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FUNCTIONAL ANALYSIS

Equicontinuity and Convergent Sequences
in the Spaces O′C and OM

by

Jan KISYŃSKI

Summary. Characterizations of equicontinuity and convergent sequences are given for
the space O′C(Rn) of rapidly decreasing distributions and the space OM (Rn) of slowly
increasing infinitely differentiable functions.

Introduction. Let S(Rn) be the L. Schwartz space of infinitely differ-
entiable rapidly decreasing functions on Rn, and S ′(Rn) the space of slowly
increasing distributions. Let O′C(Rn) be the space of rapidly decreasing dis-
tributions on Rn, and OM (Rn) the space of infinitely differentiable slowly
increasing functions. The space O′C(Rn) was introduced by L. Schwartz, and
both the spaces, OM (Rn) and O′C(Rn), are discussed in [S2]. In particular,

O′C(Rn) ⊂ S ′(Rn), OM (Rn) ⊂ S ′(Rn), and FO′C(Rn) = OM (Rn)

where F is the Fourier transformation. Furthermore,

O′C(Rn) = {T ∈ S ′(Rn) :
the convolution operator T ∗ is an endomorphism of S(Rn)},

OM (Rn) = {φ ∈ C∞(Rn) :
the multiplication operator φ · is an endomorphism of S(Rn)},

so that O′C(Rn) and OM (Rn) may be seen as subsets of L(S(Rn);S(Rn)) (1).
In 1938, when the theory of distributions not yet existed, I. G. Petrovskĭı
[P] noticed the significance of slowly increasing functions for the theory of
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(1) By duality O′C(Rn) and OM (Rn) are also subsets of L(S ′(Rn);S ′(Rn)).
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evolutionary PDE with constant coefficients. In 1950 L. Schwartz [S1] ex-
plained how the results of Petrovskĭı may be elucidated by placing them
in the framework of O′C and OM . In [K1–K2], for evolutionary PDO with
constant coefficients, the relation is investigated between

• the properties of fundamental solution expressed in terms of O′C(Rn)
and
• the Petrovskĭı condition concerning zeros of the characteristic polyno-

mial.

For the sake of further similar investigations it is convenient to collect the
information about OM (Rn) and O′C(Rn) (2) in a compact form but with
complete proofs, and this is the main motivation for the present paper.

1. The space B′(Rn) of bounded distributions. Let DL1(Rn) be
the space of infinitely differentiable complex functions ϕ on Rn such that
∂αϕ = ∂α1

1 . . . ∂αnn ϕ ∈ L1(Rn) for every multiindex α = (α1, . . . , αn) ∈
Nn

0 . The topology in DL1(Rn) is determined by the system of seminorms
pα(ϕ) =

	
Rn |∂

αϕ(x)| dx, α ∈ Nn
0 , ϕ ∈ DL1(Rn). DL1(Rn) is a Fréchet space,

and D(Rn) is densely and continuously imbedded in DL1(Rn). A distribution
T is said to be bounded on Rn if it extends to a linear functional continu-
ous on DL1(Rn). The space of bounded distributions on Rn is denoted by
B′(Rn).

Let Cb(Rn) be the Banach space of continuous bounded complex func-
tions on Rn.

Theorem 1.1. For any family Φ of distributions on Rn the following
three conditions are equivalent:

(1.1) Φ ⊂ B′(Rn) and the distributions belonging to Φ are equicontinuous
with respect to the topology of DL1(Rn),

(1.2) for any fixed ϕ ∈ D(Rn), ϕ ∗ Φ is a bounded subset of Cb(Rn),
(1.3) there is a finite family {uα : α = (α1, . . . , αn) ∈ Nn

0 , |α| = α1 + · · · +
αn ≤ m} of continuous complex functions on Rn with support contained
in B1 = {x ∈ Rn : |x| ≤ 1} such that
(i) T =

∑
|α|≤m ∂

α(uα ∗ T ) for every T ∈ D′(Rn),
(ii) whenever α ∈ Nn

0 and |α| ≤ m, then uα ∗ Φ is a bounded subset of
Cb(Rn).

The above theorem may be treated as a variant of Theorems XXII and
XXV from Sections VI.7 and VI.8 of [S2].

(2) In [S2] the information about OM (Rn) and O′C(Rn) is in part contained in state-
ments for which the method of proof is only indicated.
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Proof. In order to prove (1.3)⇒(1.1) it is sufficient to observe that, by
(1.3), for every T ∈ Φ and ϕ ∈ D(Rn) one has

T (ϕ) =
∑
|α|≤m

(−1)|α|〈uα ∗ T, ∂αϕ〉

where uα ∗ Φ, |α| ≤ m, are bounded subsets of Cb(Rn). In order to prove
(1.1)⇒(1.2) it is sufficient to note that

(T ∗ ϕ)(x) = 〈T, (ϕx)∨〉

where the subscript x denotes translation by x, and the superscript ∨ the
reflection.

