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Summary. We give an alternative proof of W. T. Gowers’ theorem on block bases by
reducing it to a discrete analogue on specific countable nets. We also give a Ramsey type
result on k-tuples of block sequences in a normed linear space with a Schauder basis.

1. Introduction. W. T. Gowers in [11] (see also [10] and [12]) proved a
fundamental Ramsey-type theorem for block bases in Banach spaces which
led to important discoveries in the geometry of Banach spaces. By now there
are several approaches to Gowers’ theorem (see [1, 2, 3, 4, 14, 21]; also in
[7, 15, 18] there are direct proofs of Gowers’ dichotomy, and in [6, 8, 19, 22, 24]
extensions and further applications).

Our aim in this note is to prove a discrete analogue of Gowers’ theorem
which is free of approximations. To state our results we will need the following
notation. Let X be a real linear space with an infinite countable Hamel basis
(en)n (actually the field over which the linear space X is defined plays no role
in the arguments; it is only for the sake of convenience that we will assume
that X is a real linear space). For a subset A ⊆ X we denote by 〈A〉 the linear
span of A. Let D be a subset of X. We denote by B∞D the set of all block
sequences (xn)n with xn ∈ D for all n. For a block sequence Z ∈ B∞D let
B∞D (Z) be the set of all block sequences of B∞D which are block subsequences
of Z.

Assume that B∞D is non-empty and let Z ∈ B∞D and G ⊆ B∞D . We define
the D-Gowers’ game in Z, denoted by GD(Z), as follows. Player I starts
the game by choosing W0 ∈ B∞D (Z) and player II responds with a vector
w0 ∈ 〈W0〉 ∩ D. Then player I chooses W1 ∈ B∞D (Z) and player II chooses
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a vector w1 ∈ 〈W1〉 ∩D and so on. Player II wins the game if the sequence
(w0, w1, . . .) belongs to G.

Suppose that D is a subset of X with the following properties:

(D1) (Asymptotic property) D ∩ 〈(ei)i≥n〉 6= ∅ for all n ∈ N.
(D2) (Finitization property) D ∩ 〈(ei)i<n〉 is finite for all n ∈ N.

Property (D1) simply means that the set B∞D of all block sequences is non-
empty. Property (D2) implies that D is countable. Hence, if we endow D
with the discrete topology, the space DN of all infinite countable sequences
in D equipped with the product topology is a Polish space.

We can now state our first main result.

Theorem 1. Let X be a real linear space with a countable Hamel basis
(en)n and let D ⊆ X have properties (D1) and (D2). Also let G ⊆ B∞D be an
analytic subset of DN. Then for every U ∈ B∞D there exists Z ∈ B∞D (U) such
that either B∞D (Z) ∩ G = ∅, or player II has a winning strategy in GD(Z)
for G.

While discrete in nature, Theorem 1 can be used to derive Gowers’ orig-
inal result provided that D has an additional property (see Section 4).

Our second main result concerns k-tuples of block sequences in normed
linear spaces with a Schauder basis. Precisely, let X be a real normed linear
space with a Schauder basis (en)n. We denote by B∞X the set of block se-
quences in X and by B∞BX

the set of all block sequences in the unit ball BX

of X. Two block sequences Z1 = (z1
n)n and Z2 = (z2

n)n in B∞X are said to
be disjointly supported if supp z1

n ∩ supp z2
m = ∅ for all m,n. For a positive

integer k ≥ 2 and Z ∈ B∞X , the set of all k-tuples of pairwise disjointly
supported block subsequences of Z in BX will be denoted by (B∞BX

(Z))k⊥.
Also, for a family F ⊆ (B∞X )k of k-tuples of block sequences in X, the upward
closure of F is defined to be the set

F↑ =
{
(Ui)k−1

i=0 ∈ (B∞X )k : ∃(Vi)k−1
i=0 ∈ F such that

∀i Vi is a block subsequence of Ui
}
.

If ∆ = (δn)n is a sequence of positive reals, then the ∆-expansion of F is
defined to be the set

F∆ =
{
(Ui)k−1

i=0 ∈ (B∞X )k : ∃(Vi)k−1
i=0 ∈ F such that ∀i dist(Ui, Vi) ≤ ∆

}
.

We prove the following.

Theorem 2. Let X be a real normed linear space with a Schauder basis,
k ≥ 2, and F an analytic subset of (B∞BX

)k. Then for every sequence ∆ =
(δn)n of positive real numbers there is Y ∈ B∞X such that either (B∞BX

(Y ))k⊥∩F

= ∅, or (B∞BX
(Y ))k ⊆ (F∆)↑.
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In the above theorem the topology of B∞BX
is the one induced by the

product of the norm topology. Theorem 2 applied for k = 2 and the family

F = {(U1, U2) ∈ (B∞BX
)2 : U1, U2 are C-equivalent},

where C ≥ 1 is a constant, yields Gowers’ second dichotomy (see Lemma 7.3
in [11]).

2. Notation. Let X be a real linear space with an infinite countable
Hamel basis (en)n. For two non-zero vectors x, y in X, we write x < y
if max suppx < min supp y (where suppx is the support of x, i.e. if x =∑

n λnen then suppx = {n ∈ N : λn 6= 0}). A sequence (xn)n of vectors in
X is called a block sequence (or block basis) if xn < xn+1 for all n.

