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Solution to a Problem of Lubelski and
an Improvement of a Theorem of His
by
A. SCHINZEL

In memory of Salomon Lubelski

Summary. The paper consists of two parts, both related to problems of Lubelski, but un-
related otherwise. Theorem 1 enumerates for a = 1,2 the finitely many positive integers D
such that every odd positive integer L that divides x>+ Dy? for (x,y) = 1 has the property
that either L or 2L is properly represented by x* + Dy?. Theorem 2 asserts the following
property of finite extensions k of Q: if a polynomial f € k[x] for almost all prime ideals p
of k has modulo p at least v linear factors, counting multiplicities, then either f is divisible
by a product of v + 1 factors from k[z] \ k, or f is a product of v linear factors from kz].

S. Lubelski [4], [5] considered the following problem: given a non-negative
integer a, what positive integers D have the following property:

P,: every odd positive integer L that divides x? + Dy? for (z,y) = 1
has the property that either L or 2°L is properly represented by

z? + Dy?.
Fora = 0 or a > 3 Lubelski gave a definite answer (Satz VIin [5]). Fora = 1 or
2 he only gave criteria (Satz IT and I in [5], see Lemma3|below) which enable
one to check for any given D whether it has property P,, but from which it is
not clear whether the number of suitable D’s is finite or not. We shall prove

THEOREM 1. For a =1 or 2 an integer D > 0 has property P, if and
only if D € S,, where

Sy = {1,2,3,4,5,6,7,10,13, 22, 37, 58},
Sy ={1,2,3,4,7,8,11,12, 16,19, 28, 43, 67, 163}.
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In another paper Lubelski proved the following (Satz IV in [7]): if a
polynomial f € Z[z] for almost all primes p has modulo p at least v linear
factors, then f is divisible by a product of v factors from Z[z] \ Z. We shall
improve and extend this theorem as follows.

THEOREM 2. Let k be a finite extension of Q. If a polynomial f € k[z]
for almost all prime ideals p of k has modulo p at least v linear factors,
counting multiplicities, then either f is divisible by a product of v+ 1 factors
from klx] \ k, or f is a product of v linear factors from k[z].

For v = 1 we obtain a result of Hasse [3].
The proof of Theorem [} is based on five lemmas.

LEMMA 1 (Weber). In every ideal class of a quadratic field there exists
a prime ideal of degree one.

Proof. See [10, §165 and §166|.

LEMMA 2 (Lubelski). An integer D > 0 has property Py if and only if
D e {1,2,3,4,7} =51 N85s.

Proof. See [, Satz IJ.

LEMMA 3. Fora =1 or 2 an integer D > 0, D = emod 2, ¢ = 0,1,
has property P, if the least odd divisor Q > 1 of any number x> + Dy? for
(xz,y) =1 satisfies

D +¢e?
1) Q=71
The condition is also mecessary for a = 1, D # 1,2,3,4,7 and a = 2,
D #1,2,3,4,7,8,16.

Proof. Tf (1) holds, then 2%Q is properly represented by z? 4+ Dy? and
D has property P, by Satz III of [5]. Conversely, if D has property P, for
a = 1,2 then either Q or 2°Q) is properly represented by x?+ Dy?. By Satz II
of [5] in the former case @ < 7, hence D < 2°.7; in the latter case Q = LI;aDJ )
The last equality is equivalent to (1), unless a = 2, D = 2 — 2 mod 4.
However, then 2¢Q = z2+Dy? implies z = y mod 2. The remaining assertion
for D < 28 can be checked case by case.

LEMMA 4 (Stark). If —d is a fundamental discriminant and the number
of ideal classes of Q(v/—d) is at most two, then d € S, where

S ={3,4,7,8,11,15,19,20, 24, 35,40, 43, 51, 52, 67, 88, 91, 115, 123, 148,
163,187,232, 267,403,427}

Proof. See [9].
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LEMMA 5 (Oesterlé). If —d is a fundamental discriminant and the num-
ber of ideal classes of Q(v/—d) is three, then d € T, where

T ={23,31,59, 83,107,139, 211, 293, 307, 331, 499, 547, 643, 883, 907}.

Proof. See [7] for a proof that d < 907. The list is taken from [I, Tables 4
and 5.

