERAL TOPOLOGY

A Basi
 Fixed Point TheorembyLe
h PASICKIPresented by Czesªaw BESSAGA
Summary. The paper 
ontains a �xed point theorem for stable mappings in metri
 dis
usspa
es (Theorem 10). A 
onsequen
e is Theorem 11 whi
h is a far-rea
hing extension ofthe fundamental result of Browder, Göhde and Kirk for non-expansive mappings.Definition 1. A metri
 spa
e (X, d) is a dis
us spa
e if there exists amapping ̺ : [0,∞) × (0,∞) → [0,∞) su
h that

̺(β, r) < ̺(0, r) = r, β, r > 0,(1)
̺(·, r) is nonin
reasing, r > 0,(2)

̺(δ, ·) is upper semi
ontinuous, δ ≥ 0,(3)
(4) for ea
h x, y ∈ X, r, ε > 0 there exists a z ∈ X su
h that

B(x, r) ∩ B(y, r) ⊂ B(z, ̺(d(x, y), r) + ε).Example 2. Let (Y, (·, ·)) be an inner produ
t spa
e with |x| =
√

(x, x).We have |x + h|2 + |x − h|2 = 2(|x|2 + |h|2) and hen
e |h|2 = (|x + h|2

+ |x − h|2 − 2|x|2)/2. Now for y = −x, |x + h| = |x − h| = r, δ = 2|x| wetake z = 0 and thus ̺ satisfying (4) is given by
̺(δ, r) = |h| =

{
√

r2 − δ2/4, δ ∈ [0, 2r],

0, δ > 2r.It is 
lear that ea
h nonempty 
onvex set X ⊂ Y is a dis
us spa
e with thesame ̺.Now let us 
onsider a more general 
ase.2000 Mathemati
s Subje
t Classi�
ation: Primary 54H25.Key words and phrases: dis
us spa
e, uniformly 
onvex spa
e, stable mapping, non-expansive mapping. [85℄
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A Bana
h spa
e is uniformly 
onvex (see [1, p. 34℄) if there exists anin
reasing surje
tion ϕ : [0, 2] → [0, 1] su
h that ‖x‖ ≤ 1, ‖y‖ ≤ 1 and

‖x − y‖ ≥ β implies ‖(x + y)/2‖ ≤ 1 − ϕ(β).Example 3. Let (Y, ‖ · ‖) be a uniformly 
onvex spa
e. By 
onsidering
(h−x)/r, (h+x)/r in pla
e of x, y respe
tively we 
an see that ‖x−h‖ ≤ r,
‖x + h‖ ≤ r and 2‖x‖/r ≥ β implies ‖h‖ ≤ r(1 − ϕ(β)). Sin
e ϕ is anin
reasing surje
tion, it is 
ontinuous. For z = 0 we take

̺(δ, r) = ‖h‖ =

{

r(1 − ϕ(δ/r)), δ ∈ [0, 2r],

0, δ > 2r.Consequently, ea
h nonempty 
onvex set X ⊂ Y is a dis
us spa
e with thesame ̺.In the two lemmas to follow we present some properties of dis
us spa
es.Lemma 4. If (X, d) is a 
omplete dis
us spa
e then (4) 
an be repla
ed by
(5) for ea
h x, y ∈ X and r > 0 there exists a z ∈ X su
h that

B(x, r) ∩ B(y, r) ⊂ B(z, ̺(d(x, y), r)).Proof. Set α = ̺(d(x, y), r) and let (αn)n∈N de
reasing to α be su
h thatthere are xn ∈ X with B(x, r)∩B(y, r) ⊂ B(xn, αn). Assume (xn)n∈N is nota Cau
hy sequen
e, i.e. there is a β > 0 su
h that d(xn, xk) ≥ β for in�nitelymany k < n. Set 2γ = α−̺(β, α) = ̺(0, α)−̺(β, α) > 0 (see (1)). We have
B(x, r) ∩ B(y, r) ⊂ B(xn, αn) ∩ B(xk, αk) ⊂ B(xn, αk) ∩ B(xk, αk)

