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FUNCTIONAL ANALYSIS

Equicontinuity and Convergent Sequences
in the Spaces O and Oy,
by
Jan KISYNSKI

Summary. Characterizations of equicontinuity and convergent sequences are given for
the space Og(R™) of rapidly decreasing distributions and the space Op(R™) of slowly
increasing infinitely differentiable functions.

Introduction. Let S(R™) be the L. Schwartz space of infinitely differ-
entiable rapidly decreasing functions on R", and S’'(R™) the space of slowly
increasing distributions. Let O (R™) be the space of rapidly decreasing dis-
tributions on R"™, and Op/(R™) the space of infinitely differentiable slowly
increasing functions. The space O (R") was introduced by L. Schwartz, and
both the spaces, Op(R") and O (R™), are discussed in [S2]. In particular,

On(R™) c S'(R™), On(R") C S'(R™), and FOL(R™) = Op(R™)
where F is the Fourier transformation. Furthermore,
OH(R™) ={T € S'(R") :
the convolution operator T * is an endomorphism of S(R™)},
Ou(R") ={¢ € C*R"):
the multiplication operator ¢ - is an endomorphism of S(R™)},
so that O (R™) and O/ (R™) may be seen as subsets of L(S(R™); S(R™))

In 1938, when the theory of distributions not yet existed, I. G. Petrovskii
[P] noticed the significance of slowly increasing functions for the theory of
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(*) By duality O (R™) and O (R™) are also subsets of L(S'(R™); S'(R™)).
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evolutionary PDE with constant coefficients. In 1950 L. Schwartz [S1] ex-
plained how the results of Petrovskil may be elucidated by placing them
in the framework of Oy and Oy. In [KIHK2|, for evolutionary PDO with
constant coefficients, the relation is investigated between

e the properties of fundamental solution expressed in terms of O (R™)
and

e the Petrovskil condition concerning zeros of the characteristic polyno-
mial.

For the sake of further similar investigations it is convenient to collect the
information about O (R"™) and O (R™) in a compact form but with
complete proofs, and this is the main motivation for the present paper.

1. The space B'(R™) of bounded distributions. Let Dy1(R") be
the space of infinitely differentiable complex functions ¢ on R™ such that
0% = Ot ... 0% € LYR") for every multiindex a = (aq,...,ay) €
Ng. The topology in Dy1(R™) is determined by the system of seminorms
Palp) = Sgn [0%p(x)| dz, @ € N§, ¢ € D1 (R™). D1 (R") is a Fréchet space,
and D(R"™) is densely and continuously imbedded in D1 (R™). A distribution
T is said to be bounded on R™ if it extends to a linear functional continu-
ous on Dr1(R™). The space of bounded distributions on R™ is denoted by
B'(R™).

Let Cp(R™) be the Banach space of continuous bounded complex func-
tions on R™.

THEOREM 1.1. For any family ©@ of distributions on R™ the following
three conditions are equivalent:

(1.1) @ C B'(R™) and the distributions belonging to @ are equicontinuous
with respect to the topology of Dri(R™),

(1.2) for any fized ¢ € D(R™), ¢ *x @ is a bounded subset of Cy(R™),

(1.3) there is a finite family {uq : o = (a1,...,00) € NG, la| = a1 + -+ +
apn, < m} of continuous complex functions on R™ with support contained
in By = {x € R" : |z| < 1} such that

(i) T'= 3 jaj<m 0% (ua * T') for every T € D'(R"),
(i) whenever a € N and |a| < m, then uq * @ is a bounded subset of
Cy(R™).

The above theorem may be treated as a variant of Theorems XXII and
XXV from Sections VI.7 and VI.8 of [S2].

(?) In [S2] the information about Oa(R™) and O (R™) is in part contained in state-
ments for which the method of proof is only indicated.
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Proof. In order to prove (1.3)=-(|1.1) it is sufficient to observe that, by
(1.3), for every T' € @ and ¢ € D(R") one has

T(p)= Y (~1)Nua x T, %)

laj<m

where uq * @, |a| < m, are bounded subsets of Cp(R"™). In order to prove

(1.1)=(1.2) it is sufficient to note that
(T * ) (@) = (T, (va)")

where the subscript & denotes translation by x, and the superscript V the
reflection.

