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GENERAL TOPOLOGY

A Basic Fixed Point Theorem
by
Lech PASICKI

Presented by Czestaw BESSAGA

Summary. The paper contains a fixed point theorem for stable mappings in metric discus
spaces (Theorem 10). A consequence is Theorem 11 which is a far-reaching extension of
the fundamental result of Browder, G6hde and Kirk for non-expansive mappings.

DEFINITION 1. A metric space (X,d) is a discus space if there exists a
mapping o : [0,00) X (0,00) — [0,00) such that

(1) o(B,7) < 0(0,7)=r, B,r>0,

(2) o(+,r) is nonincreasing, r > 0,

(3) 0(9,-) is upper semicontinuous, 9§ > 0,

(4)  for each z,y € X, r,e > 0 there exists a z € X such that

B(x,r) N B(y,r) C B(z, o(d(x, y),7) + €).

ExAMPLE 2. Let (Y, (+,-)) be an inner product space with |z| = \/(z, ).
We have |z + h|2 + |z — h|?> = 2(]z|* + |h|?) and hence |h|?> = (|z + h|?
+ |z — h|? — 2|z|%)/2. Now for y = —z, |+ h| = |z — h| =7, § = 2|z| we
take z = 0 and thus p satisfying (4) is given by

r2 —562/4, §¢€(0,2r],
R A el
0, 6 > 2r.

It is clear that each nonempty convex set X C Y is a discus space with the
same o.

Now let us consider a more general case.
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A Banach space is uniformly convex (see [1, p. 34]) if there exists an
increasing surjection ¢ : [0,2] — [0,1] such that [|z]] < 1, ||y|| < 1 and
|z —yll = 5 implies [|(z +y)/2[| < 1= (A).

ExAMPLE 3. Let (Y,] - ||) be a uniformly convex space. By considering
(h—x)/r, (h+x)/r in place of x, y respectively we can see that ||z —h| < r,
|z + h|| < r and 2||z||/r > 8 implies ||h]| < r(1 — ¢(B3)). Since ¢ is an
increasing surjection, it is continuous. For z = 0 we take

o(8,7) = ||n| = { 8(1 —¢(0/1)), gi[QO;.QrL

Consequently, each nonempty convex set X C Y is a discus space with the
same p.

In the two lemmas to follow we present some properties of discus spaces.

LEMMA 4. If (X, d) is a complete discus space then (4) can be replaced by
(5)  for each z,y € X and r > 0 there exists a z € X such that

B(z,r) N B(y,r) C B(z, o(d(z,y),r)).

Proof. Set o = p(d(z,y),r) and let (o, )nen decreasing to a be such that
there are z,, € X with B(z,r)NB(y,r) C B(xp, ay). Assume (z,)pen is not
a Cauchy sequence, i.e. there is a § > 0 such that d(z,, z;) > ( for infinitely
many k < n. Set 2y = a— o(f, @) = 0(0, ) — o(5, @) > 0 (see (1)). We have

B(aj? ’l“) N B(y7 ) (xna an) N B(ajka ak’) C B(:En, Oék;) N B(:Ekv ak)
(Zn ks O ( (xna ':Uk)a Ckk) + ’7)
for some 2, € X (see (4)). On the other hand, o(d(zp, zk), ax) < (8, ax)

(see (2)) and o(8, ax) < o(B, @)+ for sufficiently large k (see (3)). Now we
obtain

B(z,7)NB(y,r) C B(2nk, 0(8,a) +7) = B(zp g, — 27 +7)
= B<zn,k7 o — ’7) - B(Zn,kv CV),
i.e. (5) is satisfied. If (z,,)nen is a Cauchy sequence convergent to a z then
B(zy, o) C B(z,a+ () for arbitrary 5 > 0 and all sufficiently large n, which
means B(x,r) N B(y,r) C B(z,a+ ) for all 3 >0 and B(z,r) N B(y,r) C
B(z,«). Since B(z,r) N B(y,r) is open, we obtain (5).

DEFINITION 5. Let (X, d) be a metric space and A a nonempty subset
of X. An x € X is a central point for A if
(6) r(A) :=inf{t € (0,00] : there exists a z € X with A C B(z,t)}
= inf{t € (0,00] : A C B(z,t)}.
The centre c¢(A) for A is the set of all central points for A, and r(A) is the
radius of A.
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LEMMA 6. Let (X,d) be a complete discus space and let A C X be non-
empty and bounded. Then c¢(A) is a singleton.