⊂ B(zn,k, ̺(d(xn, xk), αk) + γ)for some zn,k ∈ X (see (4)). On the other hand, ̺(d(xn, xk), αk) ≤ ̺(β, αk)(see (2)) and ̺(β, αk) ≤ ̺(β, α)+ γ for su�
iently large k (see (3)). Now weobtain
B(x, r) ∩ B(y, r) ⊂ B(zn,k, ̺(β, α) + γ) = B(zn,k, α − 2γ + γ)

= B(zn,k, α − γ) ⊂ B(zn,k, α),i.e. (5) is satis�ed. If (xn)n∈N is a Cau
hy sequen
e 
onvergent to a z then
B(xn, αn) ⊂ B(z, α+β) for arbitrary β > 0 and all su�
iently large n, whi
hmeans B(x, r) ∩ B(y, r) ⊂ B(z, α + β) for all β > 0 and B(x, r) ∩ B(y, r) ⊂
B(z, α). Sin
e B(x, r) ∩ B(y, r) is open, we obtain (5).Definition 5. Let (X, d) be a metri
 spa
e and A a nonempty subsetof X. An x ∈ X is a 
entral point for A if

r(A) := inf{t ∈ (0,∞] : there exists a z ∈ X with A ⊂ B(z, t)}(6)
= inf{t ∈ (0,∞] : A ⊂ B(x, t)}.The 
entre c(A) for A is the set of all 
entral points for A, and r(A) is theradius of A.
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Lemma 6. Let (X, d) be a 
omplete dis
us spa
e and let A ⊂ X be non-empty and bounded. Then c(A) is a singleton.Proof. Let (rn)n∈N de
rease to r = r(A) while A ⊂ B(xn, rn). Suppose

(xn)n∈N is not a Cau
hy sequen
e, i.e. d(xn, xk) ≥ β > 0 for in�nitely many
k < n. We have

A ⊂ B(xn, rn) ∩ B(xk, rk) ⊂ B(xn, rk) ∩ B(xk, rk)

⊂ B(zn,k, ̺(d(xn, xk), rk)) ⊂ B(zn,k, ̺(β, rk))(see (5), (2)) and 
onsequently A ⊂ B(zn,k, r(A) − γ) (see the previousproof), a 
ontradi
tion. Let (xn)n∈N 
onverge to an x. Then for any β > 0we have B(xn, rn) ⊂ B(x, r + β) for all su�
iently large n, whi
h means
A ⊂ B(x, r+β) for all β > 0 and 
onsequently x ∈ c(A). Suppose x, y ∈ c(A)and d(x, y) ≥ β > 0. Then by (5) we obtain

A ⊂ B(x, r) ∩ B(y, r) ⊂ B(z, ̺(β, r)) ⊂ B(z, r − γ)for a γ > 0, a 
ontradi
tion. Thus c(A) 
onsists of a single point.Now we are going to present a lemma whi
h 
on
erns mappings.Let 2X be the family of all subsets of X and let F : X → 2X be a mul-tivalued mapping (we assume that F (x) 6= ∅, x ∈ X).Definition 7. Let (X, d) be a metri
 spa
e, ∅ 6= Y ⊂ X and F : Y → 2Ya mapping. An x ∈ X is a 
entral point for F if
r(F ) := inf{t ∈ (0,∞] : there exists n0 su
h that for ea
h n > n0(7) there is a z ∈ Xwith Fn(Y ) ⊂ B(z, t)}