The implication :> is proved by a more refined argument, a part
of which is based on the method of category, similarly to an argument in [S2]
Sec. VI.7, p. 196]. Suppose that holds. Since (T * p)(z) = (T%)Y, ),
implies that {(7,)V : T € &, x € R"} is a pointwise bounded family
of continuous linear functionals on D(R™). Since D(R™) is a barrelled space,
the Banach—Steinhaus theorem implies that this family is equicontinuous.
Equicontinuity of {(T,)" : T € &, x € R"} implies that there are k € Ny
and C € 0,00 such that whenever By = {y € R" : |y| < 1}, p € CF (R"),
T € @ and z € R", then

(1.4) (T + o) @) = [(T2)", )| < Cllelley @ny:

This estimate implies that

(1.5) wh(ene;zer ¢ € CE (R"), then {¢+ T : T € &} is a bounded subset of
Cp(R™).

Indeed, the convolution ¢ * T of the compactly supported distribution ¢ €
C%, (R™) with any distribution 7' € & makes sense. If (¢,)52, C CF (R") is
a sequence such that lim, . H¢V_¢||Cj§1 (rny = 0, then, by (L4, (¢ xT)524
is a Cauchy sequence in Cp,(R"), and its limit coincides with the distribution
¢« T. Furthermore, again by , {¢+T : T € &} is a bounded subset of
Cy(R™).

Having proved , it remains to repeat the argument used by Schwartz
in [S2], based on fundamental solutions for powers of the laplacian. Fix
k € Ny for which holds. If I € N is sufficiently large and F is the
fundamental solution for A! on R™ depending only on |z|, then E € C*(R")
and Elgn\(oy € C(R™\ {0}) (see [S2, Sec. VIL.10, Example 2, p. 288]).
Let v € CF, (R") be such that y(z) = 1 whenever |z| < 1/2. Then 7E €
CE (R™), (1 —y)E € C*(R"), and A'((1 — y)E) € CF (R"). For every
T € D'(R™) one has
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T=0xT=(AE)«T =[A(wE+ (1 —7)E)|*T
= A'[(vE) + T] + [A'((1 =) E)] + T
By , this equality, together with the fact that vE € ngl (R™) and
A (1 —~)E) € CF (R™), implies (L.3). =

THEOREM 1.2. For every sequence (T,)52, C B'(R™) the following two
conditions are equivalent:

(1.6) the sequence (1,)02, converges to zero uniformly on every bounded
subset of D1 (R™),
(1.7) limy o0 [| Ty * @llcy (mny = 0 for every p € D(R™).

Proof of (1.6)=-(1.7). Suppose that (1.6 holds. Fix ¢ € D(R™). Then
1T * @llcy @y = sup{{Ty * @, ¥)| : ¥ € LHR™), (9]l 2 (gmy = 1}
= sup{[(Ty, 0" x¥)| : € L'(R"), ¥l 11y = 1}-
Therefore it remains to observe that if ¢ € D(R™) is fixed, then
{o" x ¢ : ¢ € L'R™), 9]l ®n) = 1}
is a bounded subset of D1 (R"). m

Proof of :>. Suppose that (1.7) holds and put & = {7, :
v € N}. Then holds, and so, by Theorem also the conditions
and are satisfied. Consequently, there is m € Ny and for every
multiindex o € Njj of length || < m there is a function u, € Cp, (R™) such
that:

(1.8) T, * uq € Cyp(R™)  for every v € N,

(1.9) sup{ [T, * uallcymn) : v €N, |a| <m} = M < oo,

(1.10) T, = Z 0T, *uy) for every v € N.
|lo|<m

Fix a bounded subset B of D1 (R"™). Then

(1.11) Z sup [[09d|| L1 (rny = Ni < oo for every | € No.
oeB
la|<I

By (1.10]) for every v € N, ¢ € B and ¢ € D(R"™) one has

(T, 0)="> (—D)UT xuq, 07— x0%¢)+ > (1)1 NT}x(uaxp), 0%0),

loe|<m |a|<m
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whence, by (T), (T9) and (TT),
(1.12) zugl(Tu, o <MY sup [|9%¢ — 0¥ % 0°0|| L1 (m)
S

laf<m

+ N sup [T, * (ua * ) [l (rr)-

|laj<m

Take now an arbitrary ¢ > 0 and choose a non-negative ¢ € D(R") such
that supp p C B: = {y € R" : [y| < e} and [|¢||p1(rny = 1. For every ¢ € B
and a € Njj such that || < m we then have

