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Summary. Let F be a Galois extension of a number field k with the Galois group G. The
Brauer–Kuroda theorem gives an expression of the Dedekind zeta function of the field F
as a product of zeta functions of some of its subfields containing k, provided the group G
is not exceptional. In this paper, we investigate the exceptional groups. In particular, we
determine all nilpotent exceptional groups, and give a sufficient condition for a group to be
exceptional. We give many examples of nonnilpotent solvable and nonsolvable exceptional
groups.

1. Introduction. Let F be a finite Galois extension of a number field k
with the Galois group G. R. Brauer [B] and S. Kuroda [K] proved indepen-
dently some multiplicative relations between the Dedekind zeta functions of
some subfields of F . In general, this leads to an expression of the zeta func-
tion ζF (s) of F as the product with rational exponents of the zeta functions
of some subfields of F . Yet there are some exceptions.

The well known exception is when the group G is cyclic. Then the
Brauer–Kuroda relation takes the form ζk(s) = ζk(s), where ζk(s) is the
zeta function of the field k. Another exception is when G is the (general-
ized) quaternion group of order 2m,m ≥ 3.

In the present paper, we give a sufficient condition for a group G to be
exceptional, and we prove that it is necessary in the class of all finite nilpo-
tent groups. Moreover, we give many examples of nonnilpotent exceptional
groups.
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2. Brauer–Kuroda relations. Let G be a finite group. For every cyclic
subgroup H of G, we define

(1) cG(H) :=
1

(G : H)

∑
H∗ cyclic

H⊆H∗⊆G

µ((H∗ : H)),

where µ is the Möbius function.

Theorem 1 (R. Brauer–S. Kuroda). If F is a Galois extension of a
number field k with the Galois group G, then

(2) ζk(s) =
∏

H cyclic
H⊆G

ζF H (s)cG(H),

where FH is the subfield of F fixed by H.

We say that the group G is exceptional if cG(E) = 0, where E = {1} is
the trivial subgroup of G. Thus G is exceptional iff ζF (s) does not appear
in the Brauer–Kuroda relation (2).

3. Main results

Theorem 2. If G = G1 ×G2, where (|G1|, |G2|) = 1, then

cG(E) = cG1(E1) · cG2(E2),

where E, E1 and E2 are the trivial subgroups of G, G1 and G2, respectively.
Hence G is exceptional iff G1 or G2 is exceptional.

Proof. Let H be a cyclic subgroup of G generated by an element g =
(g1, g2), where g1 ∈ G1, g2 ∈ G2. Since the orders |g1| and |g2| of the
elements g1 and g2 are relatively prime, we have |g| = |g1| |g2|.

It follows that there is a 1-1 correspondence between the set of cyclic sub-
groups H = 〈g〉 of G and the set of all pairs of cyclic subgroups (H1, H2) =
(〈g1〉, 〈g2〉) of G1 and G2, respectively. Thus |H| = |H1| · |H2|, hence

µ(|H|) = µ(|H1|) · µ(|H2|),
since (|H1|, |H2|) = 1. Consequently,

cG(E) =
1
|G|

∑
H cyclic
H⊆G

µ(|H|) =
1

|G1| |G2|
∑

H1 cyclic
H1⊆G1

∑
H2 cyclic
H2⊆G2

µ(|H1|)µ(|H2|)

=
1
|G1|

∑
H1 cyclic
H1⊆G1

µ(|H1|) ·
1
|G2|

∑
H2 cyclic
H2⊆G2

µ(|H2|) = cG1(E1)cG2(E2).

Theorem 3. If for some prime number p in G there is a unique subgroup
of order p and it is contained in the center of G, then G is exceptional.
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Proof. Let H be the unique cyclic subgroup of G of order p. By assump-
tion, it is contained in the center of G. By the definition (1) of cG(E), it
follows that it is sufficient to consider cyclic subgroups of G of squarefree
orders.