The implication (1.2)⇒(1.3) is proved by a more refined argument, a part
of which is based on the method of category, similarly to an argument in [S2,
Sec. VI.7, p. 196]. Suppose that (1.2) holds. Since (T ∗ ϕ)(x) = 〈(Tx)∨, ϕ〉,
(1.2) implies that {(Tx)∨ : T ∈ Φ, x ∈ Rn} is a pointwise bounded family
of continuous linear functionals on D(Rn). Since D(Rn) is a barrelled space,
the Banach–Steinhaus theorem implies that this family is equicontinuous.
Equicontinuity of {(Tx)∨ : T ∈ Φ, x ∈ Rn} implies that there are k ∈ N0

and C ∈ ]0,∞[ such that whenever B1 = {y ∈ Rn : |y| ≤ 1}, ϕ ∈ C∞B1
(Rn),

T ∈ Φ and x ∈ Rn, then

(1.4) |(T ∗ ϕ)(x)| = |〈(Tx)∨, ϕ〉| ≤ C‖ϕ‖CkB1
(Rn).

This estimate implies that

(1.5) whenever φ ∈ CkB1
(Rn), then {φ ∗ T : T ∈ Φ} is a bounded subset of

Cb(Rn).

Indeed, the convolution φ ∗ T of the compactly supported distribution φ ∈
CkB1

(Rn) with any distribution T ∈ Φ makes sense. If (φν)∞ν=1 ⊂ C∞B1
(Rn) is

a sequence such that limν→∞ ‖φν−φ‖CkB1
(Rn) = 0, then, by (1.4), (φν ∗T )∞ν=1

is a Cauchy sequence in Cb(Rn), and its limit coincides with the distribution
φ ∗ T . Furthermore, again by (1.4), {φ ∗ T : T ∈ Φ} is a bounded subset of
Cb(Rn).

Having proved (1.5), it remains to repeat the argument used by Schwartz
in [S2], based on fundamental solutions for powers of the laplacian. Fix
k ∈ N0 for which (1.5) holds. If l ∈ N is sufficiently large and E is the
fundamental solution for ∆l on Rn depending only on |x|, then E ∈ Ck(Rn)
and E|Rn\{0} ∈ C∞(Rn \ {0}) (see [S2, Sec. VII.10, Example 2, p. 288]).
Let γ ∈ C∞B1

(Rn) be such that γ(x) = 1 whenever |x| ≤ 1/2. Then γE ∈
CkB1

(Rn), (1 − γ)E ∈ C∞(Rn), and ∆l((1 − γ)E) ∈ C∞B1
(Rn). For every

T ∈ D′(Rn) one has
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T = δ ∗ T = (∆lE) ∗ T = [∆l(γE + (1− γ)E)] ∗ T

= ∆l[(γE) ∗ T ] + [∆l((1− γ)E)] ∗ T.

By (1.5), this equality, together with the fact that γE ∈ CkB1
(Rn) and

∆l((1− γ)E) ∈ C∞B1
(Rn), implies (1.3).

Theorem 1.2. For every sequence (Tν)∞ν=1 ⊂ B′(Rn) the following two
conditions are equivalent:

(1.6) the sequence (Tν)∞ν=1 converges to zero uniformly on every bounded
subset of DL1(Rn),

(1.7) limν→∞ ‖Tν ∗ ϕ‖Cb(Rn) = 0 for every ϕ ∈ D(Rn).

Proof of (1.6)⇒(1.7). Suppose that (1.6) holds. Fix ϕ ∈ D(Rn). Then

‖Tν ∗ ϕ‖Cb(Rn) = sup{|〈Tν ∗ ϕ,ψ〉| : ψ ∈ L1(Rn), ‖ψ‖L1(Rn) = 1}

= sup{|〈Tν , ϕ∨ ∗ ψ〉| : ψ ∈ L1(Rn), ‖ψ‖L1(Rn) = 1}.

Therefore it remains to observe that if ϕ ∈ D(Rn) is fixed, then

{ϕ∨ ∗ ψ : ψ ∈ L1(Rn), ‖ψ‖L1(Rn) = 1}

is a bounded subset of DL1(Rn).

