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Summary. A Banach space is said to be L-embedded if it is complemented in its bidual
in such a way that the norm between the two complementary subspaces is additive. We
prove that the dual of a non-reflexive L-embedded Banach space contains l∞ isometri-
cally.

This note is an afterthought to a result of Dowling [2] according to which
a dual Banach space contains an isometric copy of c0 if it contains an asymp-
totic one. (For definitions see below.) It is known ([7] or [4, Th. IV.2.7]) that
the dual of a non-reflexive L-embedded Banach space contains c0 isomorphi-
cally. For a special class of L-embedded Banach spaces the construction of
the c0-copy has been improved so as to yield an asymptotic one ([8, Prop. 6])
and it turns out that this improvement is possible in the general case, which
together with Dowling’s result yields isometric copies of c0 in the dual of an
L-embedded Banach space. As in [7], we will prove a bit more by construct-
ing the c0-copy within the context of Pełczyński’s property (V∗), that is, the
c0-basis will be constructed so as to behave approximately like biorthogonal
functionals on the basis of a given l1-basis in X; see (3) and (4) below where
in particular the value c̃J(xn) in (3) is optimal. (For the definition and some
basic results on Pełczyński’s property (V∗) see [4].)

Preliminaries. A projection P on a Banach space Z is called an L-
projection if ‖Pz‖ + ‖z − Pz‖ = ‖z‖ for all z ∈ Z. A Banach space X is
called L-embedded (or an L-summand in its bidual) if it is the image of an
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L-projection on its bidual. In this case we write X∗∗ = X ⊕1 Xs. Among
classical Banach spaces, the Hardy space H1

0 , L1-spaces and, more generally,
the preduals of von Neumann algebras or of JBW∗-triples serve as examples
of L-embedded spaces. A sequence (xn) in a Banach space X is said to span
c0 asymptotically isometrically (or just to span c0 asymptotically) if there is
a null sequence (δn) in [0, 1[ such that

sup (1− δn)|αn| ≤
∥∥∥∑αnxn

∥∥∥ ≤ sup (1 + δn)|αn|

for all (αn) ∈ c0. X is said to contain c0 asymptotically if it contains such
a sequence (xn). Recall the routine fact that if (x∗n) in X∗ is equivalent to
the canonical basis of c0 then

∑
αnx

∗
n makes sense for all (αn) ∈ l∞ in the

w∗-topology of X∗, and by lower w∗-semicontinuity of the norm an estimate
‖
∑
αnx

∗
n‖ ≤M sup |αn| that holds for all (αn) ∈ c0 extends to all (αn) ∈ l∞.

The Banach spaces we consider in this note are real or complex; the set N
starts at 1.

To a bounded sequence (xn) in a Banach space X we associate its James
constant

cJ(xn) = sup cm where cm = infP
n≥m |αn|=1

∥∥∥∑
n≥m

αnxn

∥∥∥
(the sequence (cm) is increasing). If (xn) is equivalent to the canonical
basis of l1 then cJ(xn) > 0; more specifically, cJ(xn) > 0 if and only if
there is an integer m such that (xn)n≥m is equivalent to the canonical ba-
sis of l1. (Roughly speaking, the number cJ(xn) may be thought of as the
“approximately best l1-basis constant” of (xn); more precisely, there is a
null sequence (τm) in [0, 1[ (determined by cm = (1 − τm)cJ(xn)) such that
‖
∑∞

n=m αnxn‖ ≥ (1 − τm)cJ(xn)
∑∞

n=m |αn| for all (αn) ∈ l1 and m ∈ N,
and cJ(xn) cannot be replaced by a strictly greater constant.) It is imme-
diate from the definition of the James constant of an l1-sequence (xn) that
there are pairwise disjoint finite sets Al ⊂ N and a sequence (λn) of scalars
such that

∑
k∈Al

|λk| = 1 and z̃l → cJ(xn) where z̃l =
∑

k∈Al
λkxk. James’

l1-distortion theorem states that an appropriate subsequence of the sequence
(zl) defined by zl = z̃l/‖z̃l‖ spans l1 almost isometrically in the sense that