If H1 is a cyclic subgroup of G of a squarefree order m not divisible by p,
then H2 := HH1 is a cyclic subgroup of G, since H is contained in the center
of G, and the orders of H and of H1 are relatively prime. The order of H2

is pm.
Conversely, if H2 is a cyclic subgroup of G of a squarefree order pm divis-

ible by p, then p - m. Hence H2 contains a subgroup of order p, which is H,
by uniqueness. Moreover, H2 is a direct sum of H and a cyclic subgroup H1

of order m.
Thus, we get a 1-1 correspondence between the cyclic subgroups H1 of

G of squarefree orders not divisible by p, and the cyclic subgroups H2 of G
of squarefree orders divisible by p.

Moreover,

µ(|H1|) + µ(|H2|) = µ(m) + µ(pm) = µ(m)− µ(m) = 0,

and this implies that cG(E) = 0. Thus the group G is exceptional.

Corollary 1. If in G there is a unique element of order 2, then G is
exceptional.

Proof. Let a ∈ G be the unique element of order 2. Then for every g ∈ G
the element gag−1 has order 2. Therefore, by uniqueness, we get gag−1 = a,
i.e. ga = ag for every g ∈ G. Thus a belongs to the center of G, and the
claim follows from Theorem 3 with p = 2.

Corollary 2. If for some prime number p the Sylow p-subgroup Gp of
G is cyclic and is a direct summand of G, then G is exceptional.

Proof. From the assumption it follows that Gp is contained in the center
of G and there is a unique subgroup of order p in Gp, hence in G. The claim
follows from Theorem 3.

In the class of all p-groups the converse to Theorem 3 holds.

Theorem 4. If a p-group G 6= E is exceptional, then there is a unique
subgroup of order p in G and it is contained in the center of G.

Proof. Let k be the number of distinct subgroups of G of order p. Obvi-
ously k ≥ 1. Since µ(pr) = 0 for r ≥ 2, from (1) we get

cG(E) =
1
|G|

(µ(1) + kµ(p)) =
1
|G|

(1− k).

Hence cG(E) = 0 iff k = 1.
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Since the center of a p-group is nontrivial, it contains a subgroup of
order p. By the uniqueness of the subgroup of order p, the claim follows.

Theorem 5. If a group G contains a unique subgroup of order p, then
either its Sylow p-subgroup Gp is cyclic, or p = 2 and Gp is (generalized)
quaternion.

Proof. See Theorem 5.3.7 in [KS].

Theorem 6. A p-group G is exceptional iff either G is cyclic, or p = 2
and G is (generalized) quaternion.

Proof. If G is exceptional, then the claim follows from Theorems 4 and 5.
Conversely, if G is cyclic, or if p = 2 and G is (generalized) quaternion, then
there is a unique subgroup of G of order p, and it is contained in the center
of G. Then, by Theorem 3, G is exceptional.

We can also determine all exceptional groups in the class of nilpotent
groups.

Theorem 7. A nilpotent group G is exceptional iff either for some
prime number p its Sylow p-subgroup is cyclic, or its Sylow 2-subgroup is
(generalized) quaternion. In particular, an abelian group is exceptional iff
some of its Sylow subgroups is cyclic.

Proof. A nilpotent group is a direct sum of its Sylow subgroups. Hence,
by Theorem 2, the group is exceptional iff one of its Sylow subgroups is
exceptional. The first part of theorem follows from Theorem 6. The second
part follows from the observation that every abelian group is nilpotent, and
the (generalized) quaternion group is not abelian.

4. Examples of exceptional groups. Now, applying Corollary 1, we
give examples of nonnilpotent exceptional groups. They are even nonsolv-
able.

Theorem 8. Let F be a finite field of odd characteristic. Then the group
G = SL(2,F) has a unique element of order 2. Hence it is exceptional.

Proof. Let M =
(

a b
c d

)
∈ SL(2,F) have order 2. Then M 6= I and

M2 = I. Hence M = M−1, i.e.(
a b
c d

)
=
(
d −b
−c a

)
.

It follows that b = c = 0 and d = a, a2 = 1. Consequently, M = −I is the
unique element of order 2 in G.

It is known that the group PSL(2,F) is simple, provided |F| > 4. There-
fore the group SL(2,F) is nonsolvable in this case.
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Applying Theorems 5 and 8, it is easy to prove the well known result on
the Sylow 2-subgroup of SL(2,F) (see Theorem 8.3(ii) on p. 42 of [G]).