Proof of (1.7)⇒(1.6). Suppose that (1.7) holds and put Φ = {Tν :
ν ∈ N}. Then (1.2) holds, and so, by Theorem 1.1, also the conditions
(1.1) and (1.3) are satisfied. Consequently, there is m ∈ N0 and for every
multiindex α ∈ Nn

0 of length |α| ≤ m there is a function uα ∈ CB1(Rn) such
that:

Tν ∗ uα ∈ Cb(Rn) for every ν ∈ N,(1.8)

sup{‖Tν ∗ uα‖Cb(Rn) : ν ∈ N, |α| ≤ m} = M <∞,(1.9)

Tν =
∑
|α|≤m

∂α(Tν ∗ uα) for every ν ∈ N.(1.10)

Fix a bounded subset B of DL1(Rn). Then

(1.11)
∑
|α|≤l

sup
φ∈B
‖∂αφ‖L1(Rn) = Nl <∞ for every l ∈ N0.

By (1.10) for every ν ∈ N, φ ∈ B and ϕ ∈ D(Rn) one has

〈Tν , φ〉=
∑
|α|≤m

(−1)|α|〈Tν∗uα, ∂αφ−ϕ∨∗∂αφ〉+
∑
|α|≤m

(−1)|α|〈Tν∗(uα∗ϕ), ∂αφ〉,
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whence, by (1.8), (1.9) and (1.11),

sup
φ∈B
|〈Tν , φ〉| ≤M

∑
|α|≤m

sup
φ∈B
‖∂αφ− ϕ∨ ∗ ∂αφ‖L1(Rn)(1.12)

+Nm sup
|α|≤m

‖Tν ∗ (uα ∗ ϕ)‖Cb(Rn).

Take now an arbitrary ε > 0 and choose a non-negative ϕ ∈ D(Rn) such
that suppϕ ⊂ Bε = {y ∈ Rn : |y| ≤ ε} and ‖ϕ‖L1(Rn) = 1. For every φ ∈ B
and α ∈ Nn

0 such that |α| ≤ m we then have

‖∂αφ− ϕ∨ ∗ ∂αφ‖L1(Rn) =
� �

Rn×Rn

∣∣∣∣ 1�
0

d

dt
∂αφ(x+ ty) dt

∣∣∣∣ϕ(y) dx dy

≤
�

Rn

[ 1�

0

[ n∑
k=1

|yk|
�

Rn
|∂k∂αφ(x+ ty)| dx

]
dt
]
ϕ(y) dy

=
�

Bε

[ n∑
k=1

|yk| ‖∂k∂αφ‖L1(Rn)

]
ϕ(y) dy

≤ nε
n∑
k=1

‖∂k∂αφ‖L1(Rn).

Consequently, by (1.12) and (1.11), for every ν ∈ N one has

(1.13) sup
φ∈B
|〈Tν , φ〉| ≤MNm+1nε+Nm sup

|α|≤m
‖Tν ∗ (uα ∗ ϕ)‖Cb(Rn).

Since uα ∗ ϕ ∈ D(Rn), the last term in (1.13) tends to zero as ν → ∞, so
that

lim sup
ν→∞

sup
φ∈B
|〈Tν , φ〉| ≤MNm+1nε.

Hence limν→∞ supφ∈B |〈Tν , φ〉| = 0 because ε > 0 is arbitrary.

2. The space O′C(Rn) of rapidly decreasing distributions. Let
S(Rn) denote the space of rapidly decreasing C∞ functions on Rn, and
S ′(Rn) the space of slowly increasing distributions on Rn. By [S2, Sec. VII.5,
Theorem IX, p. 244], for every distribution T ∈ D′(Rn) the following two
conditions are equivalent:

P · T ∈ B′(Rn) for every polynomial P on Rn,(2.1)
T ∗ ϕ ∈ S(Rn) for every ϕ ∈ D(Rn).(2.2)

By our Theorem 2.1 below, (2.2) is equivalent to the condition

(2.3) T ∈ S ′(Rn) and T ∗ ∈ L(S(Rn);S(Rn)).
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A distribution T satisfying the above equivalent conditions is called rapidly
decreasing. The space of rapidly decreasing distributions on Rn is denoted by
O′C(Rn). Notice that the implication (2.1)⇒(2.3) follows from a statement
formulated without proof in [S2, Sec. VII.5, p. 248] (3).