10%¢ — " % 0%l 1 (gny = SS
R™ xR"™

1
d
| 50" 0(o +10) dt|oly) ddy
0

n

< [S}[k [yl | |8k8°‘¢(x+ty)!dw} dt}so(y) dy

R™ =1 R7

= § [ 2 el 10606l 1oy | () dy

B: k=1

<ne Y [ Op0“dll L1 (rn)-
=1

Consequently, by (1.12) and (|1.11)), for every v € N one has
(1.13) sug (T, #)| < M Npy1ne + Ny sup || Ty, * (ua * )¢, mn)-
ol

|ar| <m
Since uq * ¢ € D(R™), the last term in (1.13)) tends to zero as v — oo, so
that

limsupsup (T, ¢)| < M Ny, y1ne.
v—0o0  ¢peEB

Hence lim, o supgeg [(Th, ¢)| = 0 because € > 0 is arbitrary. m

2. The space O4(R") of rapidly decreasing distributions. Let
S(R™) denote the space of rapidly decreasing C*° functions on R"™, and
S’ (R™) the space of slowly increasing distributions on R™. By [S2, Sec. VIL.5,
Theorem IX, p. 244|, for every distribution T' € D'(R") the following two
conditions are equivalent:

(2.1) P-T € B(R") for every polynomial P on R",
(2.2) T xp e SMR") for every ¢ € D(R").
By our Theorem below, (2.2) is equivalent to the condition

(2.3) T eSS (R") and T=x € L(S(R");S(R™)).
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A distribution T satisfying the above equivalent conditions is called rapidly
decreasing. The space of rapidly decreasing distributions on R™ is denoted by
O (R™). Notice that the implication (2.I)=(2.3) follows from a statement
formulated without proof in [S2, Sec. VIL.5, p. 248§| @

THEOREM 2.1. For every family ¥ of distributions on R™ the following
three conditions are equivalent:

(2.4) for every polynomial P on R™ the family of distributions {P-T : T € W}
is a subset of B'(R™) equicontinuous in the topology of Dr1(R™),

(2.5) ¥ C S'(R™) and the set of convolution operators {T'x : T € W} is an
equicontinuous subset of L(S(R™); S(R™)) @

(2.6) for every k € N there is my, € Ng and a set of operators {Fy, g : € Ny,
8] < my} € L(D'(R™); D'(R™)) satisfying
(i) T = Z\Blﬁmk 85Fk75(T) for every T € D'(R"),
(ii) whenever § € Nij and |3| < my, then Fy, 3(¥) is a bounded subset

of the Banach space Bi(R™) of continuous complex functions f on
R"™ such that

£l Bomny = S;gl(l + [2)F|f(2)] < oo

Proof of (2.6)=(2.5). Suppose that (2.6]) is satisfied. Since 0%(T" * ) =
T % 0%, (2.5) follows once it is proved that, whenever ¢ € S(R") and

k € [n/2] + N where [n/2] is the integer part of n/2, then
@7)  sup{(1+ HePYI(T 5 9)(@)] : T € ¥, 2 € R"} < 20k Dipmy ()
where

Ch = sup{| s (T) oy : T € 0, 18] < e},

D= #{BeNy 18 <mi}) | (1 +[yA) " dy,
Rn

P () = sup{[|0°¢|| g, rn) : [B] < m}.

(®) The equivalence of (2.1)—(2.3) follows when our Theorem is modified by ex-
tending the triple of equivalent conditions (2.4)), (2.5)), (2.6) to the quadruple (2.4)), (2.5)),
2.5)", 2.6) where

(2.5)" for every r > 0 the set of convolution operators {T'* : T € ¥} is an equicontinuous
subset of L(CF.(R"); S(R™)), where B, = {x € R" : |z| < r}.

