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Summary. In ZF, i.e., the Zermelo–Fraenkel set theory minus the Axiom of Choice AC,
we investigate the relationship between the Tychonoff product 2P(X), where 2 is 2 = {0, 1}
with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets
of X, where X = ω, R. We also study the possible placement of well-known topological
statements which concern the cited spaces in the hierarchy of weak choice principles.

1. Notation and terminology. Let X = (X,T ) be a topological space.
Throughout the paper, we shall denote topological spaces by bold letters and
underlying sets by non-bold letters.

A space X is said to be compact iff every open cover U of X has a finite
subcover V. Equivalently, X is compact iff every family G of closed subsets of
X with the finite intersection property, fip for abbreviation, has a non-empty
intersection.

Furthermore, X is said to be a Loeb space iff K(X) \ {∅}, where K(X) is
the family of all closed subsets of X, has a choice function. A choice function
f of K(X) \ {∅} is called a Loeb function.

Given a setX, 2X will denote the Tychonoff product of the discrete space
2 (2 = {0, 1}), and

BX = {[p] : p ∈ Fn(X, 2)},
where Fn(X, 2) is the set of all finite partial functions from X into 2 and
[p] = {f ∈ 2X : p ⊂ f}, will denote the standard base for the product
topology on 2X .
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If X 6= ∅ then S(X) will denote the Stone space of the Boolean algebra
of all subsets of X, i.e., the set of all ultrafilters on X together with the
topology having as a base the collection of all (clopen) sets of the form

[Z] = {F ∈ S(X) : Z ∈ F}, Z ⊆ X.

A family F of subsets of X is independent if for any two finite, disjoint
sets A,B ⊆ F the set (

⋂
A) ∩ (

⋂
{Bc : B ∈ B}) is infinite.

Next we list the choice principles we shall be using in the paper.

1. CAC (Form 8 in [4]): AC restricted to countable families of non-empty
sets.

2. DC (Principle of Dependent Choices and form 43 in [4]): For
every set X 6= ∅, for every binary relation R on X such that Dom(R)
= X, there is a sequence (xn)n∈ω ⊆ X such that ∀n ∈ ω, xnRxn+1.

3. SPFB(X): For every family {Hi : i ∈ I} of filterbases of X there
exists a family {Fi : i ∈ I} of ultrafilters of X satisfying Hi ⊆ Fi for
all i ∈ I.

4. WSPFB(X): For every family {Hi : i ∈ I} of filterbases of X such
that for every i ∈ I, there exists an ultrafilter F of X extending Hi,
there exists a family {Fi : i ∈ I} of ultrafilters of X satisfying Hi ⊆ Fi

for all i ∈ I.
5. BPI(X): Every filterbase of X is included in an ultrafilter of X.
6. BPI (Boolean Prime Ideal Theorem and form 14 in [4]): Ev-

ery Boolean algebra has a prime ideal. Equivalently, for every set X,
BPI(X).

7. UF(X): There is a free ultrafilter on X.

Note that BPI → BPI(R) → BPI(ω) → UF(ω). In [1] it is shown that
UF(ω) is equivalent to UF(R) and in [6] it is shown that BPI(ω) does not
imply BPI(R) in ZF. Whether UF(ω) → BPI(ω) is an open problem.

Throughout the paper ℵ will always denote a well-ordered infinite cardi-
nal number. As usual, ω denotes the set of natural numbers and N denotes
the set of positive integers.

2. Introduction and some preliminary results. In this paper we
study the relationship between the spaces 2P(X) and S(X), where X = ω,R,
with respect to compactness, the Loeb property, embeddings, and cardinality
of S(X) and of infinite closed subsets of S(X). Moreover, we are interested in
the placement of well-known topological results concerning 2P(X) and S(X)
in the hierarchy of weak choice principles.

Some of the goals we intend to meet in the current investigation are listed
below:
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(1) In ZF and for X = ω,R, the principle BPI(X) implies “2P(X) is a
continuous image of S(X)” (Theorem 6(i)).

(2) In ZF and for X = ω,R, if S(X) is compact and Loeb then |S(X)| =
|2P(X)| , which in turn implies UF(X) (Theorem 6(iii)).

(3) In ZF, for every infinite set X, S(X) embeds as a closed subspace of
2P(X) (Theorem 7(i)).

(4) In ZFC (= ZF + AC), 2P(X) does not embed as a subspace of S(X),
X = ω,R (Corollary 11(ii)).

(5) DC implies that every infinite closed subset of S(ω) contains a topo-
logical copy of S(ω) (Theorem 10(i)).

(6) DC and “S(ω) is compact and Loeb” together imply that every in-
finite closed subset of S(ω) has size |2R| (Theorem 10)(ii)).