Theorem 2.1. For every family Ψ of distributions on Rn the following
three conditions are equivalent:

(2.4) for every polynomial P on Rn the family of distributions {P ·T : T ∈ Ψ}
is a subset of B′(Rn) equicontinuous in the topology of DL1(Rn),

(2.5) Ψ ⊂ S ′(Rn) and the set of convolution operators {T ∗ : T ∈ Ψ} is an
equicontinuous subset of L(S(Rn);S(Rn)) (4),

(2.6) for every k ∈ N there is mk ∈ N0 and a set of operators {Fk,β : β ∈ Nn
0 ,

|β| ≤ mk} ⊂ L(D′(Rn);D′(Rn)) satisfying
(i) T =

∑
|β|≤mk ∂

βFk,β(T ) for every T ∈ D′(Rn),
(ii) whenever β ∈ Nn

0 and |β| ≤ mk, then Fk,β(Ψ) is a bounded subset
of the Banach space Bk(Rn) of continuous complex functions f on
Rn such that

‖f‖Bk(Rn) = sup
x∈Rn

(1 + |x|2)k|f(x)| <∞.

Proof of (2.6)⇒(2.5). Suppose that (2.6) is satisfied. Since ∂α(T ∗ϕ) =
T ∗ ∂αϕ, (2.5) follows once it is proved that, whenever ϕ ∈ S(Rn) and
k ∈ [n/2] + N where [n/2] is the integer part of n/2, then

(2.7) sup{(1 + 1
4 |x|

2)k|(T ∗ ϕ)(x)| : T ∈ Ψ, x ∈ Rn} ≤ 2CkDkpk,mk(ϕ)

where

Ck = sup{‖Fk,β(T )‖Bk(Rn) : T ∈ Ψ, |β| ≤ mk},

Dk = (#{β ∈ Nn
0 : |β| ≤ mk})

�

Rn
(1 + |y|2)−k dy,

pk,m(ϕ) = sup{‖∂βϕ‖Bk(Rn) : |β| ≤ m}.

(3) The equivalence of (2.1)–(2.3) follows when our Theorem 2.1 is modified by ex-
tending the triple of equivalent conditions (2.4), (2.5), (2.6) to the quadruple (2.4), (2.5),
(2.5)′, (2.6) where

(2.5)′ for every r > 0 the set of convolution operators {T ∗ : T ∈ Ψ} is an equicontinuous
subset of L(C∞Br

(Rn);S(Rn)), where Br = {x ∈ Rn : |x| ≤ r}.

The proof of the modified theorem follows the scheme (2.6)⇒(2.5)⇒(2.5)′⇒(2.4)⇒(2.6),
where the implication (2.5)⇒(2.5)′ is trivial, and the proof of (2.5)′⇒(2.4) resembles that
of (2.5)⇒(2.4).

(4) By [S, Sec. III.4, Theorems 4.1 and 4.2] the equicontinuity in (2.5) is equivalent to
the boundedness of {T ∗ : T ∈ Ψ} in L(S(Rn);S(Rn)) equipped with either the topology
of simple convergence or the compact-open topology.
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So, take any k ∈ [n/2] + N and ϕ ∈ D(Rn). Then, by (2.6), for every T ∈ Ψ
and x ∈ Rn one has

|(T ∗ ϕ)(x)| ≤
∑
|β|≤mk

( �

|y|≥|x|/2

+
�

|x−y|≥|x|/2

)
|Fk,β(T )(y)| · |∂βϕ(x− y)| dy

≤
∑
|β|≤mk

( �

|y|≥|x|/2

+
�

|x−y|≥|x|/2

)
Ck(1 + |y|2)−k

× pk,mk(ϕ)(1 + |x− y|2)−k dy
≤ (1 + |x|2/4)−k2CkDkpk,mk(ϕ),

proving (2.7).

Proof of (2.5)⇒(2.4). Let xν , ν = 1, . . . , n, denote the coordinate func-
tions on Rn, and for any multiindex α ∈ Nn

0 let xα = xα1
1 · . . . ·xαnn . Whenever

ϕ ∈ S(Rn) and T ∈ S ′(Rn), then xν · (T ∗ϕ) = (xν ·T ) ∗ϕ+T ∗ (xν ·ϕ) for
ν = 1, . . . , n, which implies that

xα · (T ∗ ϕ) =
∑
β≤α

(
α

β

)
(xβ · T ) ∗ (xα−β · ϕ)

for every multiindex α ∈ Nn
0 . Suppose now that (2.5) holds. Rewriting the

last formula in the form

(xα · T ) ∗ ϕ = xα · (T ∗ ϕ)−
∑
β≤α
|β|<|α|

(
α

β

)
(xβ · T ) ∗ (xα−β · ϕ),

by induction with respect to |α| one can prove that for every α ∈ Nn
0

the set of operators {(xα · T ) ∗ : T ∈ Ψ} is an equicontinuous subset
of L(S(Rn);S(Rn)). It follows that whenever P is a polynomial on Rn,
then {(P · T ) ∗ : T ∈ Ψ} is an equicontinuous subset of L(S(Rn);S(Rn)).
Consequently, whenever P is a polynomial on Rn and ϕ ∈ D(Rn), then
{(P · T ) ∗ ϕ : T ∈ Ψ} is a bounded subset of Cb(Rn). By the implication
(1.2)⇒(1.1) from Theorem 1.1, it follows that (2.4) is satisfied.