Capital letters (such as U, V, Y, Z, . . .) refer to infinite block sequences,
and overlined lower case letters (such as u, v, y, z, . . .) to finite block se-
quences. We write Y � Z to denote that Y is a block subsequence of Z, that
is, Y = (yn)n, Z = (zn)n are block sequences and yn ∈ 〈(zi)i〉 for all n.
The notations y � Z and y � z are defined analogously. For x = (xn)kn=0

and Y = (yn)n we write x < Y if xk < y0. For x < Y , xaY denotes the
block sequence (zn)n that starts with the elements of x and continues with
those of Y . Also for x < y, the finite block sequence xay is similarly de-
fined. For a block sequence Z = (zn)n and an infinite subset L of N we set
Z|L = (zn)n∈L. Also Z|k = (zn)k−1

n=0 for k ∈ N (Z|0 = ∅ for k = 0).
Let D ⊆ X. We denote by B∞D (resp. B<∞D ) the set of all infinite (resp.

finite) block sequences (xn)n with xn ∈ D for all n. The set of all infinite
(resp. finite) block sequences in X is denoted by B∞X (resp. B<∞X ). For Z ∈ B∞X
we set B∞D (Z) = {Y ∈ B∞D : Y � Z} and B<∞D (Z) = {y ∈ B<∞D : y � Z}.
Similarly B<∞D (z) = {y ∈ B<∞D : y � z} for z ∈ B<∞X . For a block sequence
Z ∈ B∞D , we set 〈Z〉D = 〈Z〉 ∩D where 〈Z〉 is the linear span of Z.

3. Discretization of Gowers’ game. Throughout this section, X is a
real linear space with countable Hamel basis (en)n and D is a subset of X with
properties (D1) and (D2) as stated in the Introduction. Notice that (D2)
also gives that for every U = (ui)i ∈ B∞D and n ∈ N, the set B<∞D ((ui)i<n)
is finite.

3.1. Admissible families of D-pairs. The aim of this subsection is
to review some methods of handling diagonalizations (see also [11], [20]). A
D-pair is a pair (x, Y ) where x ∈ B<∞D and Y ∈ B∞D . For U ∈ B∞D , a family
P ⊆ B<∞D (U) × B∞D (U) is called an admissible family of D-pairs in U if it
has the following properties:

(P1) (Heredity) If (x, Y ) ∈ P and Z ∈ B∞D (Y ) then (x, Z) ∈ P.
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(P2) (Cofinality) For every (x, Y ) ∈ B<∞D (U) × B∞D (U), there is Z ∈
B∞D (Y ) such that (x, Z) ∈ P.

For simplicity, when we write “pair” we will always mean a D-pair. It will
often happen that an admissible family of pairs has one more property:

(P3) If (x, Y ) ∈ P, x < Y and k = min{m : x ∈ B<∞D ((ui)mi=1)} then
(x, yaY ) ∈ P for every y ∈ B<∞D ((ui)ki=1).

The next lemma follows by a standard diagonalization argument.

Lemma 3. Let U ∈ B∞D and let P be an admissible family of pairs in U .
Then there is W ∈ B∞D (U) such that (w, Y ) ∈ P for all w ∈ B<∞D (W ) and
all Y ∈ B∞D (W ) with w < Y . If in addition P satisfies (P3) then (w,W ) ∈ P
for all w ∈ B<∞D (W ).

3.2. The discrete Gowers’ game. Given Y ∈ B∞D and a family of
infinite block sequences G ⊆ B∞D , we define the D-Gowers’ game, GD(Y ),
as follows. Player I starts the game by choosing Z0 ∈ B∞D (Y ) and player
II responds with a vector z0 ∈ 〈Z0〉D. Then player I chooses Z1 ∈ B∞D (Y )
and player II chooses a vector z1 ∈ 〈Z1〉D with z0 < z1, and so on. More
generally, for a finite block sequence x ∈ B<∞D and Y ∈ B∞D the game
GD(x, Y ) is defined as above with the additional condition that player II in
the first move chooses z0 > x. Clearly GD(∅, Y ) is identical to GD(Y ). We
will say that player II wins the game GD(x, Y ) for G if the block sequence
xa(z0, z1, . . .) belongs to G.

We will basically follow the classical Galvin–Prikry terminology (cf. [9],
[5]) in the context of Gowers’ game. More precisely, for x ∈ B<∞D , Y ∈ B∞D
and G ⊂ B∞D we say that Y G-accepts x if player II has a winning strategy
in GD(x, Y ) for G, while Y G-rejects x if no Z ∈ B∞D (Y ) which G-accepts x.
We also say that Y G-decides x if it either G-accepts or G-rejects it.

Notice that if x = ∅ then to say that “Y G-accepts the empty sequence”
means that player II has a winning strategy in GD(Y ) for G. Similarly the
statement that “Y G-rejects the empty sequence” is equivalent to saying that
for no Z ∈ B∞D (Y ) does player II have a winning strategy in GD(Z) for G.
The following lemma is easily verified.

Lemma 4. For every U ∈ B∞D and every G ⊆ B∞D , the family

P = {(x, Y ) ∈ B<∞D (U)× B∞D (U) : Y G-decides x}

is an admissible family of pairs in U with property (P3).

Actually the family P of the above lemma satisfies the following condition
stronger than (P3): If (x, Y ) ∈ P and Z ∈ B∞D are such that Z|[n,∞) � Y
for some n ∈ N, then (x, Z) ∈ P.
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For the sake of simplicity, in the following we will omit the letter G in
front of “accepts”, “rejects” and “decides”. The next lemma is a consequence
of Lemmas 4 and 3.

Lemma 5. For every U ∈ B∞D there is W ∈ B∞D (U) such that W decides
all w ∈ B<∞D (W ).