(7) BPI(ω) implies that S(ω) \ ω contains a topological copy of S(ω),
which in turn implies UF(ω) (Theorem 10(iii)).

(8) CAC implies that for every infinite set X and for every countably
infinite relatively discrete subspace G of S(X), G is homeomorphic
to S(ω) (Theorem 10(iv)).

Before launching into the proofs of the main results we present some pre-
liminary facts. The first one, Proposition 1 below, is a good reason for study-
ing Loeb spaces. In addition, this kind of space is useful because of Proposi-
tion 2 which is a ZF result concerning Tychonoff products of compact spaces.

Proposition 1.

(i) For every set X, S(X) is Loeb iff WSPFB(X).
(ii) For every set X, S(X) is compact and Loeb iff SPFB(X).
(iii) For every set X, WSPFB(X) and BPI(X) iff SPFB(X).
(iv) WSPFB(ω) does not imply SPFB(ω). Equivalently, “S(ω) is Loeb”

does not imply “S(ω) is compact”. In particular, WSPFB(ω) does
not imply BPI(ω).

Proof. (i)(→) Fix a family {Hi : i ∈ I} of filterbases of X as in
WSPFB(X) and let f be a Loeb function of S(X). Clearly, Gi =

⋂
{[H] :

H ∈ Hi} is a non-empty closed subset of S(X). It is straightforward to see
that {Fi = f(Gi) : i ∈ I} satisfies the conclusion of WSPFB(X) for the
family {Hi : i ∈ I}.

(i)(←) Since, for every K ∈ K(S(X)) \ {∅}, K =
⋂
{[A] : A ∈ P(X) and

K ⊂ [A]}, it follows that HK = {A ∈ P(X) : K ⊂ [A]} is a filterbase of X
included in every element of K. Hence, {HK : K ∈ K(S(X)) \ {∅}} satisfies
the hypotheses of WSPFB(X). Let {FK : K ∈ K(S(X)) \ {∅}} satisfy the
conclusion of WSPFB(X) for the collection {HK : K ∈K(S(X))\{∅}}. It
is straightforward to verify that the function f : K(S(X)) \ {∅} → S(X),
f(K) = FK , is a Loeb function of S(X).
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(ii) is straightforward in view of (i) and the observation that SPFB(X)
implies that every filterbase of X can be extended to an ultrafilter (equiva-
lently, S(X) is compact).

(iii) is obvious.
(iv) Any ZF model, such as Solovay’s ModelM5(ℵ) in [4], satisfying the

negation of UF(ω) satisfies WSPFB(ω) and the negation of SPFB(ω) and
of BPI(ω).

Proposition 2 ([3], [10]). (ZF) Let (Xi)i∈ℵ be a family of compact T1

spaces. Then the product X =
∏

i∈ℵXi is compact and Loeb iff there exists
a family (fi)i∈ℵ such that for all i ∈ ℵ, fi is a Loeb function for Xi. In
particular:

(i) 2ℵ (resp. [0,1]ℵ) is compact and Loeb.
(ii) AC restricted to families of non-empty sets of reals (equivalently,

“R is well-orderable”) implies “2R is compact and Loeb”.

In view of (ii) of Proposition 2, a number of questions arise at this point.

Question 1.

(i) Is any of the statements “2R is Loeb”, “2R is compact” provable in
ZF?

(ii) Does any of the statements “2R is Loeb”,“2R is compact” imply
AC(R)?

(iii) Does the conjunction “2R is Loeb” and “2R is compact” implyAC(R)?
(iv) Does “2R is Loeb” imply “2R is compact”?
(v) Does “2R is compact” imply “2R is Loeb”?

Regarding Question 1(i), that “2R is compact” is not provable in ZF has
been established in [5], and that “2R is Loeb” is not provable in ZF has been
established in [8] (both fail in Cohen’s Second ModelM7 in [4]).

Regarding (ii) and (iii) the answer is in the negative. Indeed, BPI implies
“2R is Loeb” and “2R is compact” and it is known that in Cohen’s Basic
ModelM1 in [4], BPI holds but AC(R) fails.

Taking into account the following result from [6], we get a partial answer
to Question 1(v):

Theorem 3 ([6]). The following statements are pairwise equivalent:

(i) 2R is compact.
(ii) BPI(ω).
(iii) For every separable compact T2 space X, XR is compact.
(iv) In a Boolean algebra B of size ≤ |R| every filter can be extended to

an ultrafilter.
(v) Tychonoff products of finite subspaces of R are compact.
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Theorem 3 also justifies the introduction of the principle “2P(R) is com-
pact” in the next lemma.

Lemma 4.