The proof of the modified theorem follows the scheme $:>':>j,
where the implication :>’ is trivial, and the proof of (2.5)'=-(2.4)) resembles that
of @3>,

(*) By [S] Sec. II1.4, Theorems 4.1 and 4.2] the equicontinuity in is equivalent to
the boundedness of {T'x : T € ¥} in L(S(R™); S(R™)) equipped with either the topology
of simple convergence or the compact-open topology.
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So, take any k € [n/2] + N and ¢ € D(R"™). Then, by (2.6)), for every T' € ¥
and = € R" one has

(@i > (F + 1 )Bal 0% - y)ldy
[BI<me  |ylz|z|/2  |z—y|2|z]/2

S+ 1 )aa+py

1Bl<me |ylzlzl/2 Jz—y|=|x|/2

IN

X Prmy (9) (L + |z —y*)F dy
< (14 [2|*/4)~*2Ck Diprm,, (),
proving (2.7)). =
Proof of :>. Let x,, v =1,...,n, denote the coordinate func-

tions on R", and for any multiindex o € Njj let 2% = z{"-...-2%". Whenever
peSMR") and T € S'(R"), then z, - (T x¢) = (z, - T)*x o+ T *(x, - p) for
v =1,...,n, which implies that

2 (T xp)=> (O‘)(xﬁ.T)*(xaﬂ.(p)

pa p

for every multiindex o € Njj. Suppose now that (2.5 holds. Rewriting the
last formula in the form

(@ -T) v o =2 (T * ) — )@ T)x (220 ),
Eé@

by induction with respect to |a| one can prove that for every o € Ny
the set of operators {(z® -T)x : T € ¥} is an equicontinuous subset
of L(S(R™); S(R™)). It follows that whenever P is a polynomial on R",
then {(P-T)* : T € ¥} is an equicontinuous subset of L(S(R™); S(R™)).
Consequently, whenever P is a polynomial on R™ and ¢ € D(R"), then
{(P-T) ¢ :T € ¥} is a bounded subset of C;(R™). By the implication
(L.2)=(L.1) from Theorem it follows that is satisfied. m

Proof of (2.4)=(2.6)). Consider the function r on R™ such that r(z) = |z|
for every z € R™. Then

(2.8) (14 r2)atll/2g2(1 4 42)= € CQ(R™)
for every a € ]0,00[ and a € Ny

because 9%(1 +172)~% = (14 r2)~%l*IP, where P, is a polynomial on R" of
degree no greater that | @ Suppose that (2.4 holds. Fix k& € N. Then

Py = (1+ 2w

(°) The estimation of the decay of 9*(1 + r2)~“ for large |z| plays an important role
in Sec. VILS5 of [S2].
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is a subset of B/(R™) equicontinuous in the topology of Dr1(R™). By the
implication :> from Theorem applied to @y, there is m; € Ny
such that for every multiindex o € Nfj of length || < my, there is a function
tq € Ce(R™) such that

(2.9) T = (147> Z 0% * [(1+7HET]  for every T € D'(R™),

o] <my,

and

(2.10)  {ua * (1 +7DET) . T € U} = uy * &y,
is a bounded subset of Cp,(R").

From (2.9) it follows that whenever T' € D'(R™) and ¢ € D(R"), then

(To0) = D (0%uax[(1+r)"T], (1 +1%) ")

la|<my,

U % 2671 (ylel (D) (5981 4 p2)F) 58
lZ;MZ< (14727 (-0 () @R 4r2) %)
= > ST (D)) (@14 )T (o + (14 72)FTY)),

la|<my, B < <ﬁ>

(—1)|5|85<p>.
Consequently, (2.9) implies that (2.6)(i) holds for F}, g defined by the formula
(2.11)  Fpp(T)

e (g) (0 B(1 472 ) o ¢ [(1 4 7)),

From (2.11)), (2.10) and (2.8)) it follows that whenever 8 € N, then Fj, g(¥)
is a bounded subset of the Banach space Bx(R"). m

In view of one can define in O, (R") the topology induced by either
Ly(S(R™); S(R™)) or Ly(S(R™); S(R™)) by means of the mapping O (R") >
T +— Tx € L(S(R"); S(R™)). The subscripts s and b indicate simple con-
vergence and uniform convergence on bounded subsets of S(R™). Our next
theorem says that, for both these induced topologies, the class of convergent
countable sequences of elements of O (R") is the same as for the topology
in O (R™) defined by L. Schwartz in [S2 Sec. VIL5, p. 244]. =