Proof. Let (rp)nen decrease to r = r(A) while A C B(zp, ). Suppose
(Zn)nen is not a Cauchy sequence, i.e. d(zy,z) > > 0 for infinitely many
k < n. We have

A C B(xn, ) N B(zk, 1) C B(n, %) N BTk, k)
C B(znk, 0(d(zn, xk), k) C B(znk: 0(8,7k))
(see (5), (2)) and consequently A C B(z,,7(A) — ) (see the previous
proof), a contradiction. Let (x,)nen converge to an z. Then for any 5 > 0

we have B(xp,rn) C B(xz,r + ) for all sufficiently large n, which means
A C B(z,r+() for all > 0 and consequently x € ¢(A). Suppose z,y € c¢(A)
and d(z,y) > > 0. Then by (5) we obtain
A C B(z,r)N B(y,r) C B(z,0(8,7)) C B(z,7 — )
for a v > 0, a contradiction. Thus ¢(A) consists of a single point.
Now we are going to present a lemma which concerns mappings.

Let 2% be the family of all subsets of X and let F : X — 2X be a mul-
tivalued mapping (we assume that F(z) # (), x € X).

DEFINITION 7. Let (X, d) be a metric space, ) #Y C X and F : Y — 2V
a mapping. An z € X is a central point for F if
(7)  r(F):=inf{t € (0,00] : there exists ny such that for each n > ng
there is a z € Xwith F"(Y) C B(z,t)}
= inf{t € (0, 00| : there exists ng such that
F"(Y) C B(z,t) for each n > ng}.
The centre ¢(F') for F' is the set of all central points for F', and r(F') is the
radius of F.

LEMMA 8. Let (X,d) be a complete discus space. If ) #Y C X is
bounded and F : Y — 2 is a mapping then c(F) is a singleton.

Proof. Set r = r(F). We have F"*1(Y) C F*(Y) and therefore there
exists a decreasing sequence (7, ),en convergent to r and a sequence (', )neN
such that F"(Y) C B(xy,ry) for all n € N. Suppose (x,,)nen is not a Cauchy
sequence, i.e. d(xy,x) > (> 0 for infinitely many k& < n. We have

F™(Y) C F*(Y)NF*Y) C B(an,rn) N B(@, %) C Blzn s 0(5,7%))
and consequently F™(Y) C B(zp,7 — ) for a v > 0 (see the previous
proof), a contradiction. Now let (zy,)nen converge to . We obtain F"(Y) C
B(x,r + () for any # > 0 and sufficiently large n. Consequently, x € ¢(F).
The uniqueness of x € ¢(F') can be obtained as in the proof of Lemma 6 for

c(A).
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DEFINITION 9. Let (X, d) be a metric space, ) #Y C X a bounded set
and F' : X — 2% amapping. Then Fis Y-stableif F(Y) C Y, c(Fy) # 0 and

(8)  for some z €c(Fjy) and each t>r(Fjy) there exist n€N and y€ ()
such that F"(Y) C B(y,t).
If F'is X-stable then we say F' is stable.

THEOREM 10. Let (X,d) be a complete discus space, ) # Y C X a
bounded set and F : X — 2% o Y -stable mapping (which implies that c(Fly)
is a singleton). If F'(c(Fly)) is closed then F' has a fired point.

Proof. Let {z} = c(Fly) and x,, € F(z) be such that F™(Y') C B(zy, )
with (7,)nen decreasing to r(Fjy). The sequence (z,)nen is convergent to
the unique point x of c¢(Fjy) (see the proof of Lemma 8). All the points z,,
belong to F'(x) which is closed and therefore x € F(z).

THEOREM 11. Let (X, d) be a complete discus space and let f: X — X
be a mapping with Y = J{f"(y) : n € N} bounded for some y € X. If

(9)  for {z} = c(fy) we have d(f(z), f(y)) < d(z,y) for ally €Y,
then f has a fized point.

Proof. We have f(Y) C Y and Y is bounded. If f"~}(Y)) C B(z,t) then
f™(Y) C f(B(z,t)). For d(z,y) < t we obtain d(f(x), f(y)) < d(z,y) < t
(see (9)), which means f(y) € B(f(z),t) and consequently f(B(z,t)) C
B(f(x),t), i.e. (8) is satisfied and we apply Theorem 10.

Let us recall that for (X, d) being a metric space a mapping f : X — X
is non-expansive if d(f(z), f(y)) < d(z,y) for all z,y € X. Clearly each
non-expansive mapping f with ¢(f) nonempty satisfies (9).

In view of Example 3, Theorem 11 extends the classical theorem of Brow-
der, Gohde and Kirk [1, (7.9) (b), p. 34] for non-expansive mappings (what is
more, we do not assume f(X) to be bounded). See also the paper of Goebel

and Kirk [2].
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