The crucial point where the above notions of “accept-reject” essentially
differ from the original ones reveals itself in the next lemma. Here the no-
tion of the winning strategy replaces successfully the traditional pigeonhole
principle.

Lemma 6. Let W ∈ B∞D decide all w ∈ B<∞D (W ) and assume that it
rejects some w0 ∈ B∞D (W ). Then for every Y ∈ B∞D (W ) there is Z ∈ B∞D (Y )
such that W rejects w_0 z for every z ∈ 〈Z〉D with w0 < z.

Proof. If the conclusion is false then there is Y ∈ B∞D (W ) such that for
every Z ∈ B∞D (Y ) there is z ∈ 〈Z〉D with w0 < z such that W accepts w_0 z.
It is easy to see that this means that player II has a winning strategy in
GD(w0, Y ) for G, and thus Y accepts w0. But this is a contradiction since
Y ∈ B∞D (W ) and W rejects w0.

Lemma 7. For every U ∈ B∞D there exists Z ∈ B∞D (U) such that either Z
rejects all z ∈ B<∞D (Z), or player II has a winning strategy in GD(Z) for G.

Proof. By Lemma 5 there is W ∈ B∞D (U) such that W decides all w ∈
B<∞D (W ). If W accepts the empty sequence then we readily have the second
alternative of the conclusion for Z = W . In the opposite case consider the
following family in B<∞D (W )× B∞D (W ):

P = {(x, Y ) : either W accepts x,
or ∀y ∈ 〈Y 〉D with x < y, W rejects xay}.

Using Lemma 6 we easily verify that P is an admissible family in W which
also satisfies (P3). Hence by Lemma 3 there is Z ∈ B∞D (W ) with (z, Z) ∈ P
for every z ∈ B<∞D (Z). By our assumption W rejects the empty sequence.
Since (∅, Z) ∈ P we infer thatW , and so Z, rejects all z ∈ 〈Z〉D. By induction
on the length of finite block sequences in B<∞D (Z), it is easily shown that Z
rejects all z ∈ B<∞D (Z).

We have finally arrived at our first stop which is an analog of the well
known result of Nash-Williams ([17]). Consider the set D with the discrete
topology and DN with the product topology.

Lemma 8. Let G ⊆ B∞D be open in DN. Then for every U ∈ B∞D there
exists Z ∈ B∞D (U) such that either B∞D (Z)∩G = ∅, or player II has a winning
strategy in GD(Z) for G.
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Proof. By Lemma 7 we can find Z ∈ B∞D (U) such that either Z rejects
all z ∈ B<∞D (Z), or player II has a winning strategy in GD(Z) for G. Hence
it suffices to show that the first alternative gives B∞D (Z)∩G = ∅. Indeed, let
W = (wn)n ∈ B∞D (Z). Then for all k, Z rejects W |k = (wn)n<k. Therefore
there is some Zk ∈ B∞D (Z) with W |k < Zk such that W |ak Zk 6∈ G. Since
the sequence (W |ak Zk)k converges in DN to W and the complement of G is
closed, we conclude that W 6∈ G.

We now pass to the case of an analytic family G. First let us state some
basic definitions (cf. [13]). Let N<N be the set of all finite sequences in N
and let N be the Baire space, i.e. the space of all infinite sequences in N
with the topology generated by the sets Ns = {σ ∈ N : ∃n with σ|n = s},
s ∈ N<N. A subset of a Polish space X is called analytic if it is the image of
a continuous function from N into X.

For the next lemmas we fix the following:

(a) a family (Gs)s∈N<N of subsets of B∞D such that Gs=
⋃
n Gs

an for all s,
(b) a bijection ϕ : N<N → N such that ϕ(∅) = 0 and ϕ(san) > ϕ(s) for

all s, n.

For each x in B<∞D we set sx to be the unique element of N<N such that
ϕ(sx) equals the length of x. For a D-pair (x, Y ) we set

B∞D (x, Y ) = {V ∈ B∞D : ∃k such that V |k = x and V |[k,∞) � Y }.
Finally, recall the following terminology from [11]. For a family G ⊆ B∞D we
say that G is large for (x, Y ) if G ∩ B∞D (x, Z) 6= ∅ for all Z ∈ B∞D (Y ). In the
case x = ∅ we simply say that G is large for Y .

Lemma 9. For every U ∈ B∞D there is W ∈ B∞D (U) such that for every
w ∈ B<∞D (W ), either Gsw ∩ B∞D (w,W ) = ∅, or Gsw is large for (w,W ).

Proof. Let P be the set of all pairs (x, Y ) in B<∞D (U)×B∞D (Y ) such that
either Gsx ∩B∞D (x, Y ) = ∅, or Gsx is large for (x, Y ). It is easy to see that P
is admissible and satisfies (P3). Hence the conclusion follows by Lemma 3.

Let W ∈ B∞D be a block sequence in D satisfying the conclusion of
Lemma 9. For w ∈ B<∞D (W ), let F(w) be the family of all V = (vi)i ∈
B∞D (W ) with w < V and with the following properties. There exist m, l ∈ N
with l ≥ 1 such that

(i) sa
wm = sx, where x = wa(vi)l−1

i=0,
(ii) the family Gs

a
wm is large for (wa(vi)l−1

i=0,W ).

Notice that F(w) is open in DN.