THEOREM 2.2. For every sequence (1,,)52; C Op(R™) the following three
conditions are equivalent:
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(2.12) whenever P is a polynomial on R™, then the sequence of distributions
(P-T,)2, C B(R"™) converges to zero uniformly on every bounded
subset of D1 (R™),

(2.13) lim,—oo(Ty, *) = 0 in the topology of Ls(S(R™); S(R™)),

(2.14) lim, oo (T, %) = 0 in the topology of Ly(S(R™); S(R™)).

Proof. The equivalence <:> follows from the Banach—Stein-
haus theorem and the fact that S(R™) is a Montel space. The implication
:> may be proved by an argument similar to that used in the
case of Theorem 1.2, in the proof of :>.

It remains to prove that implies . To this end, notice that
the topology induced on O (R™) by L¢(S(R™); S(R™)) may be determined
by the system of seminorms

Pape(T) = [2%0°(T * ¢)lloy@n), @, 8 €NG, p € S(R).
Since
20T ) =T 00 = 3 (1) 1) 4 0 0%,
<«

it follows that every seminorm of the type p, g, is no greater than a finite
sum of seminorms of the type

Pap(T) = [z - T) * ¢llc,@n), € Ng, ¢ € S(R).

Hence, passing from the monomials z to arbitrary polynomials P, one finds

that (2.13)) holds if and only if

(2.15) limy oo [[(P - T)) * ¢l|¢,rn) = O for every polynomial P on R™ and
every ¢ € S(R").

So, the implication ([2.13] :> 2.12)) is a consequence of ([2.15| -:>-, which,
in turn, follows from ({1.7] 1 7)=-(1.6)) of Theorem [1.2] .

3. The space O, (R") of infinitely differentiable slowly increasing
functions. A function ¢ € C°(R") is called infinitely differentiable slowly
increasing if for every k € Ny there is mj € Ng such that

sup{(L + [£))7"™*[0%¢(E)| - v € NG, |af <k, £ € R} < o0

The space of infinitely differentiable slowly increasing functions on R” is
denoted by Ops(R™). One has Oy (R™) € S’'(R™). A set @ C Op(R™) will be
called a set of uniformly slowly increasing infinitely differentiable functions
on R™ if for every k € Ny there is my € Ny such that

sup{(1 + [£])""*[0%p(§)| : p € D, . € NG}, || < k, £ € R"} < 0.
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Let F denote the Fourier transformation defined by the formula

P() = (Fp)(€) = | e ™p(z)dr  for p € S(R™), £ € R™
Rn

Then ¥ is a continuous automorphism of S(R™), and F extends by duality,
and also by continuity, to a continuous automorphism of S’(R™). (This time
the subscript s indicates that S.(R™) is the strong dual of S(R™).) The
extension by duality is usually discussed. The extendability by continuity
follows from the form of the Fourier dual operator restricted to S(R™), and
from the fact that S(R™) is dense in S.(R™). This last denseness may be
proved either by an argument based on reflexivity, similar to one in the
proof [S2] Sec. II1.3, Theorem XV, p. 75|, or by a more elementary argument
based on an analogue of [R), Proposition 4, p. 253|. In view of [S2, Sec. VIL.8,
Theorem XV, p. 268|, one has

(3.1) FOL(R™) = Oy (R™).

This equality is important in what follows. The inclusion FO(R™) C Oy (R™)
follows from the fact that if T € O (R"), then for every multiindex o € Nj
the condition is satisfied for the singleton ¥ = {x®T'}. To prove the
opposite inclusion, pick ¢ € Oy (R™) and set T = F~1¢, which makes sense
because Oy (R™) € 8'(R™). Then T € §'(R™), and so T * ¢ € S’(R™) when-
ever ¢ € S(R™). Consequently, F(T x o) = (FT) - o = ¢ - $ € S(R").
Since JF is an automorphism of S(R"), it follows that 7" *x ¢ € S(R") for
every ¢ € S(R™). It is easy to see that T * is a closed operator from S(R™)
into itself. Consequently, by the closed graph theorem, holds, so that
T € Op(R") and ¢ = FT € FO,(R™).