(1− 2−m)
∞∑
l=m

|αl| ≤
∥∥∥ ∞∑
l=m

αlzl

∥∥∥ ≤ (1 + 2−m)
∞∑
l=m

|αl|(1)

for all m ∈ N and all (αn) ∈ l1. We will need the fact that if (zl) spans
l1 almost isometrically in an L-embedded space X and if x∗∗ ∈ X∗∗ is a
w∗-accumulation point of the zl then x∗∗ ∈ Xs and ‖x∗∗‖ = 1. This follows
from the proof of [8, Lem. 1] (or from a more elementary argument proving
that dist(x∗∗, X) = ‖xs‖ = 1 where x∗∗ = x+ xs).
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If one passes to a subsequence (xnk
) of (xn) then cJ(xnk

) ≥ cJ(xn); hence
it makes sense to define

c̃J(xn) = sup
nk

cJ(xnk
).

The standard reference for L-embedded Banach spaces is the monograph [4,
Chap. IV]. For general Banach space theory and undefined notation we refer
to [1], [5], or [6].

The main result of this note is

Theorem 1. Let X be an L-embedded Banach space and let (xn) be
equivalent to the canonical basis of l1. Then there is a sequence (x∗n) in X∗
that generates l∞ isometrically, more precisely∥∥∥∑αnx

∗
n

∥∥∥ = sup |αn| for all (αn) ∈ l∞,(2)

and there is a strictly increasing sequence (pn) in N such that

lim |x∗n(xpn)| = c̃J(xm),(3)
x∗n(xpl

) = 0 if l < n.(4)

In particular, the dual of a non-reflexive L-embedded Banach space contains
an isometric copy of l∞.

In order to prove the theorem we first state and prove Dowling’s result
in a way which fits our purpose.

Proposition 2. Let (εn) be a null sequence in [0, 1[, let (Nn) be a se-
quence of pairwise disjoint infinite subsets of N and let (y∗n) in the dual of a
Banach space Y span c0 such that∥∥∥∑αny

∗
n

∥∥∥ ≤ sup (1 + εn)|αn| and ‖y∗n‖ → 1(5)

for all (αn) ∈ c0. Then the elements

x∗n =
∑
k∈Nn

y∗k
1 + εk

(6)

generate l∞ isometrically (as in (2)).

Proof. Clearly, ‖x∗n‖ ≤ 1 for all n ∈ N by the first half of (5). For the
inverse inequality we have

‖x∗n‖ ≥
∥∥∥∥2 y∗m

1 + εm

∥∥∥∥− ∥∥∥∥ y∗m
1 + εm

−
∑

k∈Nn, k 6=m

y∗k
1 + εk

∥∥∥∥ ≥ 2
‖y∗m‖

1 + εm
− 1

for all m ∈ Nn, hence ‖x∗n‖ ≥ 1 by the second half of (5), which proves
‖x∗n‖ = 1.
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Similarly we show (2): First, “≤” of (2) follows from the first half of (5);
second, by the inequality just shown we have∥∥∥∑αnx

∗
n

∥∥∥ ≥ 2|αm| −
∥∥∥αmx∗m −∑

n6=m
αnx

∗
n

∥∥∥ ≥ 2|αm| − sup |αn|

for all m ∈ N, giving “≥” of (2).
Proof of the Theorem. Let (δn) be a sequence in ]0, 1[ converging to 0.

Suppose (xn) is an l1-basis and write c̃ = c̃J(xn) for short.
Observation. Given τ > 0 there is a subsequence (xnk

) of (xn) such
that |c̃− cJ(xnk

)| < τ . By James’ l1-distortion theorem, as described above,
there are pairwise disjoint finite sets Al ⊂ {nk | k ∈ N} and a sequence
(λn) of scalars such that (1) holds with λn, z̃l, zl as above; furthermore
‖z̃l‖ → cJ(xnk