(i) “2R is compact” implies “for every separable compact T2 space X, for
every family G = {Gi : i ∈ I ⊆ R} of non-empty closed subsets of X,
there exists a choice function of G”. In particular, “2R is compact”
implies “every family G = {Gi : i ∈ R} of non-empty closed subsets
of 2R has a choice function”, and BPI(ω) implies “for every family
G = {Gi : i ∈ R} of filterbases of ω there exists a family {Fi : i ∈ R}
⊂ S(ω) such that for every i ∈ R, Gi ⊂ Fi”.

(ii) “2P(R) is compact” implies “2R is compact” and “2R is Loeb”. In
particular, BPI(R) implies SPFB(ω) (for every family {Hi : i ∈ I}
of filterbases of ω there exists a family {Fi : i ∈ I} ⊂ S(ω) satisfying
Hi ⊂ Fi for all i ∈ I). Moreover, BPI(R) implies |S(ω)| = |2R|.

Proof. (i) By Theorem 3, “2R is compact” implies “XR is compact”. Let
G = {Gi : i ∈ I ⊆ R} be a family of non-empty closed subsets of X. Then
S = {π−1

i (Gi) : i ∈ I} is a family of closed subsets of XR with the fip. Thus,⋂
S 6= ∅. Clearly, any f ∈

⋂
S is a choice function of G.

The assertion about BPI(ω) follows from Theorem 7(i) below, the proof
of (i)(→) of Proposition 1 and the first (or the second) assertion of (i) of the
present lemma.

(ii) We have 2R ' (
∏

x∈R 2{x}) × (
∏

x∈P(R)\R{0}) (' means homeomor-
phic) and the latter set is a closed subset of 2P(R). Thus, by our assumption,
2R is compact.

On the other hand, since (2R)P(R) ' 2R×P(R) and 2R×P(R) ' 2P(R) (we
have |R × P(R)| = |P(R)| because |P(R)| ≤ |R × P(R)| and |P(R)| =
|P(R × R)| = |P(

⋃
{{x} × R : x ∈ R})| ≥ |

⋃
{P({x} × R) : x ∈ R}| =

|R×P(R)|), it follows, by our assumption, that (2R)P(R) is compact. Taking
into account that the size of K(2R) is |P(R)|, we can finish off the reasoning
as in the proof of (i).

The first assertion about BPI(R) follows from the proof of Proposition 1
and Theorem 7(i). The second assertion follows from the original assertion
of (ii) of the present lemma and Theorems 6(iii) and 7(i).

We would like to point out here that in view of Proposition 2 and the
fact that R is well-orderable in every Fraenkel–Mostowski permutation model
(see [4]), every permutation model satisfies “2R is compact and Loeb”.

Clearly, the set A = {χ{x} : x ∈ R}, where for U ⊂ R, χU is the
characteristic function of U , is a relatively discrete subset of 2R and χ∅
is an accumulation point of A such that every neighborhood of χ∅ leaves
out finitely many members of A. If UF(ω) fails, then |S(ω)| = ℵ0 and
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S(ω) cannot have uncountable relatively discrete sets. However, if we assume
BPI(ω), we find, as a corollary to Lemma 4(i), that S(ω) has uncountable
relatively discrete subsets and, in particular, |R| ≤ |S(ω)|.

Corollary 5. BPI(ω) implies “S(ω) has a relatively discrete subset of
size |R|”. Hence, |R| ≤ |S(ω)|.

Proof. Fix an almost disjoint family A = {Ai : i ∈ R} of subsets of ω
(for all i, j ∈ R, i 6= j, |Ai ∩ Aj | < ℵ0) and choose, by our assumption and
Lemma 4, for every i ∈ R an ultrafilter Fi ∈ S(ω) which extends the family
Hi of all cofinite subsets of Ai. It can be readily verified that F = {Fi : i ∈ R}
is a relatively discrete subset of S(ω).

3. Main results. It is known that in ZFC the product 2R is a con-
tinuous image of S(ω). We show in the next theorem that, in ZF, BPI(X)
suffices to make 2P(X) a continuous image of S(X), X = ω,R.

Theorem 6.

(i) In ZF, for X = ω,R, BPI(X) implies “2P(X) is a continuous image
of S(X)”.

(ii) It is relatively consistent with ZF that S(ω) is Loeb, but 2R is not
Loeb.

(iii) In ZF, for X = ω,R, “S(X) is compact and Loeb” implies “|S(X)| =
|2P(X)|”, which in turn implies UF(X).