Proof of (2.4)⇒(2.6). Consider the function r on Rn such that r(x) = |x|
for every x ∈ Rn. Then

(2.8) (1 + r2)a+|α|/2∂α(1 + r2)−a ∈ Cb(Rn)
for every a ∈ ]0,∞[ and α ∈ Nn

0

because ∂α(1 + r2)−a = (1 + r2)−a−|α|Pα where Pα is a polynomial on Rn of
degree no greater that |α| (5). Suppose that (2.4) holds. Fix k ∈ N. Then

Φk = (1 + r2)kΨ

(5) The estimation of the decay of ∂α(1 + r2)−a for large |x| plays an important role
in Sec. VII.5 of [S2].
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is a subset of B′(Rn) equicontinuous in the topology of DL1(Rn). By the
implication (1.1)⇒(1.3) from Theorem 1.1 applied to Φk, there is mk ∈ N0

such that for every multiindex α ∈ Nn
0 of length |α| ≤ mk there is a function

uα ∈ Cc(Rn) such that

(2.9) T = (1 + r2)−k
∑
|α|≤mk

∂αuα ∗ [(1 + r2)kT ] for every T ∈ D′(Rn),

and

(2.10) {uα ∗ ((1 + r2)kT ) : T ∈ Ψ} = uα ∗ Φk
is a bounded subset of Cb(Rn).

From (2.9) it follows that whenever T ∈ D′(Rn) and ϕ ∈ D(Rn), then

〈T, ϕ〉 =
∑
|α|≤mk

〈∂αuα ∗ [(1 + r2)kT ], (1 + r2)−kϕ〉

=
∑
|α|≤mk

∑
β≤α

〈
uα ∗ [(1 + r2)kT ], (−1)|α|

(
α

β

)
(∂α−β(1 + r2)−k)∂βϕ

〉

=
∑
|α|≤mk

∑
β≤α

〈
(−1)|α−β|

(
α

β

)
(∂α−β(1 + r2)−k)(uα ∗ [(1 + r2)kT ]),

(−1)|β|∂βϕ
〉
.

Consequently, (2.9) implies that (2.6)(i) holds for Fk,β defined by the formula

(2.11) Fk,β(T )

=
∑

α≥β, |α|≤mk

(−1)|α−β|
(
α

β

)
(∂α−β(1 + r2)−k)(uα ∗ [(1 + r2)kT ]).

From (2.11), (2.10) and (2.8) it follows that whenever β ∈ Nn
0 , then Fk,β(Ψ)

is a bounded subset of the Banach space Bk(Rn).

In view of (2.3) one can define in O′C(Rn) the topology induced by either
Ls(S(Rn);S(Rn)) or Lb(S(Rn);S(Rn)) by means of the mapping O′C(Rn) 3
T 7→ T ∗ ∈ L(S(Rn);S(Rn)). The subscripts s and b indicate simple con-
vergence and uniform convergence on bounded subsets of S(Rn). Our next
theorem says that, for both these induced topologies, the class of convergent
countable sequences of elements of O′C(Rn) is the same as for the topology
in O′C(Rn) defined by L. Schwartz in [S2, Sec. VII.5, p. 244].

Theorem 2.2. For every sequence (Tν)∞ν=1 ⊂ O′C(Rn) the following three
conditions are equivalent:
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(2.12) whenever P is a polynomial on Rn, then the sequence of distributions
(P · Tν)∞ν=1 ⊂ B′(Rn) converges to zero uniformly on every bounded
subset of DL1(Rn),

(2.13) limν→∞(Tν ∗) = 0 in the topology of Ls(S(Rn);S(Rn)),
(2.14) limν→∞(Tν ∗) = 0 in the topology of Lb(S(Rn);S(Rn)).

Proof. The equivalence (2.13)⇔(2.14) follows from the Banach–Stein-
haus theorem and the fact that S(Rn) is a Montel space. The implication
(2.12)⇒(2.13) may be proved by an argument similar to that used in the
case of Theorem 1.2, in the proof of (1.6)⇒(1.7).

It remains to prove that (2.13) implies (2.12). To this end, notice that
the topology induced on O′C(Rn) by Ls(S(Rn);S(Rn)) may be determined
by the system of seminorms

pα,β,ϕ(T ) = ‖xα∂β(T ∗ ϕ)‖Cb(Rn), α, β ∈ Nn
0 , ϕ ∈ S(Rn).