There are the following characterizations of O (R") as the space of mul-
tipliers:

(3.2) ¢ € O (R™) if and only if ¢ € C*°(R") and ¢ - p € S(R™) for every
p € S(R"),

(3.2) ¢ € Op(R™) if and only if ¢ € C°(R™) and ¢ - T € S'(R") for every
T € S'(R™).

These characterizations of Oy (R™) are formulated without proof in [S2]
Sec. VIL5, p. 246, remarks after Theorem X], and in [T, Chap. 25, Theorem
25.5, p. 275).

Proof of (3.2). It is easy to see that if ¢ € Op(R"), then ¢- € L(S(R");
S(R™)). Conversely, suppose that ¢ € C*°(R") and ¢ - ¢ € S(R") for every
¢ € S(R™). It is obvious that ¢ - is a closed operator of S(R") into S(R"),
and so, by the closed graph theorem, ¢- € L(S(R™); S(R™)). Consequently,
also T 1o (¢-)oF € L(S(R™); S(R™)). Moreover, since ¢ - commutes with
multiplication by characters of R™, it follows that F~! o (¢ ) o F commutes
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with translations. Therefore, by a variant of a theorem of L. Schwartz ([S2]
Sec. V1.3, Theorem X, p. 162]; [Y} Sec. V1.3, Theorem 2, p. 158|), there is
a distribution T € &'(R™) such that [F~1 o (¢-)oF|(¢) = T * ¢ for every
¢ € S(R™). By (2.3), this implies that T' € O (R™). Furthermore,

¢ p=1(¢-)oT)(F ) =F(T xFT ') = (IT) - (F(T'p) = (IT) -
for every ¢ € S(R™), whence ¢ = FT € Op(R"), by (3.1). =

Proof of (B:2)". If ¢ € Oy(R™), then ¢- € L(S(R™); S(R™)), and so,
whenever T € §'(R™), then (¢ - T,p) = (T, ¢ - ) for every ¢ € D(R"),
where the right side of the equality extends, by continuity in the topology
of S(R™), onto all ¢ € S(R™). This proves that also (¢ - T, ) extends by
continuity from ¢ € D(R™) onto all ¢ € S(R™), and this means that ¢ - T €
S'(R™). Conversely, suppose that ¢ - T € S'(R™) for every T € S'(R").
By , in order to prove that ¢ € Oy (R™), it is sufficient to show that
¢- € L(S(R™); S(R™)). To this end, basing on reflexivity of the pair of spaces
S(R™), SL(R™), we will prove that

(3.3) the operator of multiplication My : D(R") 3 ¢ — ¢ - € DR")
extends by continuity to an operator belonging to L(S(R™); S(R™)).

In order to prove (3.3)), it is sufficient to show that whenever
(34) ¢, € DR") foreveryr=1,2,... and lim ¢, =¢ in S(R"),

V—00
then lim, .o ¢ - ¢, exists in the topology of S(R™). So, let (p,)>2, be a
sequence satisfying (3.4). Then for every T' € S'(R") one has (T, ¢ - ¢,) =
(@-T,py) — (¢-T, ), which means that (¢- ¢, )52, is a pointwise convergent
sequence of linear functionals on S.(R™). Since S.(R™) is a barrelled space
(see [Y, Appendix to Chapter V, Sec. 3, Theorem 2, p. 140]) and a Montel
space ([S2, Sec. VII.4, p. 238]), from the Banach—Steinhaus theorem it follows
that the sequence (¢ - ¢,)5%, converges uniformly on bounded subsets of
SL(R™). This means that the sequence (¢ - )22 ; converges in (SL(R™)),
i.e. in S(R™), by reflexivity. Thus is proved.
One can express equivalently as

(3.5) ¢ - = Myp for every p € D(R") where My € L(S(R"); S(R")).

From (3.5)) it follows at once that ¢ - ¢ = My not only for ¢ € D(R") but
also for all ¢ € S(R™). Therefore ¢ - € L(S(R"); S(R™)). m

Let C’{f (R™) denote the Banach space of functions continuous and bounded
on R” together with their partial derivatives of order no greater than k.

