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Summary. We prove that if %H and δ are the Hausdorff metric and the radial metric on
the space Sn of star bodies in Rn, with 0 in the kernel and with radial function positive
and continuous, then a family A ⊂ Sn that is meager with respect to %H need not be
meager with respect to δ. Further, we show that both the family of fractal star bodies and
its complement are dense in Sn with respect to δ.

0. Introduction. Following [3], we say that a set A in a metric space
is of the first Baire category or meager if A is a countable union of nowhere
dense sets; the complement of a meager set is called generic and its elements
typical.

The problem of what families are of the first Baire category in the hyper-
space Cn of nonempty compact subsets of Rn endowed with the Hausdorff
metric %H or in subspaces of Cn has been considered by many authors; see,
for example, [3], [4], [10].

The present paper is an effect of discussion around the paper [1] con-
cerning Baire category problems for some families of compact n-dimensional
manifolds with boundary in Rn. Some of those families coincide with Snε for
ε > 0, where Snε consists of the compact subsets of Rn star-shaped at 0,
with continuous radial functions, and containing the ball εBn. In view of the
main result, the Frame Approximation Theorem ([1, p. 536]), the subfamily
of Snε whose members have fractal boundaries is meager. The proof is based
on Theorem 2 in [3] that concerns the Hausdorff metric, but the author deals
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with the sup metric as well. For the particular case mentioned above this
metric corresponds to the radial metric.

However, it is well known that the radial metric is topologically strictly
stronger than the Hausdorff metric (see [5] or [8, 14.3.4]).

Generally, it is easy to see that if d1 and d2 are two metrics on someX and
d2 is topologically stronger than d1, then a subset A of X may be meager in
(X, d1) but nonmeager in (X, d2). (For instance, if d1 is the Euclidean metric
and d2 the “railway metric” in R2, then for x 6= 0, the segment A = ∆(0, x)
is meager in (R2, d1) but not meager in (R2, d2).)

Thus, it is natural to ask the following question concerning the family
Sn :=

⋃
ε>0 Snε :

Question 0.1. Is it true that for any subfamily A of Sn, if A is meager
in Sn with respect to %H , then it is meager in Sn with respect to δ?

We answer this question in the negative in Section 2.
Let us notice that for star bodies the radial metric is the most natural

and commonly used. Thus, we are interested in the following.

Question 0.2. Does the Frame Approximation Theorem of [1] hold for
the families Snε or their union, Sn, endowed with the radial metric?

This problem is still open. In Section 3 we prove some related results on
the family of nonfractal star bodies and some families of fractal star bodies
(Corollaries 3.8 and 3.9).

1. Preliminaries. We follow, in principle, the terminology and notation
used, for instance, in [7]. In particular, dimX is the topological dimension
of a (separable) metric space X and dimF is a fractal dimension (as de-
fined axiomatically in [7]). The Hausdorff and the Minkowski dimensions are
denoted by dimH and dimM , respectively.

The unit ball in Rn with Euclidean metric dE is denoted by Bn.
We use the symbols cl, int, bd, and conv (with subscripts, if needed) to

denote closure, interior, boundary, and convex hull, respectively.
The segment with endpoints a, b ∈ Rn is ∆(a, b) = {(1 − t)a + tb | 0 ≤

t ≤ 1}. The unit sphere in Rn in Sn−1 := bdBn.
A subset A of Rn is star-shaped at a ∈ A provided that ∆(a, x) ⊂ A for

every x ∈ A. The set

kerA := {a ∈ A | A is star-shaped at a}

is called the kernel of A. A star-shaped set A is called a star body whenever
A is compact and cl intA = A.
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We are interested in the family Sn of star bodies in Rn with 0 in the
kernel. It can be endowed with the Hausdorff metric %H , but the most natural
metric for Sn is the radial metric δ defined by the radial functions restricted
to Sn−1: for every A ∈ Sn the radial function ρA : Sn−1 → R+ is defined by

ρA(u) := sup{λ > 0 | λu ∈ A};
and the radial metric δ is just the sup metric for radial functions.

As is well known, the ε-parallel body (A)ε of a compact subset A of
a metric space is defined to be the set of points with distance at most ε
from A. In particular, in the Euclidean n-space,

(1.1) (A)ε = A+ εBn,

where + is the Minkowski addition.
While the Minkowski addition has especially good properties for compact

convex sets (e.g. the cancellation law is satisfied), for star bodies the so called
radial addition +̃ is more natural and commonly used. It can be defined by
means of radial functions as follows:

ρA1+̃A2
(u) := ρA1(u) + ρA2(u) for every u ∈ Sn−1.

Then the counterpart of the formula (1.1) for the radial ε-hull has the radial
sum A +̃ εBn on its right hand side.