Proof. (i) We prove the assertion for X = R. The case X = ω can be
treated similarly. Fix an independent family A in R of size |P(R)|. Such a
family is easily seen to exist in ZF. (If D ⊂ 2P(R) is a dense set of size
|R| (use the Hewitt–Marczewski–Pondiczery theorem [2, Theorem 2.3.15]),
then the family A = {Ax : x ∈ P(R)}, where Ax = {d ∈ D : d(x) = 1}, is
clearly independent.) It suffices, in view of [9, Proposition 3: if |X| = |Y |,
i.e., there is a bijection f : X → Y , then 2X and 2Y are topologically
homeomorphic], to show that the product 2A is a continuous image of S(R).
For every F ∈ S(R) let fF = χF∩A. Let T : S(R) → 2A be the function
T (F) = fF . Since A is independent, it follows that for every f ∈ 2A, Wf =
f−1({1}) ∪ {Ac : f(A) = 0} has the fip. Hence, by BPI(R), Wf can be
extended to an ultrafilter Ff . Thus, T (Ff ) = f and T is onto. Furthermore,
for every A ∈ A and i ∈ {0, 1}, the set

T−1([{(A, i)}]) =
{

[A] if i = 1,
[Ac] if i = 0,

is clearly open in S(R). Thus, T is continuous and onto as required.
(ii) It is known that in Feferman’s forcing model (Model M2 in [4])

every ultrafilter on ω is principal. Hence S(ω) is a countable discrete space,
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meaning that S(ω) is Loeb. On the other hand, inM2 there is a family of
two-element subsets of P(R) having no choice functions (see [4]), hence by
Theorem 12(ii) below, 2R fails to be Loeb in this model.

(iii) For X = ω and for the first implication, it suffices to show that
|2R| ≤ |S(ω)|. Let A be an independent family of ω of size |R|. Clearly, for
each h ∈ 2A, Hh = h−1({1})∪ {Ac : h(A) = 0} is a subbase for a filter of ω.
By our assumption and Proposition 1(ii), pick for each h ∈ 2A an ultrafilter
Uh which includes Hh. Then the mapping h 7→ Uh, h ∈ 2A, is one-to-one.

For the second implication, note that if every ultrafilter on ω is fixed,
then |S(ω)| = ℵ0, which is impossible in view of our assumption.

The assertions regarding S(R) and 2P(R) are proved similarly upon noting
also that UF(ω) = UF(R) (see [1]).

Theorem 7. The following are provable in ZF:

(i) For every infinite set X, S(X) embeds as a closed subspace of the
product 2P(X). Hence, if 2P(X) is compact (or Loeb), then S(X) is
compact (resp. Loeb).

(ii) “S(R) is Loeb” implies UF(ω). Hence, by (i), “2P(R) is Loeb” implies
UF(ω).

Proof. (i) Let T : S(X)→ 2P(X) be the function defined by T (F) = χF
for all F ∈ S(X). Clearly, T is one-to-one, continuous and open (we have
T ([A]) = {χF : F ∈ [A]} = [{(A, 1)}] ∩ T (S(X))). Put F = {T (Fx) :
x ∈ X}, where for every x ∈ X, Fx is the principal ultrafilter generated
by x. As in the proof of Theorem 3.5 in [12] one verifies that for every
f ∈ F \ F, f−1({1}) is a free ultrafilter on X. Hence, T (f−1({1})) = f and
F ⊆ T (S(X)). To complete the proof, it suffices to show that T (S(X)) ⊆ F .
We leave this as an easy exercise for the reader.

(ii) Basing on the fact that UF(ω) = UF(R), assume toward a contra-
diction that every ultrafilter on R is principal. This implies that S(R) is
homeomorphic to the discrete space R. By our assumption (S(R) is Loeb),
P(R) \ {∅} has a choice function. This means that P(ω) is well-orderable,
which in turn implies that every filter on ω can be extended to an ultrafilter.
But then there is a free ultrafilter on ω, hence on R, a contradiction. This
completes the proof of (ii) and of the theorem.

In view of Theorem 7 it is natural to ask whether 2R embeds in S(ω), or
whether 2P(R) embeds in S(R). The answer is in the negative even in ZFC set
theory and it is derived from [2, Theorem 3.6.14, Corollary 3.6.15] (Theorem
3.6.14 is due to Novák [11]) and the fact that, in ZFC (in particular, in
ZF + BPI), for every set X, S(X) and β(X) (the Čech–Stone extension of
the discrete space X; see [2]) are homeomorphic.
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We also obtain the above result as a by-product of our subsequent The-
orem 8. We would like to draw the reader’s attention to the fact that The-
orem 8 (and the result in Remark 9) is established in the absence of the
axiom BPI(ω) (resp. BPI(X)), or equivalently of “S(ω) is compact” (resp.
of “S(X) is compact”).