THEOREM 3.1. For every family @ of C* functions on R™ the following
three conditions are equivalent:

(3.6) & C Op(R™) and the functions belonging to @ increase uniformly
slowly,
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(3.7) the set of multiplication operators {¢- : ¢ € P} is an equicontinuous
subset of L(S(R™); S(R™)) [(%)]

(3.8) for every k € Ny there is my € Ny and a set of operators {Gr g :
B e NG, |8l <mi} C L(SLR™); SL(R™)) having the two properties:

1) T = > 51<ms PGy p(T) for every T € S'(R™) where &1, ..., &,

denote the coordinate functions on R™ and &° = flﬁl S 5",
(ii) whenever € Nj and |G| < my, then Gy g(P) is a bounded subset
of CF(R™).

Proof. The implication (3.8)=-(3.6) is obvious. To prove (3.6)=>(3.7) it
is sufficient to check that if (3.6) holds, then, for every o, € Njj and ¢ €
S(R™), the set {x%0°%(¢- @) : ¢ € ®} is a bounded subset of C,(R™). Since

2°0%(¢- ) =) <ﬁ> (@7¢) - (x*0" ),
v<p i
it remains to observe that if holds, then for every v € Njj and ¢ € S(R")
the set {(07¢) -1 : ¢ € P} is a bounded subset of Cb(R”)@

Finally, we will prove that implies (3.8)). To this end, notice first that
if holds, then, by (3.2)), @ C O (R™). Hence, by (3.1)), the set of distri-
butions ¥ = F1¢ is contained in O (R™). Since (F1¢) x o = F (¢ - Fp)
for every ¢ € Op(R™) and ¢ € S(R™), it follows that the set of convolu-
tion operators (F71®) * is an equicontinuous subset of L(S(R");S(R")).
Consequently, by Theorem the condition is satisfied for the subset
¥ = F ¢ of O(R™). From this one can deduce (3.8) using elementary
properties of the Fourier transformation. m

THEOREM 3.2. For every sequence (¢,)5%, C Om(R™) the following
three conditions are equivalent:

(3.9)  the functions ¢,, v = 1,2,..., increase uniformly slowly and the
sequence (¢,)52 converges pointwise on R™,

(3.10)5 the sequence of multiplication operators (¢, - )52, converges in the
topology of Ls(S(R"); S(R™)),

(3.10) the sequence of multiplication operators (¢, - )52, converges in the
topology of Ly(S(R"); S(R™)).

An argument similar to one from the proof of Theorem 2.2 shows that the
topology in O (R™) defined in [S2], Sec. VIL5, pp. 243-244] is identical with
the topology induced by Ly(S(R™); S(R™)). Therefore Theorem 3.2 coincides
with a statement formulated without detailed proof in [S2] p. 244].

(°) Condition is equivalent to the boundedness of {¢- : ¢ € @} in each of the
Leves. Ly (S(R™); S(R™)), Ly(S(R™); S(R™)). See [S| Sec. IIL.4].

(") This last can be proved by an inductive argument similar to one used in the proof
of (2.5)=(2.4)
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Proof of Theorem 3.2. The equivalence of (3.10)s; and (3.10), follows
from the Banach—Steinhaus theorem and the fact that S(R™) is a Montel
space. An elementary argument shows that (3.9) implies (3.10),. Indeed, if
(3.9) holds, then for every a € Njj the sequence (0%¢, )52, converges almost
uniformly on R", and whenever ¢ € S(R"), then (¢, - )32, is a sequence of
elements of S(R™) convergent in the topology of S(R").

It remains to prove that (3.10), implies (3.9). So, suppose that (3.10)
holds. Then, by the Banach-Steinhaus theorem, {¢, - : v = 1,2,...} is an
equicontinuous subset of L(S(R™); S(R™)), and hence, by the implication
:> from Theorem the functions ¢, v = 1,2,..., increase uni-
formly slowly. Furthermore, if (3.10)s holds, then for every ¢ € S(R") the
sequence (¢, - )52 of elements of S(R™) converges in the topology of S(R™),
s0 (¢,)92 converges pointwise on R™. Hence (3.10)s implies (3.9). =
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