Lemma 10. Let w ∈ B<∞D (W ) and assume that Gsw is large for (w,W ).
Then F(w) is large for W .
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Proof. Let Z ∈ B∞D (W ). Since Gsw is large for (w,W ) there is V = (vi)i
such that w < V and waV ∈ Gsw ∩ B∞D (w,Z) =

⋃
m Gs

a
wm ∩ B∞D (w,Z)

and so waV ∈ Gs
a
wm ∩ B∞D (w,Z) for some m ∈ N. Notice that for l =

ϕ(sam) − ϕ(s) we have sa
wm = sx, where x = wa(vi)l−1

i=0, and waV ∈
Gs

a
wm ∩ B∞D (wa(vi)l−1

i=0, Z). Therefore Gs
a
wm ∩ B∞D (wa(vi)l−1

i=0,W ) 6= ∅, which
(by the properties ofW ) means that Gs

a
wm is large for (wa(vi)l−1

i=0,W ). Hence
V ∈ F(w) ∩ B∞D (Z).

Lemma 11. There is Z ∈ B∞D (W ) such that for every z ∈ B<∞D (Z),
either Gsw ∩ B∞D (z, Z) = ∅ or player II has a winning strategy in the game
GD(Z) for the family F(z).

Proof. Let P be the family of pairs (w, Y ) ∈ B<∞D (W ) × B∞D (W ) such
that either Gsw∩B∞D (w, Y ) = ∅, or player II has a winning strategy in GD(Y )
for F(w).

By Lemma 3 it suffices to show that P is an admissible family of pairs in
W which in addition satisfies (P3). It is easy to see that only the cofinality
property needs some explanation. Let (w, Y ) ∈ B<∞D (W ) × B∞D (W ). Since
w ∈ B<∞D (W ), either Gsw ∩ B∞D (w,W ) = ∅, or Gsw is large for (w,W ). In
the first case, Gsw ∩ B∞D (w, Y ) = ∅ and so (w, Y ) ∈ P. In the second case,
Lemma 10 implies that F(w) is large for W . Hence by Lemma 8, there is
V ∈ B∞D (Y ) such that player II has a winning strategy in GD(V ) for F(w),
and so (w, V ) ∈ P.

We are now ready for the proof of the main result.

Proof of Theorem 1. Assume that there is no Z ∈ B∞D (U) such that
B∞D (Z) ∩ G = ∅, that is, G is large for U . Let f : N → DN be a continuous
map with f [N ] = G, and for s ∈ N<N, let Gs = f [Ns]. Then G∅ = G and
Gs =

⋃
n Gs

an. Following the process of the above lemmas let W ∈ B∞D (U)
be as in Lemma 9 and Z ∈ B∞D (W ) as in Lemma 11. We claim that player
II has a winning strategy in the game GD(Z) for G.

Indeed, by our assumption G = G∅ is large in B∞D (Z) = B∞D (∅, Z) and so
player II has a winning strategy in GD(Z) for F(∅). This means that player
II is able to produce, after a finite number of moves, a finite block sequence
y0 ∈ B<∞D (Z) such that there is m0 ∈ N with sy0 = (m0) and G(m0) large for
(y0,W ). By Lemma 11, player II has a winning strategy in GD(Z) for F(y0),
that is, player II can extend y0 to a finite block sequence ya

0 y1 ∈ B<∞D (Z)
such that there is m1 ∈ N such that s

ya
0 y1

= (m0,m1) and G(m0,m1) is large

for (ya
0 y1,W ).

Continuing in this way we conclude that player II has a strategy in the
game GD(Z) to construct a block sequence Y = ya

0 y
a
1 . . . such that for some
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σ = (mi)i ∈ N and for every k ∈ N, Gσ|k is large for ((ya
0 . . .

a yk−1),W ).
To show that this is actually a winning strategy for G, we have to prove
that Y ∈ G. Fix k ∈ N. Since Gσ|k is large for ((ya

0 . . .
a yk−1),W ), there

exists Yk ∈ B∞D (W ) such that (ya
0 . . .

a yk−1)aYk ∈ Gσ|k. Since (Gσ|n)n is
decreasing, Y = limn(y

a
0 . . .

a yn−1)aYn ∈ Gσ|k for all k ∈ N, and thus
Y ∈

⋂
k Gσ|k. By the continuity of f ,

⋂
k Gσ|k = {f(σ)} and therefore Y =

f(σ) ∈ G.

4. Passing from the discrete to Gowers’ game. In this section
we will see how using Theorem 1 one can derive W. T. Gowers’ Ramsey
theorem (see Theorem 16). Henceforth, X will be a normed linear space with
a Schauder basis (en)n.

First let us recall some relevant definitions. Let B∞X (resp. B∞BX
) be the set

of all block sequences in X (resp. in the unit ball BX). Let U = (un)n, V =
(vn)n ∈ B∞X and ∆ = (δn)n a sequence of positive real numbers. We say that
U, V are ∆-near and we write dist(U, V ) ≤ ∆ if ‖un−vn‖ ≤ δn for all n ∈ N.
For a family F ⊆ B∞X and a sequence ∆ = (δn)n of positive real numbers
the ∆-expansion of F is the set

F∆ = {U ∈ B∞X : ∃V ∈ F such that dist(U, V ) ≤ ∆}.
For Y ∈ B∞BX

and a family F ⊆ B∞BX
the Gowers’ game GX(Y ) is defined

as the D-Gowers game by replacing D and G ⊆ B∞D with BX and F ⊆ B∞BX

respectively.
For the next two lemmas we fix the following:

(i) a subset D of 〈(en)n〉 with the asymptotic property (D1),
(ii) a family F ⊆ B∞BX

of block sequences in BX,
(iii) a sequence ∆ = (δn)n of positive real numbers.