Since

xα∂β(T ∗ ϕ) = xα(T ∗ ∂βϕ) =
∑
γ≤α

(
α

γ

)
(xγ · T ) ∗ (xα−γ · ∂βϕ),

it follows that every seminorm of the type pα,β,ϕ is no greater than a finite
sum of seminorms of the type

pα,ϕ(T ) = ‖(xα · T ) ∗ ϕ‖Cb(Rn), α ∈ Nn
0 , ϕ ∈ S(Rn).

Hence, passing from the monomials xα to arbitrary polynomials P , one finds
that (2.13) holds if and only if

(2.15) limν→∞ ‖(P · Tν) ∗ ϕ‖Cb(Rn) = 0 for every polynomial P on Rn and
every ϕ ∈ S(Rn).

So, the implication (2.13)⇒(2.12) is a consequence of (2.15)⇒(2.12), which,
in turn, follows from (1.7)⇒(1.6) of Theorem 1.2.

3. The space OM (Rn) of infinitely differentiable slowly increasing
functions. A function φ ∈ C∞(Rn) is called infinitely differentiable slowly
increasing if for every k ∈ N0 there is mk ∈ N0 such that

sup{(1 + |ξ|)−mk |∂αφ(ξ)| : α ∈ Nn
0 , |α| ≤ k, ξ ∈ Rn} <∞.

The space of infinitely differentiable slowly increasing functions on Rn is
denoted by OM (Rn). One has OM (Rn) ⊂ S ′(Rn). A set Φ ⊂ OM (Rn) will be
called a set of uniformly slowly increasing infinitely differentiable functions
on Rn if for every k ∈ N0 there is mk ∈ N0 such that

sup{(1 + |ξ|)−mk |∂αφ(ξ)| : φ ∈ Φ, α ∈ Nn
0 , |α| ≤ k, ξ ∈ Rn} <∞.
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Let F denote the Fourier transformation defined by the formula

ϕ̂(ξ) = (Fϕ)(ξ) =
�

Rn
e−ixξϕ(x) dx for ϕ ∈ S(Rn), ξ ∈ Rn.

Then F is a continuous automorphism of S(Rn), and F extends by duality,
and also by continuity, to a continuous automorphism of S ′s(Rn). (This time
the subscript s indicates that S ′s(Rn) is the strong dual of S(Rn).) The
extension by duality is usually discussed. The extendability by continuity
follows from the form of the Fourier dual operator restricted to S(Rn), and
from the fact that S(Rn) is dense in S ′s(Rn). This last denseness may be
proved either by an argument based on reflexivity, similar to one in the
proof [S2, Sec. III.3, Theorem XV, p. 75], or by a more elementary argument
based on an analogue of [R, Proposition 4, p. 253]. In view of [S2, Sec. VII.8,
Theorem XV, p. 268], one has

(3.1) FO′C(Rn) = OM (Rn).

This equality is important in what follows. The inclusion FO′C(Rn)⊂OM (Rn)
follows from the fact that if T ∈ O′C(Rn), then for every multiindex α ∈ Nn

0

the condition (2.6) is satisfied for the singleton Ψ = {xαT}. To prove the
opposite inclusion, pick φ ∈ OM (Rn) and set T = F−1φ, which makes sense
because OM (Rn) ⊂ S ′(Rn). Then T ∈ S ′(Rn), and so T ∗ϕ ∈ S ′(Rn) when-
ever ϕ ∈ S(Rn). Consequently, F(T ∗ ϕ) = (FT ) · ϕ̂ = φ · ϕ̂ ∈ S(Rn).
Since F is an automorphism of S(Rn), it follows that T ∗ ϕ ∈ S(Rn) for
every ϕ ∈ S(Rn). It is easy to see that T ∗ is a closed operator from S(Rn)
into itself. Consequently, by the closed graph theorem, (2.3) holds, so that
T ∈ O′C(Rn) and φ = FT ∈ FO′C(Rn).

There are the following characterizations of OM (Rn) as the space of mul-
tipliers:

(3.2) φ ∈ OM (Rn) if and only if φ ∈ C∞(Rn) and φ · ϕ ∈ S(Rn) for every
ϕ ∈ S(Rn),

(3.2)′ φ ∈ OM (Rn) if and only if φ ∈ C∞(Rn) and φ · T ∈ S ′(Rn) for every
T ∈ S ′(Rn).

These characterizations of OM (Rn) are formulated without proof in [S2,
Sec. VII.5, p. 246, remarks after Theorem X], and in [T, Chap. 25, Theorem
25.5, p. 275].

