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Summary. We obtain an asymptotic formula for the number of visible points (x, y),
that is, with gcd(x, y) = 1, which lie in the box [1, U ] × [1, V ] and also belong to the
exponential modular curves y ≡ agx (mod p). Among other tools, some recent results of
additive combinatorics due to J. Bourgain and M. Z. Garaev play a crucial role in our
argument.

1. Introduction. We consider points on the exponential modular curves

Ea,g,p = {(x, y) : y ≡ agx (mod p)}.

Furthermore, for real U and V we use Ea,g,p(U, V ) to denote the set of points
(x, y) ∈ Ea,g,p which lie in the box [1, U ]× [1, V ].

Here we obtain an asymptotic formula for the number Na,g,p(U, V ) of
visible points (x, y) ∈ Ea,g,p(U, V ), that is, points satisfying gcd(x, y) = 1.

We note that visible points on some other curves have been studied
in [10, 11, 12]. However, their methods do not extend to the points on Ea,g,p.
In fact, a result of [2] is a crucial ingredient of our argument.

Throughout the paper, the implied constants in the symbols “O” and
“�” are absolute (we recall that A = O(B) and A� B are both equivalent
to the inequality |A| ≤ cB with some constant c > 0).

Theorem 1. For (a, p) = 1 and any primitive root ϑ modulo p,

Na,ϑ,p(U, V ) =
6
π2
· UV
p

+O

((
U1/2V 1/2

p1/4
+

U

V 1/35
+

V

U1/35

)
po(1)

)
for 1 ≤ U, V ≤ p− 1 with UV ≥ p3/2.
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Note that the bound of Theorem 1 is nontrivial if min{U, V } ≥ p35/36+ε

for some fixed ε > 0.

2. Preparations. The following estimate is very well known ([7, 9] and
also [3, 4, 6, 8]).

Let Ma,g,p(U, V ) be the number of points (x, y) ∈ Ea,g,p(U, V ).

Lemma 2. For (ag, p) = 1 and U, V ≤ t where t is the multiplicative
order of g modulo p,

Ma,g,p(U, V ) =
UV

p
+O(p1/2(log p)2).

We now present an upper bound on Ma,g,p(U, V ) which is better than
that in Lemma 2 for small U and V .

Lemma 3. For (ag, p) = 1 and U, V ≤ t where t is the multiplicative
order of g modulo p, we have

Ma,g,p(U, V )� UV

p
+

V

U1/11+o(1)
+

U

V 1/11+o(1)

as U, V →∞.

Proof. By [2, Corollary 5], we have

Ma,g,p(U,U)� U2

p
+

U

U1/11+o(1)
.

For V ≥ U , we just divide the rectangle into O(V/U) squares with side
length U . Then

Ma,g,p(U, V )� V

U

(
U2

p
+

U

U1/11+o(1)

)
,

which gives the desired estimate. The proof for U ≥ V is similar.

We denote by Ra,g,p(K;D) the number of solutions to the congruence

ad ≡ gd (mod p), K + 1 ≤ d ≤ K +D.

Lemma 4. For (ag, p) = 1 and D ≤ p, we have

Ra,g,p(K;D)� D1/2.

Proof. Clearly Ra,g,p(K;D)2 is equal to the number of solutions to the
system of congruences

ad ≡ gd (mod p) and af ≡ gf (mod p), K + 1 ≤ d, f ≤ K +D.

Thus writing f = d+ e we see that

(1) Ra,g,p(K;D)2 ≤ Qa,g,p(K;D),
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where Qa,g,p(K;D) is the number of solutions to the system of congruences

ad ≡ gd (mod p) and a(d+ e) ≡ gd+e (mod p),

where
−D < e < D and K + 1 ≤ d ≤ K +D.

We see that the above congruences imply

(2) e ≡ d(ge − 1) (mod p).

For every e with ge 6≡ 1 (mod p) the congruence (2) defines d uniquely,
so there are O(D) such solutions (e, d). For ge ≡ 1 (mod p) we see from (2)
that e ≡ 0 (mod p), which in turn implies e = 0 (and d can take any values
with K + 1 ≤ d ≤ K + D); so again there are O(D) such solutions (e, d).
Therefore

Qa,g,p(K;D)� D,

and recalling (1) we conclude the proof.