Theorem 9. If char F > 2, then the Sylow 2-subgroup of SL(2,F) is
(generalized) quaternion.

Proof. By Theorem 8, the group SL(2,F) has a unique element of order 2.
Thus, by Theorem 5, it is sufficient to prove that the Sylow 2-subgroup of
SL(2,F) is not cyclic. For this purpose it is sufficient to find in SL(2,F) three
elements of order 4.

In every finite field the form x2 + y2 + z2 has a nontrivial zero. Hence,
there exist a, b ∈ F satisfying a2 + b2 + 1 = 0.

The matrices

M1 =
(

0 1
−1 0

)
, M2 =

(
0 −1
1 0

)
, M3 =

(
a b

b −a

)
belong to SL(2,F), are distinct (since char F is odd), and satisfy M2

j = −I
for j = 1, 2, 3. Therefore M1,M2,M3 have order 4.

Now we give a general method for constructing groups with a unique
element of order 2. By Corollary 1, this gives examples of exceptional groups.

Thorem 10. Assume that a group H has a unique element of order 2,
and let a group G be an extension of a group K of odd order by the group H,
i.e. let the following exact sequence hold:

(3) 1→ H → G
ϕ−→ K → 1.

Then in G there is a unique element of order 2.

Proof. If g ∈ G has order 2, then its image ϕ(g) in K is 1, since the
order of K is odd. Hence g ∈ kerϕ = H, and in H there is a unique element
of order 2.

We can apply Theorem 10 in the following way to construct effectively
examples of nonnilpotent exceptional groups.

If in the group AutH of automorphisms of H there is an element λ 6= 1
of odd order, then we put K := 〈λ〉 and we consider the natural action of K
on H. Then the semidirect product G of H by K with respect to λ, given
by (3), is not the direct product of H and K.

In particular, if in H there is an element h 6= 1 of odd order not belonging
to the center of H, then as λ we can take the inner automorphism defined
by h.

For example, in the group Q of quaternions there is an automorphism
of order 3 cyclically permuting the elements i, j, k. In SL(2,F) there is an
element M =

(
1 1
0 1

)
of order p = char F, and it does not belong to the

center of SL(2,F). So the inner automorphism of SL(2,F) determined by M



212 J. Browkin, J. Brzeziński and K. J. Xu

has order p. Applying Theorem 10 to these examples, we get an exceptional
group containing Q as a subgroup of index 3, and an exceptional group
containing SL(2,F) as a subgroup of index p, respectively.

Now we give examples of solvable nonnilpotent exceptional groups which
do not satisfy the assumptions of Theorem 3.

Lemma 1. Let V = Fn
p , where p is a prime number and n ≥ 1. Then for

every divisor q > 1 of pn − 1 there is a matrix A of order q in GL(n,Fp)
whose eigenvalues are all different from 1. Moreover, the same is true for
all Ar, where r = 1, . . . , q − 1.

Proof. Let Fpn = Fp(ζ), where ζ is a generator of the cyclic group F∗pn

(of order pn − 1). Let f(x) be the minimal polynomial of ζ over Fp and
B ∈ GL(n,Fp) its companion matrix, hence f(x) = det(Bx− I).

Then the order of B in GL(n,Fp) is pn − 1. Hence A := B(pn−1)/q has
order q. The eigenvalues of B, that is, the zeros of f(x) are ζpi

for i =
0, 1, . . . , n − 1. Thus the eigenvalues of Ar are the r pn−1

q th powers of the
eigenvalues of B. None of these powers is 1, since the order pn− 1 of ζ does
not divide pir pn−1

q when r = 1, . . . , q − 1.

Now define H as the semidirect product of V = Fn
p by the subgroup 〈A〉

of GL(n,Fp) with respect to the natural action of this subgroup on V , that
is, H consists of pairs (v,Ar), where v ∈ V, r = 0, 1, . . . , q − 1, and

(v,Ar)(v′, As) = (v +Arv′, Ar+s).

Lemma 2. The order of each element in H equals p or divides q.