Lemma 12. Let G = F∆∩B∞D and suppose that B∞D (Z̃)∩G = ∅ for some
Z̃ ∈ B∞D . Assume that there exists Z ∈ B∞X such that

B∞BX
(Z) ⊆ (B∞D (Z̃))∆

(that is, for every block subsequence U = (un)n of Z with ‖un‖ ≤ 1 there is
a block subsequence Ũ = (ũn)n of Z̃ with ũn ∈ D such that dist(U, Ũ) ≤ ∆).
Then B∞BX

(Z) ∩ F = ∅.

Proof. Let U ∈ B∞BX
(Z). By our assumptions there is Ũ ∈ B∞D (Z̃) such

that dist(U, Ũ) ≤ ∆ and Ũ 6∈ G. Then U 6∈ F , otherwise Ũ ∈ F∆ ∩ B∞D (Z̃)
which is a contradiction.

Lemma 13. Let δ0 ≤ 1 and
∑∞

j=n+1 δj ≤ δn for all n. Let G = F∆/10C

∩ B∞D , where C is the basis constant of (en)n, and suppose that for some
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Z̃ ∈ B∞D player II has a winning strategy in the discrete game GD(Z̃) for G.
Assume that there exists Z ∈ B∞X such that

B∞BX
(Z) ⊆ (B∞D (Z̃))∆/10C .

Then player II has a winning strategy in Gowers’ game GX(Z) for F∆.
Proof. We will define a winning strategy for player II in Gowers’ game

GX(Z) for F∆ provided that he has one in the discrete game GD(Z) for G.
Suppose that we have just completed the nth move of GX(Z) (resp. GD(Z̃))
and x0 < · · · < xn−1 (resp. x̃0 < · · · < x̃n−1) have been chosen by player II
in GX(Z) (resp. in GD(Z̃)).

Suppose that in GX(Z) player I chooses a block sequence Zn = (znk )k ∈
B∞X (Z). By normalizing we may suppose that ‖znk ‖ = 1 for every k, and
so by our assumptions on Z̃ and Z there exists Z̃n = (z̃nk )k ∈ B∞D (Z̃) such
that dist(Zn, Z̃n) ≤ ∆/10C. Then for all k, ‖znk − z̃nk ‖ ≤ δk/10C and so
‖z̃nk ‖ ≥ 1 − δk/10C. Let k0 ≥ n be such that xn−1 < znk0 and let player I
play Z̃n|[k0,∞] = (z̃nk )k≥k0 in the nth move of the discrete game GD(Z̃). Then
player II extends (x̃0, . . . , x̃n−1) according to his strategy in GD(Z̃) for G,
by picking x̃n ∈ 〈(z̃nk )k≥k0〉D. Then x̃n =

∑
k∈In λ

n
k z̃

n
k , where In is a finite

segment in N with min In ≥ k0 and λnk ∈ R. Going back to Gowers’ game
GX(Z), let player II play xn =

∑
k∈In λ

n
kz

n
k . Then xn > xn−1 and so player

II forms in this way a block sequence in BX(Z).
It remains to show that (xn)n ∈ F∆. Since (x̃n)n ∈ G ⊆ F∆/10C ⊆

(B∞BX
)∆/10C , we see that ‖x̃n‖ ≤ 1 + δn/10C for all n. Hence

|λnk | ≤ 2C
‖x̃n‖
‖z̃nk ‖

≤ 2C
1 + δn/10C
1− δk/10C

≤ 2C
1 + δ0/10C
1− δ0/10C

≤ 4C

for all k ∈ In. Therefore,

‖xn − x̃n‖ ≤
∑
k∈In

|λnk | ‖znk − z̃nk ‖ ≤ 4C
∑
k∈In

δk
10C

≤ 4
5
δmin In ≤

4
5
δn.

Since (x̃n)n ∈ F∆/10C , the last inequality gives (xn)n∈N ∈ F4∆/5+∆/10C ⊆
F∆.

The above lemmas lead us to define the next property for a subset D of
X and a given sequence ∆ = (δn)n of positive real numbers.

(D3) (∆-block covering property) For every Z̃ ∈ B∞D there exists Z ∈ B∞X
such that B∞BX

(Z) ⊆ (B∞D (Z̃))∆.

In the next proposition we give an example of a subset D of X with properties
(D1)–(D3). Actually we show that a property much stronger than (D3) can
be satisfied. In particular, for every Z̃ ∈ B∞D with Z̃ = (z̃n)n, if we set
Z = (zn)n with zn = z̃2n + z̃2n+1 then B∞BX

(Z) ⊆ (B∞D (Z̃))∆.
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Proposition 14. For every sequence ∆ = (δn)n of positive real numbers
there is D ⊆ BX ∩ 〈(en)n〉 satisfying (D1)–(D3) and such that (en)n ∈ B∞D .

Proof. Let (kn)n be a strictly increasing sequence of positive integers
such that 2−kn+1 ≤ δn for every n. For i, l ∈ N, l ≥ 1, let

Λ(i, l) = {t · 2−l·(ki+1) : t ∈ Z}
For every finite non-empty segment I = [n1, n2] of N, n1 ≤ n2, define D(I) =
D([n1, n2]) to be the set of all x =

∑n2
i=n1

λiei with the following properties:

(i) For all n1 ≤ i ≤ n2, λi ∈ Λ(i, l), where l = n2 − n1 + 1 is the length
of I.