3. Proof of Theorem 1. For (a, p) = 1 = (ϑ, p), we have (aϑy, p) = 1.
By the inclusion-exclusion principle,

Na,ϑ,p(U, V ) =
∞∑
d=1

gcd(d,p)=1

µ(d)
∑

(x,y)∈Ea,ϑ,p(U,V )
d|(x,y)

1

=
∞∑
d=1

gcd(d,p)=1

µ(d)
∑

1≤u≤U/d

∑
1≤v≤V/d

dv≡aϑdu (mod p)

1

=
∞∑
d=1

gcd(d,p)=1

µ(d)Mad,ϑd,p

(
U

d
,
V

d

)
,

where d is the multiplicative inverse of d modulo p and µ(d) is the Möbius
function (see [5, Section 16.3]). We now choose two real parameters p ≥ ∆ >
δ ≥ 1 and write

(3) Na,ϑ,p(U, V ) = Σ1 +Σ2 +Σ3,

where

Σ1 =
∑

gcd(d,p)=1
1≤d≤δ

µ(d)Mad,ϑd,p

(
U

d
,
V

d

)
,

Σ2 =
∑

gcd(d,p)=1
δ<d≤∆

µ(d)Mad,ϑd,p

(
U

d
,
V

d

)
,
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Σ3 =
∑

gcd(d,p)=1
d>∆

µ(d)Mad,ϑd,p

(
U

d
,
V

d

)
.

We use Lemmas 2, 3 and 4 to estimate Σ1, Σ2 and Σ3 respectively.
By Lemma 2,

Σ1 =
∑
d≤δ

µ(d)
(
U

d
· V
d
· 1
p

+O(p1/2(log p)2)
)

=
UV

p

∑
d≤δ

µ(d)
d2

+O(δp1/2(log p)2)

=
6
π2
· UV
p

+O

(
UV

pδ
+ δp1/2(log p)2

)
since

∞∑
d=1

µ(d)
d2

=
1
ζ(2)

=
6
π2

(see [5, Equation (17.2.2)]).
Without loss of generality, we can assume that V ≥ U . Then by Lem-

ma 3,

Σ2 �
∑

δ<d≤∆

(
UV

d2p
+ V U−1/11d−10/11po(1)

)
� UV

pδ
+ V U−1/11∆1/11po(1).

We now define an integer L by the inequalities

2L∆ < min(U, V ) ≤ 2L+1∆

and write

Σ3 ≤
L∑
i=0

∑
2i∆<d≤2i+1∆

Mad,ϑd,p

(
U

2i∆
,
V

2i∆

)

=
L∑
i=0

∑
u≤ U

2i∆

∑
v≤ V

2i∆

∑
2i∆<d≤2i+1∆

d≡avϑdu (mod p)

1.

Thus by Lemma 4,

Σ3 �
L∑
i=0

∑
u≤ U

2i∆

∑
v≤ V

2i∆

(2i∆)1/2 � UV ∆−3/2.

Substituting the above estimates in (3), we obtain
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(4) Na,ϑ,p(U, V )− 6
π2
· UV
p

� UV

pδ
+ δp1/2+o(1) + V U−1/11∆1/11po(1) + UV ∆−3/2.

We now choose
δ = U1/2V 1/2p−3/4

to balance the first and the second terms and

∆ = U24/35

to balance the third and the fourth terms on the right hand side of (4) (and
note that since UV ≥ p3/2 and U ≤ V < p, the condition p ≥ ∆ > δ ≥ 1 is
satisfied), getting

Na,ϑ,p(U, V )− 6
π2
· UV
p
� (U1/2V 1/2p−1/4 + V U−1/35)po(1),

which gives the desired result.

4. Comments. We remark that Lemma 3, which in turn depends
on some results of additive combinatorics due to J. Bourgain and
M. Z. Garaev [1], is an essential ingredient of our proof. Just a combi-
nation of Lemmas 2 and 4 is not sufficient to derive an asymptotic formula
for Na,ϑ,p(U, V ). On the other hand, the ingredients of this paper are quite
sufficient to obtain an asymptotic formula for Na,g,p(U, V ) also in the case
when g is not necessarily a primitive root modulo p.
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