), whence the existence of l′ such that |c̃− ‖z̃l′‖ | < τ .
By induction over n ∈ N we will construct finite sequences (y(n)∗

i )ni=1

in X∗, a sequence (ỹn) in X, pairwise disjoint finite sets Cn ⊂ N and a scalar
sequence (µn) such that, with the notation yn = ỹn/‖ỹn‖,∑

k∈Cn

|µk| = 1, ỹn =
∑
k∈Cn

µkxk, |c̃− ‖ỹn‖ | < δn,(7)

|y(n)∗
i (yi)| > 1− δi ∀i ≤ n,(8)

y
(n)∗
i (yl) = 0 ∀l < i ≤ n,(9)

y
(n)∗
i (xp) = 0 ∀p ∈ Cl, ∀l < i ≤ n,(10) ∥∥∥ m∑
i=1

αiy
(n)∗
i

∥∥∥ ≤ max
i≤m

(1 + (1− 2−n)δi)|αi| ∀m ≤ n, αi scalars.(11)

For n = 1 we use the observation above with τ = δ1 and choose l1 such that
| ‖z̃l1‖ − c̃| < δ1. Then we choose y(1)∗

1 such that ‖y(1)∗
1 ‖ = 1 and y(1)∗

1 (zl1)
= ‖zl1‖. It remains to set C1 = Al1 , µk = λk for k ∈ C1 and ỹ1 = z̃l1 .

For the induction step n 7→ n + 1 we recall that (P ∗)|X∗ is an isomet-
ric isomorphism from X∗ onto X⊥s , that X∗∗∗ = X⊥ ⊕∞ X⊥s and that
(P ∗x∗)|X = (x∗)|X for all x∗ ∈ X∗. Let (zl) be as in the observation above
with τ = δn+1 and let zs ∈ X∗∗ be a w∗-accumulation point of the zl.
Then zs ∈ Xs and ‖zs‖ = 1 (as explained in the preliminaries). Choose
t ∈ kerP ∗ ⊂ X∗∗∗ such that ‖t‖ = 1 and t(zs) = ‖zs‖. Put

E = lin({P ∗y(m)∗
i | i ≤ m ≤ n} ∪ {t}) ⊂ X∗∗∗,

F = lin
(
{zs} ∪

{
xp

∣∣∣ p ∈ ⋃
l≤n

Cl

})
⊂ X∗∗

and choose η > 0 such that

(1 + η)(1 + (1− 2−n)δi) < 1 + (1− 2−(n+1))δi and η < (1− 2−(n+1))δn+1
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for all i ≤ n. The principle of local reflexivity provides an operator R : E →
X∗ such that

(1− η)‖e∗∗∗‖ ≤ ‖Re∗∗∗‖ ≤ (1 + η)‖e∗∗∗‖,(12)
f∗∗(Re∗∗∗) = e∗∗∗(f∗∗),(13)

for all e∗∗∗ ∈ E and f∗∗ ∈ F .
We define y(n+1)∗

i = R(P ∗y(n)∗
i ) for i ≤ n and y(n+1)∗

n+1 = Rt and obtain
(11)n+1 (with αi = 0 if m < i ≤ n+ 1) by∥∥∥n+1∑

i=1

αiy
(n+1)∗
i

∥∥∥ (12)

≤ (1 + η)
∥∥∥( n∑

i=1

αiP
∗y

(n)∗
i

)
+ αn+1t

∥∥∥
= (1 + η) max

(∥∥∥ n∑
i=1

αiP
∗y

(n)∗
i

∥∥∥, ‖αn+1t‖
)

= (1 + η) max
(∥∥∥ n∑

i=1

αiy
(n)∗
i

∥∥∥, ‖αn+1t‖
)

(11)

≤ (1 + η) max
(
max
i≤n

(1 + (1− 2−n) δi)|αi|, |αn+1|
)

≤ max
i≤n+1

(1 + (1− 2−(n+1)) δi)|αi|.

Since zs is a w∗-cluster point of (zl) we have

|y(n+1)∗
n+1 (zl)| > |zs(y

(n+1)∗
n+1 )| − δn+1

(13)
= |t(zs)| − δn+1 = 1− δn+1

for infinitely many l; furthermore, an ln+1 can be chosen among those l so
as to obtain | ‖z̃ln+1‖ − c̃| < δn+1. Set Cn+1 = Aln+1 , ỹn+1 = z̃ln+1 , µk = λk
for k ∈ Cn+1. Then (7)n+1 holds and (8)n+1 holds for i = n+ 1. For i ≤ n,
(8)n+1 follows from

y
(n+1)∗
i (yi) = (P ∗y(n)∗

i )(yi) = y
(n)∗
i (yi)

(8)
> 1− δi.