(ii) The coefficients λn1 and λn2 are both non-zero.
(iii) ‖x‖ ≤ 1.

Finally, we set
D =

⋃
n1≤n2

D([n1, n2]).

It is easy to see that D satisfies (D1)–(D2). In particular, (en)n ∈ B∞D . It
remains to show that D has the ∆-block covering property. Actually, we will
prove that D has a stronger property; to do this we first state the following.

Claim. Let Z̃ ∈ B∞D and let w ∈ 〈Z̃〉 be such that card(supp eZ(w)) ≥ 2
and ‖w‖ ≤ 1. Then there is w̃ ∈ 〈Z̃〉D such that

(1) supp eZ(w̃) = supp eZ(w).
(2) ‖w − w̃‖ ≤ 2−km1+1, where m1 = min supp eZ(w).

Proof of the claim. Let Z̃ = (z̃j)j and let (Ij)j , Ij = [n1(j), n2(j)],
n1(j) ≤ n2(j), be the sequence of successive finite non-empty segments of N
such that z̃j ∈ D(Ij). Let m1 < m2 in N, let (µj)m2

j=m1
be scalars such that

µm1 , µm2 are both non-zero and let w =
∑

j∈[m1,m2] µj z̃j in BX.
Set

w′ = (1− 2−km1 )w =
∑

j∈[m1,m2]

(1− 2−km1 )µj z̃j and w̃ =
∑

j∈[m1,m2]

µ̃j z̃j ,

where µ̃j = sj · 2−(kn1(j)+1) and

sj =

{
d(1− 2−km1 )µj2kn1(j)+1e if µj ≥ 0,
b(1− 2−km1 )µj2kn1(j)+1c if µj < 0,

i.e. µ̃j are of the form sj · 2−(kn1(j)+1) with |µ̃j | ≥ |µj(1− 2−km1 )| and |µ̃j −
(1− 2−km1 )µj | < 2−(kn1(j)+1).

It is easy to see that µ̃j = 0 if and only if µj = 0 and so supp eZ(w̃) =
supp eZ(w). Moreover, for all j, |(1− 2−km1 )µj − µ̃j | ≤ 2−(kn1(j)+1) and so
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‖w′ − w̃‖ ≤
∑

j∈[m1,m2]

∣∣(1− 2−km1 )µj − µ̃j
∣∣ ‖z̃j‖(1)

≤
∑

j∈[m1,m2]

2−(kn1(j)+1) ≤ 2−kn1(m1) ,

and therefore ‖w′ − w̃‖ ≤ 2−km1 , since m1 ≤ n1(m1). As ‖w−w′‖ ≤ 2−km1 ,
we obtain ‖w − w̃‖ ≤ 2−km1+1.

It remains to show that w̃ ∈ D. Since for all j ∈ [m1,m2] we have z̃j ∈
D(Ij), it follows that z̃j =

∑
i∈Ij t

j
i2
−lj(ki+1)ei, where lj = n2(j)− n1(j) + 1

is the length of Ij and t
j
n1(j), t

j
n2(j) are both non-zero. Therefore setting I =

[n1(m1), n2(m2)], we have

(2) w̃ =
∑

j∈[m1,m2]

µ̃j z̃j =
∑

j∈[m1,m2]

µ̃j

(∑
i∈Ij

tji2
−lj(ki+1)ei

)
=
∑
i∈I

λiei

where λi = tji2
−lj(ki+1)µ̃j for all i ∈ Ij and j ∈ [m1,m2], and λi = 0 for all

i ∈ I \
⋃
j∈[m1,m2] Ij .

We first show that condition (i) of the definition of D is satisfied, that is,
λi ∈ Λ(i, l) for all i ∈ I, where l = n2(m2) − n1(m1) + 1 is the length of I.
Since 0 ∈ Λ(i, l), it suffices to check this for each i ∈

⋃
j∈[m1,m2] Ij . So fix

j ∈ [m1,m2] and i ∈ Ij . Then

(3) λi = tji2
−lj(ki+1)µ̃j = tji2

−lj(ki+1)sj2−(kn1(j)+1) = τ ji 2
−l(ki+1)

where τ ji = tjisj2
(l−lj)(ki+1)−(kn1(j)+1). Since m1 < m2 we have l > lj . Also

n1(j) ≤ i and hence (l − lj)(ki + 1) − (kn1(j) + 1) ≥ 0. Therefore τ ji ∈ Z,
which gives that λi ∈ Λ(i, l).

Moreover, since µ̃m1 , µ̃m2 , t
m1

n1(m1), t
m2

n2(m2) are all non-zero we deduce that
λn1(m1) and λn2(m2) are also non-zero and so condition (ii) of the definition of
D is satisfied. Finally, by (1), ‖w̃‖ ≤ ‖w′‖+ 2−kn1(m1) ≤ 1 and so condition
(iii) is fulfilled. We conclude that w̃ ∈ D, and the proof of the claim is
complete.

We continue with the proof of the proposition. Let Z̃ = (z̃j)j in B∞D and
let Z = (zj)j where zj = z̃2j + z̃2j+1 for all j. Pick W = (wi)i in B∞BX

(Z).
Then for each i there exist mi

1 < mi
2 and scalars (µj)j such that wi =∑

j∈[mi
1,m

i
2] µj z̃j ∈ BX and µmi

1
, µmi

2
are both non-zero. By the claim, for each

i there exist scalars (µ̃j)j such that w̃i =
∑

j∈[mi
1,m

i
2] µ̃j z̃j ∈ D and ‖wi− w̃i‖

≤ 2
−k

mi
1
+1 ≤ 2−ki+1 ≤ δi. We set W̃ = (w̃i)i; then W̃ ∈ B∞D (Z̃) and

dist(W̃ ,W ) ≤ ∆. Hence B∞BX
(Z) ⊆ (B∞D (Z̃))∆ and the proof is complete.