Proof of (3.2). It is easy to see that if φ ∈ OM (Rn), then φ · ∈ L(S(Rn);
S(Rn)). Conversely, suppose that φ ∈ C∞(Rn) and φ · ϕ ∈ S(Rn) for every
ϕ ∈ S(Rn). It is obvious that φ · is a closed operator of S(Rn) into S(Rn),
and so, by the closed graph theorem, φ · ∈ L(S(Rn);S(Rn)). Consequently,
also F−1 ◦ (φ · ) ◦ F ∈ L(S(Rn);S(Rn)). Moreover, since φ · commutes with
multiplication by characters of Rn, it follows that F−1 ◦ (φ · ) ◦ F commutes
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with translations. Therefore, by a variant of a theorem of L. Schwartz ([S2,
Sec. VI.3, Theorem X, p. 162]; [Y, Sec. VI.3, Theorem 2, p. 158]), there is
a distribution T ∈ S ′(Rn) such that [F−1 ◦ (φ · ) ◦ F](ϕ) = T ∗ ϕ for every
ϕ ∈ S(Rn). By (2.3), this implies that T ∈ O′C(Rn). Furthermore,
φ · ϕ = [(φ · ) ◦ F](F−1ϕ) = F(T ∗ F−1ϕ) = (FT ) · (F(F−1ϕ)) = (FT ) · ϕ

for every ϕ ∈ S(Rn), whence φ = FT ∈ OM (Rn), by (3.1).

Proof of (3.2)′. If φ ∈ OM (Rn), then φ · ∈ L(S(Rn);S(Rn)), and so,
whenever T ∈ S ′(Rn), then 〈φ · T, ϕ〉 = 〈T, φ · ϕ〉 for every ϕ ∈ D(Rn),
where the right side of the equality extends, by continuity in the topology
of S(Rn), onto all ϕ ∈ S(Rn). This proves that also 〈φ · T, ϕ〉 extends by
continuity from ϕ ∈ D(Rn) onto all ϕ ∈ S(Rn), and this means that φ · T ∈
S ′(Rn). Conversely, suppose that φ · T ∈ S ′(Rn) for every T ∈ S ′(Rn).
By (3.2), in order to prove that φ ∈ OM (Rn), it is sufficient to show that
φ · ∈ L(S(Rn);S(Rn)). To this end, basing on reflexivity of the pair of spaces
S(Rn), S ′s(Rn), we will prove that

(3.3) the operator of multiplication Mφ : D(Rn) 3 ϕ 7→ φ · ϕ ∈ D(Rn)
extends by continuity to an operator belonging to L(S(Rn);S(Rn)).

In order to prove (3.3), it is sufficient to show that whenever
(3.4) ϕν ∈ D(Rn) for every ν = 1, 2, . . . and lim

ν→∞
ϕν = ϕ in S(Rn),

then limν→∞ φ · ϕν exists in the topology of S(Rn). So, let (ϕν)∞ν=1 be a
sequence satisfying (3.4). Then for every T ∈ S ′(Rn) one has 〈T, φ · ϕν〉 =
〈φ·T, ϕν〉 → 〈φ·T, ϕ〉, which means that (φ·ϕν)∞ν=1 is a pointwise convergent
sequence of linear functionals on S ′s(Rn). Since S ′s(Rn) is a barrelled space
(see [Y, Appendix to Chapter V, Sec. 3, Theorem 2, p. 140]) and a Montel
space ([S2, Sec. VII.4, p. 238]), from the Banach–Steinhaus theorem it follows
that the sequence (φ · ϕν)∞ν=1 converges uniformly on bounded subsets of
S ′s(Rn). This means that the sequence (φ · ϕν)∞ν=1 converges in (S ′s(Rn))′s,
i.e. in S(Rn), by reflexivity. Thus (3.3) is proved.

One can express (3.3) equivalently as
(3.5) φ · ϕ = Mφϕ for every ϕ ∈ D(Rn) where Mφ ∈ L(S(Rn);S(Rn)).

From (3.5) it follows at once that φ · ϕ = Mφϕ not only for ϕ ∈ D(Rn) but
also for all ϕ ∈ S(Rn). Therefore φ · ∈ L(S(Rn);S(Rn)).

LetCkb (Rn) denote the Banach space of functions continuous and bounded
on Rn together with their partial derivatives of order no greater than k.