Condition (10)n+1 holds for i = n+ 1 by

y
(n+1)∗
n+1 (xp) = (Rt)(xp)

(13)
= t(xp) = 0 ∀p ∈ Cl, ∀l < n+ 1

and it holds for i < n+ 1 by

y
(n+1)∗
i (xp) = (P ∗y(n)∗

i )(xp) = y
(n)∗
i (xp)

(10)
= 0 ∀p ∈ Cl, ∀l < i.

Condition (9)n+1 follows from (10)n+1. This ends the induction.
Now we define y∗i = 1

1+δi
limn∈U y

(n)∗
i for all i ∈ N where U is a fixed

nontrivial ultrafilter on N and where the limit is understood in the w∗-topo-



36 H. Pfitzner

logy of X∗. Then by w∗-lower semicontinuity of the norm and by (11),∥∥∥∑αiy
∗
i

∥∥∥ ≤ sup (1 + δi)
|αi|

1 + δi
= sup |αi|

for all (αi) ∈ l∞. In particular, ‖y∗i ‖ ≤ 1, hence ‖y∗i ‖ → 1 by (8) and (y∗i )
satisfies (5) for εn = 0.

Let (Nn) be a sequence of pairwise disjoint infinite subsets of N such that
(in) increases strictly where in = minNn. By the proposition the sequence
defined by

x∗n =
∑
i∈Nn

y∗i

generates l∞ isometrically and we have

|x∗n(yin)| (9)
= |y∗in(yin)|

(8)

≥ 1− δin
1 + δin

.

By construction of the yi there is, for each n ∈ N, an index pn ∈ Cin such
that

(1 + δin)|x∗n(xpn)| ≥ (1− δin)‖ỹin‖
(7)

≥ (1− δin)(c̃− δin),

which will yield “≥” of (3). In order to show “≤” of (3) suppose to the
contrary that x∗nm

(xpnm
) > κ + c̃ for appropriate subsequences, all m and

κ > 0. According to an extraction lemma of Simons [10] we may furthermore
suppose that

∑
j 6=m |x∗nj

(xpnm
)| < κ/2 for all m. Then given (αm) and θm

such that θmαm = |αm| we obtain∥∥∥∑αmxpnm

∥∥∥ ≥ (∑
j

θjx
∗
nj

)(∑
m

αmxpnm

)
(14)

≥ (κ+ c̃)
∑
m

|αm| −
∑
m

∑
j 6=m
|αm| |x∗nj

(xpnm
)|

≥ (κ/2 + c̃)
∑
m

|αm|,

which yields the contradiction cJ(xpnm
) > c̃ and thus shows “≤” and all

of (3), whereas (4) follows from (10) via y∗i (xp) = 0 for p ∈ Cl, l < i.
The last assertion of the theorem is immediate from the fact that non-

reflexive L-embedded spaces contain l1 isomorphically [4, IV.2.3].

Remarks. 1. It is not clear whether (4) can be obtained also for l >n.
What can be said by Simons’ extraction lemma (used in the proof) is that,
under the assumptions of the theorem and given ε > 0, it is possible (af-
ter passing to appropriate subsequences) to deduce in addition to (4) that∑l−1

n=1 |x∗n(xpl
)| =

∑
n6=l |x∗n(xpl

)| < ε for all l. In case c̃J(xn) = 1 = lim ‖xn‖
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(which happens when the xn span l1 almost isometrically) this can be im-
proved to∑

n6=l
|x∗n(xpl

)| =
(∑

n

|x∗n(xpl
)|
)
− |x∗l (xpl

)| ≤ ‖xpl
‖ − |x∗l (xpl

)| → 0.(15)

One might also construct straightforward perturbations of the x∗n in order
to get (4) for l 6= n but then it is not clear whether these perturbations can
be arranged to span c0 isometrically, not just almost isometrically.

Since in general L-embedded spaces do not contain l1 isometrically (see
below, last remark) it is not in general possible, in case all xn have the same
norm, to improve (3) and (4) so as to obtain x∗n(xpl

) = c̃(xm) if l = n and
= 0 if l 6= n.