It is easy to see that

ρ(x, y) = ‖x− y‖+
∣∣1/‖x‖ − 1/‖y‖

∣∣, x, y ∈ X \ {0},
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is an equivalent metric on (X \ {0}, ‖ · ‖) and that the product topology on
(X \ {0}, ρ)N makes B∞X a Polish space.

Lemma 15. Let F be an analytic subset of B∞X and ∆ = (δn)n be a
sequence of positive real numbers. Then

(i) F∆ is analytic in B∞X .
(ii) For every countable D ⊆ X, F∆ ∩ B∞D is analytic in DN (where D is

endowed with the discrete topology).

Proof. (i) It is easy to see that Q = {(U, V ) : dist(U, V ) ≤ ∆} is closed
in B∞X ×B∞X . Let proj1 (resp. proj2) be the projection of B∞X ×B∞X onto the
first (resp. second) coordinate. Then F∆ = proj1[Q∩ (BX×F)] = proj1[Q∩
proj−1

2 (F)].
(ii) Let I : DN → XN be the identity map. Then I is clearly continuous

and F∆ ∩ B∞D = I−1(F∆).

Theorem 16 (W. T. Gowers). Let X be a normed linear space with a
basis and let F ⊆ B∞BX

be an analytic family of block sequences in the unit
ball BX of X. Then for every ∆ > 0 there exists a block sequence Z ∈ B∞X
such that either B∞BX

(Z) ∩ F = ∅, or player II has a winning strategy in
Gowers’ game GX(Z) for F∆.

Proof. Let (en)n be a normalized basis for X with constant C. Let ∆′ =
(δ′n)n be a sequence of positive real numbers such that δ′0 ≤ 1, δ′n ≤ δn, and∑

i>n δ
′
i ≤ δ′n. By Proposition 14, there is D ⊆ X with (en)n ∈ B∞D satisfying

(D1)–(D3) for ∆′/10C. Let also G = F∆′/10C ∩ B∞D . By Lemma 15, G is
analytic in DN, and applying Theorem 1, we obtain a block sequence Z̃ ∈ B∞D
such that either B∞D (Z̃)∩G = ∅, or player II has a winning strategy in GD(Z̃)
for G. Choose Z ∈ B∞X such that B∞BX

(Z) ⊆ (B∞D (Z̃))∆′/10C . From Lemmas
12 and 13, either B∞BX

(Z) ∩ F = ∅, or player II has a winning strategy in
Gowers’ game GX(Z) for F∆′ , and so (as ∆′ ≤ ∆) for F∆ as well.

5. A Ramsey consequence on k-tuples of block bases. The main
goal of this section is to prove Theorem 2. First we need to do some prelim-
inary work and introduce some notation. Fix a positive integer k ≥ 2. For
each 0 ≤ i ≤ k− 1 and every infinite subset L = {l0 < l1 < · · · } of N we set
Li (mod k) = {lkn+i : n ∈ N} and we define

([L]∞)k◦ =
k−1∏
i=0

[Li (mod k)]
∞ = {(Li)k−1

i=0 ∈ ([L]∞)k : ∀i Li ⊆ Li (mod k)}.

Notice that ([L]∞)k◦ is not hereditary, that is, generally ([L′]∞)k◦ * ([L]∞)k◦
for L′ ⊆ L. Let also

([L]∞)k⊥ = {(Li)k−1
i=0 ∈ ([L]∞)k : ∀i 6= j Li ∩ Lj = ∅}.
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We have the following elementary lemma which relates the above types of
products.

Lemma 17. Let N = {(2n+ 1)k : n ∈ N}. Then

([N ]∞)k⊥ ⊆
⋃

L∈[N]∞

([L]∞)k◦.

Proof. Let (Mi)k−1
i=0 ∈ ([N ]∞)k⊥. Let M =

⋃k−1
i=0 Mi and for each m ∈ M

define the interval Im = [m− im,m− im+k−1] of N where im is the unique
natural number i such that m ∈ Mi. Notice that the length of each Im is k
while the length of an interval with unequal endpoints in N is at least 2k+1.
Hence Im1 ∩ Im2 = ∅ for m1 6= m2, and Im ∩N = {m} for all m ∈M .

Let L =
⋃
m∈M Im. We claim that (Mi)k−1

i=0 ∈ ([L]∞)k◦. Indeed, let L =
(ln)n be the increasing enumeration of L. For each 0 ≤ i ≤ k−1 and m ∈M
let Im(i) = m− im+ i be the ith element of Im. Since (Im)m∈M is a sequence
of pairwise disjoint intervals of N of length k, we easily see that Li (mod k) =⋃
m∈M Im(i). Fix 0 ≤ i ≤ k−1. Thenm ∈Mi if and only if im = i if and only

if Im(i) = m. Hence Mi =
⋃
m∈Mi

{Im(i)} ⊆
⋃
m∈M{Im(i)} = Li (mod k).

The above notation is easily extended to block sequences in the unit ball
BX of a Banach space X as follows. For every Z ∈ B∞X let

(B∞BX
(Z))k◦ = {(Zi)k−1

i=0 ∈ (B∞BX
)k : ∀i Zi � Z|Ni (mod k)

},
and generally for L ∈ [N]∞, set

(B∞BX
(Z|L))k◦ = {(Zi)k−1

i=0 ∈ (B∞BX
)k : ∀i Zi � Z|Li (mod k)

}.
The next lemma is an immediate consequence of Lemma 17.