A star body A in Rn is fractal with respect to a fractal dimension dimF

if its boundary is fractal with respect to dimF , that is, dimF bdA > n− 1,
or equivalently, dimF graph ρA > n−1. A star body A is locally fractal if for
every nonempty U open in bdA the set U is fractal (compare [7]).

2. Baire category problem for star bodies. The following result
gives a negative answer to Question 0.1.

Theorem 2.1. There exists a family A in Sn meager with respect to %H
but not meager with respect to δ.

Proof. Let A be the ball in the hyperspace (Sn, δ), with center Bn and
radius r = 1/3. That is,

(2.1) A := {A ∈ Sn | δ(A,Bn) ≤ 1/3}.
In other words,

(2.2) A ∈ A ⇔ A ∈ Sn and
2
3
Bn ⊂ A ⊂ 4

3
Bn.

Of course, int(Sn,δ)A 6= ∅, whence A is not meager with respect to δ,
because (Sn, δ) is a Baire space.

We are going to prove that A is meager with respect to %H .
Let us first show that

(2.3) int(Sn,%H)A = ∅,
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i.e., for any A ∈ A there exists a sequence (Xk)k∈N in Sn \ A convergent
to A with respect to %H .

Take an A ∈ A. Consider a sequence (αk)k∈N in (0;π/4] convergent to 0,
and let a = 1

3en. For every k, let Ck be the cone in Rn defined by

Ck := {a} ∪ {x ∈ Rn \ {a} | ∠(x− a, en) ≤ αk}
and let

Xk := A \ intCk.

Then, evidently, Xk ∈ Sn \ A for every k, and limH Xk = A.
Further, let us notice that A is closed in (Sn, %H); indeed, if a sequence

(Yk)k∈N in A is Hausdorff convergent to a star body Y0 ∈ Sn, then, by (2.2)
applied twice, first to each Yk for k ∈ N (the implication ⇒) and next to Y0

(the implication ⇐), we infer that Y0 ∈ A.
Hence, A is nowhere dense in the space (Sn, %H) and so it is meager.
This completes the proof.

3. Properties of some families of star bodies, fractal or nonfrac-
tal. Let us start with Bloch’s paper [1]. The author deals with any compact
n-dimensional C1-manifold with boundary, M ⊂ Rn, and a C1-embedding
f : bdM × [0,∞) → M (or f : bdM × [0,∞) → Rn \ intM) satisfy-
ing condition f(x, 0) = x for every x ∈ bdM . Every continuous function
g : bdM → [0,∞) determines a new manifold G contained in M (or con-
taining M) such that bdG is bilipschitz equivalent to f(graph g). (Let us
note that originally, instead of bilipschitz equivalence the author deals with
some identifications.) Speaking more intuitively, when using g one obtains
such a new manifold by pushing bdM inside (or outside) the given manifold
M along the unique fibres f({x} × [0,∞)). The class of manifolds G just
described is denoted by Ff (M).

Let us observe that for some particular M and f , the class Ff (M) coin-
cides with Snε defined in the Introduction.

Remark 3.1. For a fixed ε > 0, let M := εBn, and let f : εSn−1 × R+

→ Rn be defined by

(3.1) f(εu, t) := (ε+ t)u for u ∈ Sn−1, t ∈ R+.

If g ∈ C0(εSn−1 × R+), then the function ρ : Sn−1 → R+ defined by
ρ(u) := ε+ g(εu) is the radial function of a set A ∈ Ff (M) with

bdA = {f(εu, g(εu)) | u ∈ Sn−1}.
This function ρ is continuous and positive; moreover ρ(u) ≥ ε for every
u ∈ Sn−1. Thus A ∈ Snε .

We are now going to prove two statements concerning arbitrary metric
spaces.
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Proposition 3.2. Let (X, d) be a metric space and let φ : X → R be a
Lipschitz function. Then the function φ∗ : X × R → X × R defined by the
formula

(3.2) φ∗(x, α(x)) := (x, α(x) + φ(x))

is bilipschitz with respect to any product metric in X × R.

Proof. Consider the product metric d̄ on X × R:

(3.3) d̄ ((x, α), (y, β)) := d(x, y) + |α− β|.
It is metrically equivalent to any other product metric, (see [6] or [7, Lem-
ma 2.2]).

Let λ := Lipφ. Evidently,

(3.4) λ = Lip(−φ) and (−φ)∗ = (φ∗)−1.

By (3.2) and (3.3),

d̄ (φ∗(x, α), φ∗(y, β)) = d(x, y) + |(α+ φ(x))− (β + φ(y))|
≤ d(x, y) + |φ(x)− φ(y)|+ |α− β|
≤ (1 + λ)(d(x, y) + |α− β|
= (1 + λ)d̄ ((x, α), (y, β)) .

Thus Lip(φ∗) ≤ 1 + λ and by (3.4), Lip((φ∗)−1) = Lip((−φ)∗) ≤ 1 + λ. This
completes the proof.