Theorem 8. Let A = {An : n ∈ ω} be a partition of ω. If {Fn : n ∈ ω}
is a family such that ∀n ∈ ω, Fn ∈ S(An) and F is an ultrafilter of ω, then:

(i) WF = {Fw : F ∈ F , w ∈ WF }, where Fw =
⋃
{w(n) : n ∈ F} and

WF =
∏

n∈F Fn, is a filterbase of ω. In addition, if F is free then⋂
WF = ∅.

(ii) The filter HF = {H ∈ P(ω) : W ⊂ H for some W ∈ WF} generated
byWF is an ultrafilter of ω. In addition, if F is free then HF is free.

(iii) HF ∈ G, where G = {Gn : n ∈ ω} and Gn is the (unique) ultrafilter
of ω generated by Fn.

(iv) The mapping T : S(ω)→ G, T (F) = HF , is a homeomorphism. In
particular, |S(ω)| = |G|.

Proof. (i) Fix Fw, Hu ∈ WF and let Q = F ∩H. Clearly, Q ∈ F , v ∈WQ,
where v(q) = w(q) ∩ u(q), q ∈ Q and Qv =

⋃
{v(s) : s ∈ Q} ⊆ Fw ∩ Hu.

Thus, WF is a filterbase. The second assertion is straightforward.
(ii) Fix K ⊂ ω. If K /∈ HF then {n ∈ ω : K ∩An ∈ Fn} /∈ F . Since F is

maximal, it follows that {n ∈ ω : Kc ∩An ∈ Fn} ∈ F . Hence, Kc ∈ HF and
HF is an ultrafilter.

The second assertion follows from the second assertion of (i).
(iii) Clearly, if F is a principal ultrafilter then HF ∈ G. So, we assume

that F is a free ultrafilter. Since the family VF = {[Fw] : F ∈ F , w ∈ WF }
is a neighborhood base of HF and |V ∩G| = ℵ0 for every V ∈ VF , it follows
that HF ∈ G as required.

(iv) Since for every F ,S ∈ S(ω), F 6= S implies HF 6= HS , we see that
the mapping T is one-to-one. Since, for every F ∈ P(ω),

F ∈ [F ]↔ F ∈ F ↔
⋃
{An : n ∈ F} ∈ HF ↔ HF ∈

[⋃
{An : n ∈ F}

]
,

we see that T maps basic open sets of S(ω) to basic open sets of T (S(ω)).
To complete the proof of (iv) it suffices to show that T is onto. Fix

H ∈ G. It is easy to verify that W = {WH : H ∈ H} is a filterbase of ω,
where WH = {n ∈ ω : H ∈ Gn}.

We show next that the filter FW of ω generated by W is maximal. Fix
M ⊆ ω and let FM =

⋃
{An : n ∈M}. We consider the following two cases:

(a) FM ∈ H. In this case it is easily seen that WFM
= M and conse-

quently M ∈ FW .

(b) F c
M ∈ H. This means that WF c

M
= {n ∈ ω : F c

M ∈ Gn} = M c ∈ FW .
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Thus, FW is an ultrafilter of ω as required. Then T (FW) = HFW = H.
(Let H ∈ H; then WH = {n ∈ ω : H ∈ Gn} ∈ FW . For every n ∈ WH ,
H ∩ An ∈ Fn, therefore H =

⋃
{H ∩ An : n ∈ WH} ∈ WFW ⊆ HFW . Hence

H ⊆ HFW and, since H is an ultrafilter, it follows that H = HFW .) So, T is
onto G and T is a homeomorphism, finishing the proof of the theorem.

Remark 9. Analogously we can prove a generalization of Theorem 8,
obtained by replacing ω by any infinite set X and replacing a countable
partition by a partition indexed by any set I, changing only “In particular,
|S(ω)| = |G|” in (iv) to “In particular, |S(I)| ≤ |S(X)|”.

The statement “every infinite closed subset of S(ω) includes a topolog-
ical copy of S(ω)” is of course a well-known ZFC result (see [2, Theorem
3.6.14]). However, we show next that by Theorem 8 the above statement is a
theorem of a strictly weaker axiomatic system than ZFC, namely ZF+DC.
In addition, although the statement “every infinite closed subset of S(ω) in-
cludes a topological copy of S(ω)” implies, in ZFC, the statement “S(ω) \ω
includes a topological copy of S(ω)”, this implication ceases to be valid in
ZF set theory.

Theorem 10.

(i) DC implies “every infinite closed subset of S(ω) includes a topolog-
ical copy of S(ω)”.

(ii) DC and “S(ω) is compact and Loeb” together imply “every infinite
closed subset of S(ω) has size |2R|”, hence S(ω) has no countably
infinite closed subspaces.