2. As already alluded to in the introduction, the construction of c0 in this
paper bears much resemblance to the one of [7]. A different way to construct
c0 is contained in [9] but it seems unlikely that this construction can be
improved to yield an isometric c0-copy.

3. It follows from (3) (or rather from a reasoning similar to the one in
(14)) that c(xpn) ≥ c̃(xn), which means that in L-embedded spaces the sup
in the definition of c̃J is attained by the James constant of an appropriate
subsequence. For general Banach spaces this is not known, although it can
be shown by a routine diagonal argument that each bounded sequence (xn)
admits a cJ -stable subsequence (xnk

) (meaning that c̃J(xnk
) = cJ(xnk

))
whose James constant is arbitrarily near to c̃(xn).

4. Each normalized sequence (xn) in an L-embedded Banach space that
spans l1 almost isometrically contains a subsequence each of whose w∗-
accumulation points in the bidual attains its norm on the dual unit ball.
To see this, let (x∗n) and (xpn) be the sequences given by the theorem and by
Simons’ extraction lemma (see (15) above), let xs be a w∗-accumulation point
of the xpn and let x∗ =

∑
x∗n; then ‖x∗‖ = 1 and on the one hand ‖xs‖ = 1 by

[8] and on the other hand xs(x∗) = limx∗(xpn)
(15)
= limx∗n(xpn)

(3)
= cJ(xn) = 1.

It would be interesting to know whether this remark holds for the whole
sequence (xn) instead of only a subsequence (xpn). A kind of converse follows
from [9, Rem. 2] for separable X: If xs ∈ Xs attains its norm on the dual
unit ball then it does so on the sum of a wuC-series.

5. Let us finally note that the presence of isometric c0-copies in X∗ does
not necessarily entail the presence of isometric copies of l1 in X even if X is
the dual of an M-embedded Banach space. This follows from [4, Cor. III.2.12],
which states that there is an L-embedded Banach space which is the dual of
an M-embedded space (to wit, the dual of c0 with an equivalent norm) which
is strictly convex and therefore does not contain l1 isometrically although it
contains, as do all non-reflexive L-embedded spaces, l1 asymptotically ([8],
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see [3] for the definition of asymptotic copies (1) and the difference from
almost isometric ones).

References

[1] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
[2] P. N. Dowling, Isometric copies of c0 and `∞ in duals of Banach spaces, J. Math.

Anal. Appl. 244 (2000), 223–227.
[3] P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett, The optimality of

James’s distortion theorems, Proc. Amer. Math. Soc. 125 (1997), 167–174.
[4] P. Harmand, D. Werner, and W. Werner, M-ideals in Banach Spaces and Banach

Algebras, Lecture Notes in Math. 1547, Springer, 1993.
[5] W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach

Spaces, Volumes 1 and 2, North-Holland, 2001, 2003.
[6] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I and II, Springer, Berlin,

1977, 1979.
[7] H. Pfitzner, L-summands in their biduals have Pełczyński’s property (V∗), Studia

Math. 104 (1993), 91–98.
[8] —, A note on asymptotically isometric copies of l1 and c0, Proc. Amer. Math. Soc.

129 (2001), 1367–1373.
[9] —, Separable L-embedded Banach spaces are unique preduals, Bull. London Math.

Soc. 39 (2007), 1039–1044.
[10] S. Simons,On the Dunford–Pettis property and Banach spaces that contain c0, Math.

Ann. 216 (1975), 225–231.

Hermann Pfitzner
Université d’Orléans
BP 6759
F-45067 Orléans Cedex 2, France
E-mail: hermann.pfitzner@univ-orleans.fr

Received January 8, 2010;
received in final form March 25, 2010 (7744)

(1) In the literature there is another notion of “asymptotic lp” which is quite different
from the one of this note.

http://dx.doi.org/10.1006/jmaa.2000.6714
http://dx.doi.org/10.1090/S0002-9939-97-03537-5
http://dx.doi.org/10.1090/S0002-9939-00-05786-5
http://dx.doi.org/10.1112/blms/bdm077
http://dx.doi.org/10.1007/BF01430962