Corollary 3.3. Let (X, d) be a metric space and let φ : X → R be
a Lipschitz function. Then for any function γ : X → R, the graphs of the
functions γ and γ + φ are bilipschitz equivalent.

Proof. Let us observe that the function φ∗ defined by (3.2) maps graph γ
onto graph(γ + φ). Hence, φ∗|graph γ is the required bilipschitz equivalence
onto graph(γ + φ).

We apply Corollary 3.3 to obtain the following modification of Theo-
rem 4.4 of [7] concerning the Hausdorff dimension and a family of star bodies
that is larger than Sn.

Corollary 3.4. Let A,L ∈ Sn and let ρL be Lipschitzian. Then for any
fractal dimension dimF and any nonempty S0 ⊂ Sn−1,

(3.5) dimF (graph(ρA+̃L|S0)) = dimF (graph(ρA|S0)).

Proof. Let X := S0 ⊂ Sn−1, φ := ρA|S0, and γ := ρL|S0. Then, by
Corollary 3.3, the graphs of ρA|S0 and ρA+̃L|S0 are bilipschitz equivalent,
whence the equality (3.5) holds.

Since any fractal dimension of the boundary of a star body in Sn equals
the dimension of the graph of its radial function (see [7, Corollary 2.5]), as
a direct consequence of Corollary 3.4 we obtain the following.
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Corollary 3.5. Let dimF be any fractal dimension and let L ∈ Sn
have the radial function Lipschitzian. Then the operation A 7→ A +̃L on Sn
preserves the following subfamilies of Sn:
• the family of star bodies fractal with respect to dimF ;
• the family of star bodies locally fractal with respect to dimF ;
• the family {A ∈ Sn | dimF bdA = s} for a given real s ≥ n− 1.

We are now interested in dense subfamilies of Snε or Sn.
Theorem 3.6. Let A ∈ Sn and ε > 0. Then for any fractal dimension

dimF , the family

X := {X ∈ Snε | for every nonempty S0 ⊂ Sn−1,

dimF graph(ρX |S0) = dimF graph(ρA|S0)}
is dense in Snε .

Proof. Let C ∈ Snε and α > 0. It suffices to find X ∈ X such that

(3.6) sup
u
|ρX(u)− ρC(u)| ≤ α.

Since ρC (being a nonnegative, continuous, and bounded function on
Sn−1) is the restriction of a continuous, nonnegative, and bounded function
on the ball Bn (compare [2, (2.18)]), it can be approximated (with respect
to the sup metric) by Lipschitz functions (for instance, by restrictions of
polynomials in n variables defined on Bn). Thus, there is a Lipschitz function
φ : Sn−1 → R+ such that supu∈Sn−1 |φ(u)− ρC(u)| < α/3.

Let X be defined by

(3.7) ρX(u) := φ(u) +
α

3

(
1 +

ρA(u)
sup ρA

)
.

Then X ∈ Snε , because for every u ∈ Sn−1,

ρX(u) > φ(u) +
α

3
>

(
ρC(u)− α

3

)
+
α

3
= ρC(u) ≥ ε.

Further, for every u ∈ Sn−1,

|ρX(u)− ρC(u)| =
∣∣∣∣φ(u) +

α

3

(
1 +

ρA(u)
sup ρA

)
− ρC(u)

∣∣∣∣
≤ |φ(u)− ρC(u)|+ α

3

(
1 +

ρA(u)
sup ρA

)
≤ α.

Finally, let ∅ 6= S0 ⊂ Sn−1. Then from Corollary 3.4 it follows that

dimF graph(ρX |S0) = dimF graph(ρA|S0);

hence X ∈ X .
This completes the proof.
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The following remark can be easily generalized to arbitrary topological
spaces and unions of their subspaces. We formulate it for our particular case
only.

Remark 3.7. Let A be a subfamily of Sn. If for every ε > 0 the in-
tersection A ∩ Snε is dense in Snε , then A is dense in Sn. (This is a direct
consequence of the fact that the closure of a union contains the union of the
closures.)

As a direct consequence of Theorem 3.6 we obtain the following.

Corollary 3.8. Let dimF be a fractal dimension and let s be a real
number, s ≥ n − 1. Then each of the following subfamilies of Sn is either
empty or dense in Sn:

• {X ∈ Sn | dimF bdX = s};
• {X ∈ Sn | ∀U ⊂ bdX, U is nonempty and open in bdX ⇒ dimF U

= s};
• {X ∈ Sn | X is locally fractal with respect to dimF }.

Corollary 3.9. Both the family FSn(dimF ) of star bodies fractal with
respect to dimF and its complement are dense in Sn.

Proof. Applying Corollary 4.8 for any s > n− 1 we obtain the first part
of the statement. For s = n− 1 we obtain the second part.
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