(iii) BPI(ω) implies “S(ω)\ω includes a topological copy of S(ω)”, which
in turn implies UF(ω). Hence, “every infinite closed subset of S(ω)
includes a topological copy of S(ω)” does not imply “S(ω)\ω includes
a topological copy of S(ω)” in ZF.

(iv) CAC implies “for every infinite set X, and every relatively discrete
subspace G = {Gn : n ∈ ω} of S(X), S(ω) is homeomorphic to G”.
In particular, CAC restricted to countable families of non-empty
sets of reals implies “for every countably infinite relatively discrete
subset G of S(ω), G is homeomorphic to S(ω)”.

Proof. (i) First we show that DC implies that every infinite closed sub-
set of S(ω) includes a countably infinite relatively discrete subset. Fix an
infinite closed subset F of S(ω). If F has no accumulation points, then the
conclusion follows immediately from the fact that DC implies that every
infinite set has a countably infinite subset. So assume that F has an accu-
mulation point, say xF . We shall construct a set A = {an : n ∈ N} ⊆ F and
a set {Vn : n ∈ N} of open sets such that ai ∈ Vi and Vi ∩ Vj = ∅ for i 6= j.
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We commence by defining

W =
{

(V1, . . . , Vn) ∈ Bn : n ∈ N, Vi ∩ F 6= ∅, Vi ∩ Vj = ∅ for i 6= j,

and xF /∈
⋃
{Vi : i = 1, . . . , n}

}
,

where B is the clopen base {[U ] : U ⊆ ω} of S(ω). Since |B| = |R| = |Rω|,
it follows that |W | = |R|. For all x, y ∈W , we define a binary relation R on
W by stating xRy if and only if x ⊆ y. We assert that Dom(R) = W . In-
deed, let (V1, . . . , Vn) ∈ W for some n ∈ N. Since xF /∈

⋃
{Vi : i = 1, . . . , n}

and
⋃
{Vi : i = 1, . . . , n} is closed, there exists V ∈ B such that xF ∈ V

and V ∩
⋃
{Vi : i = 1, . . . , n} = ∅. Since xF is an accumulation point

of F , let y ∈ (V ∩ F ) \ {xF }. Then there exist disjoint basic neighbor-
hoods U1 and U2 of xF and y, respectively, such that both U1 and U2

are contained in V . Put Vn+1 = U2. Then (V1, . . . , Vn, Vn+1) ∈ W and
(V1, . . . , Vn)R(V1, . . . , Vn, Vn+1), so Dom(R) = W as asserted.

By DC, there exists a sequence (Vn)n∈N of basic open sets such that
Vn ∩ F 6= ∅, Vn ∩ Vm = ∅ for n 6= m (and xF /∈

⋃
{Vn : n ∈ N}). Since for

every n ∈ N, Vn ∩ F is a non-empty (closed) subset of S(ω), we may let,
by DC, an ∈ Vn ∩ F , n ∈ N. Put A = {an : n ∈ N}. Then A is a countably
infinite relatively discrete subset of S(ω).

Now we prove the original assertion. Let F be an infinite closed subset
of S(ω) and let IF be the set of all isolated points of F . It follows from
the first part of the proof that IF is infinite (otherwise, H = F \ IF is
an infinite, dense-in-itself, hence closed, subset of F , hence of S(ω); thus,
H contains a countably infinite relatively discrete subset, a contradiction).
By DC, IF has a countably infinite subset, say G = {Gn : n ∈ ω}. By DC
again, pick, for every n ∈ ω, Gn ∈ Gn such that [Gn] ∩ G = {Gn}. Clearly,
for all n ∈ ω and m ∈ n,Gm /∈ Gn and consequently Gc

m ∈ Gn. Thus, for
all n ∈ ω, Gn \

⋃
{Gc

m : m ∈ n} = Gn ∩
⋂
{Gc

m : m ∈ n} ∈ Gn. Hence,
we may assume that {Gn : n ∈ ω} is a family of pairwise disjoint subsets
of ω. Let A = {An : n ∈ ω} be a partition of ω such that Gn ⊆ An

for all n ∈ ω. (Hence, An ∈ Gn for all n ∈ ω.) Clearly, for every n ∈ ω,
Fn = {U ∩ An : U ∈ Gn} is an ultrafilter of An, and Gn is the unique
ultrafilter of ω generated by Fn. By Theorem 8, S(ω) is homeomorphic to
G ⊆ F , finishing the proof of (i).