= inf{t ∈ (0,∞] : there exists n0 su
h that
Fn(Y ) ⊂ B(x, t) for ea
h n > n0}.The 
entre c(F ) for F is the set of all 
entral points for F , and r(F ) is theradius of F .Lemma 8. Let (X, d) be a 
omplete dis
us spa
e. If ∅ 6= Y ⊂ X isbounded and F : Y → 2Y is a mapping then c(F ) is a singleton.Proof. Set r = r(F ). We have Fn+1(Y ) ⊂ Fn(Y ) and therefore thereexists a de
reasing sequen
e (rn)n∈N 
onvergent to r and a sequen
e (xn)n∈Nsu
h that Fn(Y ) ⊂ B(xn, rn) for all n ∈ N. Suppose (xn)n∈N is not a Cau
hysequen
e, i.e. d(xn, xk) ≥ β > 0 for in�nitely many k < n. We have

Fn(Y ) ⊂ Fn(Y ) ∩ F k(Y ) ⊂ B(xn, rn) ∩ B(xk, rk) ⊂ B(zn,k, ̺(β, rk))and 
onsequently Fn(Y ) ⊂ B(zn,k, r − γ) for a γ > 0 (see the previousproof), a 
ontradi
tion. Now let (xn)n∈N 
onverge to x. We obtain Fn(Y ) ⊂
B(x, r + β) for any β > 0 and su�
iently large n. Consequently, x ∈ c(F ).The uniqueness of x ∈ c(F ) 
an be obtained as in the proof of Lemma 6 for
c(A).
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Definition 9. Let (X, d) be a metri
 spa
e, ∅ 6= Y ⊂ X a bounded setand F : X → 2X a mapping. Then F is Y -stable if F (Y ) ⊂ Y , c(F|Y ) 6= ∅ and

(8) for some x∈c(F|Y ) and ea
h t>r(F|Y ) there exist n∈N and y∈F (x)su
h that Fn(Y ) ⊂ B(y, t).If F is X-stable then we say F is stable.Theorem 10. Let (X, d) be a 
omplete dis
us spa
e, ∅ 6= Y ⊂ X abounded set and F : X → 2X a Y -stable mapping (whi
h implies that c(F|Y )is a singleton). If F (c(F|Y )) is 
losed then F has a �xed point.Proof. Let {x} = c(F|Y ) and xn ∈ F (x) be su
h that Fn(Y ) ⊂ B(xn, rn)with (rn)n∈N de
reasing to r(F|Y ). The sequen
e (xn)n∈N is 
onvergent tothe unique point x of c(F|Y ) (see the proof of Lemma 8). All the points xnbelong to F (x) whi
h is 
losed and therefore x ∈ F (x).Theorem 11. Let (X, d) be a 
omplete dis
us spa
e and let f : X → Xbe a mapping with Y =
⋃

{fn(y) : n ∈ N} bounded for some y ∈ X. If
(9) for {x} = c(f|Y ) we have d(f(x), f(y)) ≤ d(x, y) for all y ∈ Y,then f has a �xed point.Proof. We have f(Y ) ⊂ Y and Y is bounded. If fn−1(Y ) ⊂ B(x, t) then
fn(Y ) ⊂ f(B(x, t)). For d(x, y) < t we obtain d(f(x), f(y)) ≤ d(x, y) < t(see (9)), whi
h means f(y) ∈ B(f(x), t) and 
onsequently f(B(x, t)) ⊂
B(f(x), t), i.e. (8) is satis�ed and we apply Theorem 10.Let us re
all that for (X, d) being a metri
 spa
e a mapping f : X → Xis non-expansive if d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X. Clearly ea
hnon-expansive mapping f with c(f) nonempty satis�es (9).In view of Example 3, Theorem 11 extends the 
lassi
al theorem of Brow-der, Göhde and Kirk [1, (7.9) (b), p. 34℄ for non-expansive mappings (what ismore, we do not assume f(X) to be bounded). See also the paper of Goebeland Kirk [2℄. Referen
es[1℄ J. Dugundji and A. Granas, Fixed Point Theory, Vol. I, PWN, Warszawa, 1982.[2℄ K. Goebel and W. A. Kirk, Classi
al theory of nonexpansive mappings, in: Handbookof Metri
 Fixed Point Theory, W. A. Kirk and B. Sims (eds.), Kluwer, Dordre
ht,2001, 49�91.Fa
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