Proof. The elements (v, I), where v ∈ V and v 6= 0, have order p. We
claim that all the remaining elements of H with the exception of the neutral
one, that is, the pairs (v,Ar), where v ∈ V and r = 1, . . . , q − 1, has order
dividing q, that is, satisfy (v,Ar)q = I. We have

(v,Ar)q = (v +Arv + · · ·+Ar(q−1)v,Arq).

Denote X := I+Ar + · · ·+Ar(q−1). Then XAr = X, since Aq = I. It follows
that X(Ar − I) = 0. But det(Ar − I) 6= 0, since, according to Lemma 1, all
eigenvalues of Ar are different from 1. Thus the matrix Ar − I is invertible,
hence X = 0 and it follows that (v,Ar)q = (Xv,Arq) = (0, I), as claimed.

Theorem 11. Let p be a prime number and let q > 1 be a squarefree
integer not divisible by p. Assume that in a group H of order pq there is
no element of order pd with d > 1. Then the group G := Z/pq × H is
exceptional.

Proof. Every element of G has order dividing pq, so the order is square-
free. Denote by N(r) the number of cyclic subgroups of G of order r. We fix
a divisor d > 1 of q and compare the numbers N(pd) and N(d).
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Every cyclic subgroup H2 of G of order pd contains unique subgroups
H1 and H0 of orders d and p, respectively. Moreover H2 = H1 ×H0.

Conversely, let H1 be a fixed cyclic subgroup of G of order d. We look
for subgroups H0 of G of order p such that the group 〈H1, H0〉 is cyclic of
order pd. This holds iff generators of H1 and H0 commute.

Let h1 := (u, v) ∈ Z/pq ×H = G be a generator of H1. Here u ∈ Z/pq
and v ∈ H.

If v 6= 1, then the order d1 of v satisfies 1 < d1 | d. It follows that h1 does
not commute with any element of order p in H, since, by assumption, in H
there is no element of order pd1. Obviously h1 commutes with every element
of order p in Z/pq. Consequently, as H0 we can take the unique subgroup of
order p in Z/pq.

If v = 1, then h1 belongs to the center of G, so it commutes with every
element of order p in G. Therefore as H0 we can take any of the N(p)
subgroups of order p in G.

Thus we have proved that all but one of the N(d) cyclic subgroups of G
of order d are contained in an exactly one cyclic subgroup of G of order pd,
and one cyclic subgroup of order d is contained in N(p) cyclic subgroups of
G of order pd.

Consequently, N(pd) = N(d)− 1 +N(p), i.e.

(4) N(pd)−N(d) = N(p)− 1.

Now we are ready to prove that the group G is exceptional. By the definition
of cG(E) and (4), we have

cG(E) =
1
|G|

∑
k|pq

µ(k)N(k) =
∑
d|q

(µ(pd)N(pd) + µ(d)N(d))

= − 1
|G|

∑
d|q

µ(d)(N(pd)−N(d)) = −N(p)− 1
|G|

∑
d|q

µ(d) = 0,

since q > 1. Thus the group G is exceptional.

Corollary 3. Let p, q1, . . . , qm be arbitrary different prime numbers.
Then for n = ϕ(q1 · · · qm) there is an exceptional group of order pn+rqr1+1

1 · · ·
qrm+1
m , where r, r1, . . . , rm are arbitrary positive integers, which is nonnilpo-

tent and solvable.

Proof. Since, by Euler’s theorem, q1 · · · qm | pϕ(q1···qm)− 1, we may apply
Lemma 2 and Theorem 11 with q = q1 · · · qm and n = ϕ(q). We get the
exceptional group G = Z/pq1 · · · qm ×H of order pn+1q21 · · · q2m.

The group
G̃ := Z/prqr1

1 · · · q
rm
m ×H

is also exceptional. Namely, by the definition of c eG(E), we have to consider



214 J. Browkin, J. Brzeziński and K. J. Xu

cyclic subgroups of G̃ of squarefree orders only, therefore we can replace the
group Z/prqr1

1 · · · qrm
m by its subgroup Z/pq1 · · · qm and the value of c eG(E)

will not change.
Obviously the group G̃ is solvable and nonnilpotent.
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