(ii) This follows from part (i) and from Theorem 6(iii).
(iii) Let A = {An : n ∈ ω} be a partition of ω into infinite sets. For

each n ∈ ω, let Hn be the filterbase of ω consisting of all subsets of An

which are cofinite in An. By BPI(ω) let, for each n ∈ ω, Gn ∈ S(ω) be such
that Hn ⊂ Gn (see Lemma 4(i)). Clearly, G = {Gn : n ∈ ω} is a countably
infinite relatively discrete subset of S(ω). Furthermore, G ⊂ S(ω) \ ω and
G ⊂ S(ω) \ ω = S(ω) \ ω (as S(ω) \ ω is closed in S(ω)). Letting, for each
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n ∈ ω, Fn = {U ∩ An : U ∈ Gn}, an application of Theorem 8 at this point
shows that S(ω) is homeomorphic to G ⊂ S(ω) \ ω.

That “S(ω) \ ω includes a topological copy of S(ω)” implies UF(ω) is
straightforward.

The last assertion of (iii) follows from the fact that DC, hence by (i)
“every infinite closed subset of S(ω) includes a topological copy of S(ω)”,
holds in Feferman’s forcing model M2 in [4], whereas UF(ω) fails in that
model (see [4]).

(iv) By CAC let, for every n ∈ ω, Gn ⊆ X be such that [Gn]∩G = {Gn}.
Without loss of generality assume that the Gn’s are pairwise disjoint (see
the proof of part (i)) and that Y = X \

⋃
{Gn : n ∈ ω} is infinte. By CAC,

Y has a countably infinite subset, hence Y has a partition {Un : n ∈ ω}. For
each n ∈ ω, let An = Gn ∪ Un. Then {An : n ∈ ω} is a partition of X and
letting, for each n ∈ ω, Fn be as in the proof of (iii), we may conclude by
Remark 9 that S(ω) is homeomorphic to GS(X), finishing the proof of (iv)
and of the theorem.

Corollary 11.

(i) DC and “S(R) is compact and Loeb” together imply “every infinite
closed subset of S(R) has size |2P(R)|”, hence S(R) has no countably
infinite closed subspaces.

(ii) In ZFC, 2P(X) does not embed as a subspace of S(X), where X =
ω,R.

Proof. (ii) We argue only for X = ω and assume toward a contradiction
that h : 2P(ω) → S(ω) is an embedding. Let G = {χ{n} : n ∈ ω} ⊆ 2P(ω).
Clearly, G is a relatively discrete subset of 2P(ω), G = G ∪ {0} in 2P(ω),
where 0 = χ∅, and every neighborhood of 0 includes all but finitely many
members of G. Thus, G is a compact subset of 2P(ω) and consequently we
may identify G with a countable closed subset of S(ω) homeomorphic to the
one-point compactification of ω with the discrete topology. This contradicts
the conclusion of part (ii) of Theorem 10 and completes the proof.

4. Further results. In this section we generalize Theorem 3 by replac-
ing ω with P(ω). We observe, as expected, that all statements concerning
BPI(ω) given in Theorem 3 generalize without any difficulty. In particular,
we note that Theorem 13 below is an analogue of Theorem 6 in [6].

Theorem 12.

(i) “2R is a Loeb space” iff “every product of finite subspaces of R is
Loeb”.

(ii) “2R is a Loeb space” implies that [P(R)]<ω\{∅} has a choice function
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(see also [8]). Hence, it implies that |[P(R)]<ω| = |P(R)| and a well-
ordering on each A ∈ [P(R)]<ω \ {∅} can be defined.

Proof. (i) We only prove (→) as the reverse implication is obvious. Fix a
family (Xi)i∈I of finite subsets of R. Since |[R]<ω| = |R| and |R× R| = |R|,
we may assume that the sets Xi are pairwise disjoint. Thus, X =

∏
i∈I Xi

embeds as a closed subspace in 2
S
{Xi:i∈I} (see [8]) and the latter space can

be viewed as a closed subspace of 2R. Hence, by our assumption, X is Loeb.
(ii) Since |P(R)| = |2R|, we may view each finite subset of P(R) as a

finite subset of 2R. Furthermore, since 2R is a T2 space, every finite subset
of 2R is a closed set. Therefore, by our assumption, the family [P(R)]<ω \{∅}
has a choice function. By the fact that for every n ∈ N, |P(R)n| = |(2R)n| =
|2R×n| = |P(R)| and our assumption we can define for every A ∈ [P(R)]<ω

an enumeration {aA
j : j ≤ |A|} of A. We have on the one hand |P(R)ω| =

|(2R)ω| = |2R×ω| = |P(R)| and for every n ∈ N, |P(R)n| = |P(R)|, and
on the other hand, by our assumption, |[P(R)]n| ≤ |P(R)n| via the map
Fn(A)(j) = aA

j , j ≤ n. Hence, |P(R)| ≤ |[P(R)]<ω| = |
⋃
{[P(R)]n : n ∈ N}|

≤ |
⋃
{P(R)n : n ∈ N}| ≤ |P(R)ω| ≤ |P(R)|.