Proof of Theorem 1. Sufficiency of the condition follows from Lemma [3]
It also follows from that lemma that no D € S3_,\ S, (a = 1 or 2) has
property P,. It remains to show that if D ¢ S; U Sy, then D has neither
property Py nor P, If D =2% ¢ S; U So, then D > 32. On the other hand,
@ = 3 for a odd and @@ = 5 for « even. Since 5 < L%J it follows from
Lemma [3] that D has neither property P; nor Ps.

If D =0mod4, D # 2% then Q = D/4 and, by Lemma 3| D does not
have property P;. On the other hand, if D has property P, then D/4 has
property Py and, by Lemma[2, D € S; N Ss.

If D # 0 mod 4, then taking in the definition of P, for L the least odd
prime factor of D we infer that

(2) D=L or 2L,

hence the discriminant of the field Q(v/—D) equals D for D = 3 mod 4 and
4D otherwise. Put w = (14++/—D)/2 for D = 3 mod 4, w = /— D otherwise.
If D = 3 mod 8, then (2) remains prime in Q(v/—D). If D = 1,2 mod 4,
then by Dedekind’s theorem, (2) = p?, where p is a prime ideal of Q(v/—D).
Finally, if D = 7 mod 8, then (2) = pp’, where p’ is conjugate to p.

If D ¢ S1US and D # 0mod 4, then either d has an odd square
factor > 1 or D € {15,35,51,91,115, 123, 187, 267,403,427} or D € T or
discQ(v/—D) ¢ SUT. The first two cases are excluded by (2), in the third
case we find either D < 211, Q@ <5< (1+ D)/4,0or D > 293, Q < 13 <
(14 D) /4, so this case is excluded by Lemmal3] In the fourth case by Lemmald]
there are at least four ideal classes in Q(v/—D) and, by Lemma there exists
there a prime ideal q equivalent neither to (1) nor to p® nor to p'®. If ¢ is the
norm of q, then q = (¢,b + cw), where b,c € Z and (b,c) = 1. If w = v/—D,
then ¢|b% + Dc?, while if w = (1 + +/—D)/2, then ¢q| (2b + ¢)? + Dc? for ¢
odd and q | (b+ ¢/2)2? + D(c/2)? for ¢ even, thus by P, for some integers x,y
we have either ¢ = N(x +yv/—D) or 2%q = N(z+yv/—D). Since q is prime,
this gives either (x + yv/—D) = q or ¢’ or p%q or p%q’ or p'®q or p'@q’ or
a=2, (x+yV/D)=(2)qor (x+yvD) = (2)q. In each case q is equivalent
to either (1) or p® or p’®, contrary to the choice of g.

The problem considered by Lubelski in [6], where 2 is replaced by an odd
prime p, can be solved by similar methods.
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The proof of Theorem [2] is based on

LEMMA 6. For a finite permutation group G with the orbits O1,...,0;
let a;s be the number of letters of the orbit O; left invariant by a permutation

o of G. Then for each i <,
> aic = G.

oeg
Proof. See [2, p. 190].

Proof of Theorem[3 Consider the polynomial
l
f@) =c]] fitx)",
i=1

where ¢ € k \ {0}, f; are coprime polynomials irreducible over k, and e; are
positive integers. Let G be the Galois group of the polynomial Hizl fi(x)
over k. Then G has [ orbits Oy, ..., O; consisting of the zeros of fi,..., fi
respectively. By the Frobenius density theorem for every permutation o € G
there exist infinitely many prime ideals p of k such that f; has exactly
a, linear factors modulo p, where a;, is as in Lemma [6] The assumption
gives
l

(3) Z eiai, > v forevery o € G
i=1
and unless
l
(4) v e
i=1
we have the assertion. For o being the identity (id) we have a;;, = |O;]

(1 < <1), hence by Lemmal|6]

Y aie=16]-10i (1<i<l).
ceG\{id}
It follows that

l l ! l
Z Zeiaw:zei Z az’a:zei(’g\—\a&’) <Zei(\g’—1)7
i=1

oeg\{id} =1 i=1  eG\{id} i=1
unless
(5) 0;l=1 (1<i<l).

Therefore, unless (5) holds, there exists ¢ € G such that Zé:l €iliyc <
St e, contrary to (3) and (4).
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