Lemma 18. Let Z ∈ B∞X and N = {(2n+ 1)k : n ∈ N}. Then

(B∞BX
(Z|N ))k⊥ ⊆

⋃
L∈[N]∞

(B∞BX
(Z|L))k◦.

For a family F ⊆ (B∞BX
)k let

FF = {Z ∈ B∞SX
: F ∩ (B∞BX

(Z))k◦ 6= ∅},
where SX is the unit sphere of X.

Lemma 19. If F is analytic in (B∞X )k, then FF ⊆ B∞SX
is analytic in B∞X .

Proof. Let K = {(Z, (Vi)k−1
i=0 ) ∈ B∞SX

× (B∞BX
)k : (Vi)k−1

i=0 ∈ (B∞BX
(Z))k◦}.

Then K is a closed subset of B∞X × (B∞X )k and FF = proj1[(B∞X × F) ∩K].

Proof of Theorem 2. Let (en)n be a normalized basis of X with ba-
sis constant C. Choose ∆′ = (δ′n)n such that 0 < δ′n ≤ (4C)−1δn and∑∞

j=n+1 δ
′
j ≤ δ′n. By Lemma 19, FF is an analytic subset of B∞BX

, and
by Theorem 16 there is a block subsequence Z = (zn)n such that either
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B∞BX
(Z) ∩ FF = ∅, or player II has a winning strategy in Gowers’ game

GX(Z) for (FF)∆′ . Let Y = Z|N , where N = {(2n+ 1)k : n ∈ N}. We claim
that Y satisfies the conclusion of the theorem.

Indeed, if B∞BX
(Z)∩FF = ∅ then F∩(B∞BX

(Z ′))k◦ = ∅ for all Z ′ ∈ B∞BX
(Z).

In particular, F ∩ (B∞BX
(Z|L))k◦ = ∅ for all L ∈ [N]∞, which by Lemma 18

gives that F ∩ (B∞BX
(Y ))k⊥ = ∅.

So assume that player II has a winning strategy in Gowers’ game GX(Z)
for (FF)∆′ . Since Y = Z|N the same holds for the gameGX(Y ). Fix (Ui)k−1

i=0 ∈
(B∞BX

(Y ))k. We have to show that there exists (Vi)k−1
i=0 ∈ (B∞X )k such that

Vi � Ui and (Vi)k−1
i=0 ∈ F∆. Consider a run of the game such that in the

nth move player I plays Ui, where n = i (mod k). Then player II succeeds
in constructing a block sequence V = (vn)n in (FF)∆′ such that vn ∈ Ui
for all n = i (mod k). Choose W in FF with dist(V,W ) ≤ ∆′ and for each
i, Wi � W |Ni (mod k)

such that (Wi)k−1
i=0 ∈ (B∞BX

(W ))k◦ ∩ F. Let W = (wn)n
and Wi = (win)n. Then for each i = 1, . . . , k there is a block sequence
(F in)n of finite subsets of Ni (mod k) and a sequence (λj)j of scalars such that
win =

∑
j∈F i

n
λjwj for all i and n. We set vin =

∑
j∈F i

n
λjvj and Vi = (vin)n.

Then Vi � V |Ni (mod k)
� Ui for all i. It remains to show that (Vi)k−1

i=0 ∈ F∆. For
this it suffices to see that dist(Vi,Wi) ≤ ∆ for all i. Indeed, fix 0 ≤ i ≤ k− 1
and n ∈ N. Since ‖win‖ ≤ 1 and ‖wj‖ = 1, we get |λj | ≤ 2C and therefore

‖vin − win‖ ≤
∑
j∈F i

n

|λj | ‖vj − wj‖ ≤ 2C
∑
j∈F i

n

δ′j ≤ 4Cδ′n ≤ δn.

Hence (Ui)k−1
i=0 ∈ (F∆)↑.

6. Comments. 1. C. Rosendal [21] proves a Ramsey dichotomy between
winning strategies in Gowers’ game and winning strategies in the infinite
asymptotic game. By appropriately modifying his argument, one can check
that the proof in [21] works in the more general setting of a linear space X
of countable dimension over the field of reals provided that both games are
restricted to a countable subset D of X with property (D1) stated in the
introduction. This modification can be used to derive an alternative proof of
Theorem 1.

2. Theorem 2 is actually an extension of the following fact concerning
pairs of infinite subsets of N. Given an analytic family F ⊆ [N]∞× [N]∞ there
is an infinite subset L of N such that either all disjoint pairs of infinite subsets
of L belong to the complement of F, or for every (L1, L2) ∈ [L]∞×[L]∞, there
is (L′1, L

′
2) ∈ F such that L′i ⊆ Li for all i = 1, 2. To see this, consider the map

Φ : M → (M0,M1) where if M = {mi}i is the increasing enumeration of L
then M0 = {mi}i even and M1 = {mi}i odd. Then apply Silver’s theorem (see
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[23]) for the family Φ−1(F↑) where F↑ = {(L,M) : ∃(L′,M ′) ∈ F with L′ ⊆ L
andM ′ ⊆M}. It is easy to see that keeping the “half” of the monochromatic
set, the result follows. Also, applying K. Milliken’s theorem [16], one can
derive an analogue of the above result for pairs of block sequences of finite
subsets of N.
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