Theorem 13. The following statements are pairwise equivalent:

(i) In a Boolean algebra B of size ≤ |2R| every filter can be extended to
an ultrafilter.

(ii) BPI(R).
(iii) S(R) is compact.
(iv) 2P(R) is compact.
(v) For every compact T2 space X having a dense subset of size ≤ |R|,

the product XP(R) is compact.
(vi) Every product of non-empty finite discrete subsets of P(R) is com-

pact.

Proof. (i)→(ii). This is clear.
(ii)↔(iii). Follow the well-known proof that BPI is equivalent to “for

every setX, the Stone space S(X) of the powerset algebra P(X) is compact”.
(iii)→(iv). This follows at once from Theorem 6(i).
(iv)→(v). Fix a compact T2 space X having a dense subset D of size

≤ |R|. By [2, Theorem 2.3.15], XP(R) has a dense subset of size |R|. Since
our assumption implies BPI(R) (by Theorem 7(i), S(R) is compact, and
it is easy to see that the latter is true iff BPI(R) is true), we may follow
the proof of (ii)→(iii) of Theorem 6 in [6] in order to verify that XP(R) is
compact.

(v)→(vi). First notice that our assumption clearly implies that 2P(R) is
compact. Fix a family A = {Ai : i ∈ I} of non-empty finite subsets of 2R.
By Lemma 4 and Theorem 12, it follows that |I| ≤ |P(R)|. As we observed
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in the proof of the first assertion of (ii) of Lemma 4, 2R is homeomorphic to
a closed subset of 2P(R). It follows that, for every i ∈ I, we may view Ai as a
finite subset of the compact T2 space 2P(R). Hence, Ai is a (discrete) closed
subspace of 2P(R). Thus,

∏
i∈I Ai is a closed subspace of (2P(R))P(R). Since

(2P(R))P(R) ' 2P(R)×P(R) ' 2P(R) (indeed, notice that |P(R) × P(R)| =
|P(R)| and use [9, Proposition 3]), it follows that (2P(R))P(R) is compact,
hence

∏
i∈I Ai is compact as required.

(vi)→(i). Our assumption implies that 2P(R) is compact. In order to verify
that (i) holds, mimic the proofs of (vi)→(vii)→(i) of Theorem 6 in [6] with
P(R) in place of R.

Corollary 14.

(i) For X = ω,R, “S(X) is compact and Loeb” iff “2P(X) is compact
and Loeb”.

(ii) BPI(R) implies “2R is compact” and “2R is Loeb”. In particular, un-
der BPI(R), “2R is compact” iff “2R is Loeb”, and “S(ω) is compact”
iff “S(ω) is Loeb”.

(iii) “2R is compact and Loeb” iff “for every separable compact T2 space
X, the product XR is compact and Loeb”.

(iv) BPI(R) implies “S(R) has a relatively discrete subset of size |P(R)|”.

Proof. (i) follows easily from Theorems 6(i), 7(i) and the fact thatBPI(X)
iff S(X) is compact.

(ii) follows from Lemma 4 and Theorem 13. (iii)(←) is obvious.
(iii)(→) Fix a separable compact T2 space X. By [2, Theorem 2.3.15],

XR is separable. By our assumption and Theorem 3, XR is compact. Let
RO(XR) be the family of all regular open sets of XR and let G be a countable
dense subset of XR. Since for any O,Q ∈ RO(XR), O 6= Q implies O ∩G 6=
Q ∩ G, it follows that |RO(XR)| ≤ |R| and consequently XR has a base B
of size ≤ |R|. It follows, by the embedding lemma, that XR embeds in the
product [0, 1]R as a closed subspace. Since “[0,1]R is Loeb” iff “2R is Loeb”
(see [7]), it follows by our assumption that “XR is Loeb” as required.

(iv) Fix an independent family A = {Ai : i ∈ P(R)} in R as in the
proof of Theorem 6(i). For every i ∈ P(R) let Wi = {Ai} ∪ {(Aj)c : j ∈
P(R) \ {i}} and Ki = {F ∈ S(R) : Wi ⊂ F}. Clearly, Ki is a non-empty
closed subset of the compact space S(R). By Theorem 13(v), the product
S(R)P(R) is compact, hence

⋂
{π−1

i (Ki) : i ∈ P(R)} 6= ∅. Fixing f in the
latter intersection, we easily conclude that F = {f(i) : i ∈ P(R)} is a
relatively discrete subset of S(R).
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