Theorem 3.1. For every family Φ of C∞ functions on Rn the following
three conditions are equivalent:

(3.6) Φ ⊂ OM (Rn) and the functions belonging to Φ increase uniformly
slowly,
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(3.7) the set of multiplication operators {φ · : φ ∈ Φ} is an equicontinuous
subset of L(S(Rn);S(Rn)) (6),

(3.8) for every k ∈ N0 there is mk ∈ N0 and a set of operators {Gk,β :
β ∈ Nn

0 , |β| ≤ mk} ⊂ L(S ′s(Rn);S ′s(Rn)) having the two properties:
(i) T =

∑
|β|≤mk ξ

βGk,β(T ) for every T ∈ S ′(Rn) where ξ1, . . . , ξn
denote the coordinate functions on Rn and ξβ = ξβ1

1 · . . . · ξ
βn
n ,

(ii) whenever β ∈ Nn
0 and |β| ≤ mk, then Gk,β(Φ) is a bounded subset

of Ckb (Rn).
Proof. The implication (3.8)⇒(3.6) is obvious. To prove (3.6)⇒(3.7) it

is sufficient to check that if (3.6) holds, then, for every α, β ∈ Nn
0 and ϕ ∈

S(Rn), the set {xα∂β(φ · ϕ) : φ ∈ Φ} is a bounded subset of Cb(Rn). Since

xα∂β(φ · ϕ) =
∑
γ≤β

(
β

γ

)
(∂γφ) · (xα∂β−γϕ),

it remains to observe that if (3.6) holds, then for every γ ∈ Nn
0 and ψ ∈ S(Rn)

the set {(∂γφ) · ψ : φ ∈ Φ} is a bounded subset of Cb(Rn)(7).
Finally, we will prove that (3.7) implies (3.8). To this end, notice first that

if (3.7) holds, then, by (3.2), Φ ⊂ OM (Rn). Hence, by (3.1), the set of distri-
butions Ψ = F−1Φ is contained in O′C(Rn). Since (F−1φ) ∗ ϕ = F−1(φ · Fϕ)
for every φ ∈ OM (Rn) and ϕ ∈ S(Rn), it follows that the set of convolu-
tion operators (F−1Φ) ∗ is an equicontinuous subset of L(S(Rn);S(Rn)).
Consequently, by Theorem 2.1, the condition (2.6) is satisfied for the subset
Ψ = F−1Φ of O′C(Rn). From this one can deduce (3.8) using elementary
properties of the Fourier transformation.

Theorem 3.2. For every sequence (φν)∞ν=1 ⊂ OM (Rn) the following
three conditions are equivalent:
(3.9) the functions φν , ν = 1, 2, . . . , increase uniformly slowly and the

sequence (φν)∞ν=1 converges pointwise on Rn,
(3.10)s the sequence of multiplication operators (φν · )∞ν=1 converges in the

topology of Ls(S(Rn);S(Rn)),
(3.10)b the sequence of multiplication operators (φν · )∞ν=1 converges in the

topology of Lb(S(Rn);S(Rn)).
An argument similar to one from the proof of Theorem 2.2 shows that the

topology in OM (Rn) defined in [S2, Sec. VII.5, pp. 243–244] is identical with
the topology induced by Lb(S(Rn);S(Rn)). Therefore Theorem 3.2 coincides
with a statement formulated without detailed proof in [S2, p. 244].

(6) Condition (3.7) is equivalent to the boundedness of {φ · : φ ∈ Φ} in each of the
l.c.v.s. Ls(S(Rn);S(Rn)), Lb(S(Rn);S(Rn)). See [S, Sec. III.4].

(7) This last can be proved by an inductive argument similar to one used in the proof
of (2.5)⇒(2.4)
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Proof of Theorem 3.2. The equivalence of (3.10)s and (3.10)b follows
from the Banach–Steinhaus theorem and the fact that S(Rn) is a Montel
space. An elementary argument shows that (3.9) implies (3.10)s. Indeed, if
(3.9) holds, then for every α ∈ Nn

0 the sequence (∂αφν)∞ν=1 converges almost
uniformly on Rn, and whenever ϕ ∈ S(Rn), then (φν ·ϕ)∞ν=1 is a sequence of
elements of S(Rn) convergent in the topology of S(Rn).

It remains to prove that (3.10)s implies (3.9). So, suppose that (3.10)s
holds. Then, by the Banach–Steinhaus theorem, {φν · : ν = 1, 2, . . .} is an
equicontinuous subset of L(S(Rn);S(Rn)), and hence, by the implication
(3.7)⇒(3.6) from Theorem 3.1, the functions φν , ν = 1, 2, . . . , increase uni-
formly slowly. Furthermore, if (3.10)s holds, then for every ϕ ∈ S(Rn) the
sequence (φν ·ϕ)∞ν=1 of elements of S(Rn) converges in the topology of S(Rn),
so (φν)∞ν=1 converges pointwise on Rn. Hence (3.10)s implies (3.9).
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