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Summary. The paper consists of two parts, both related to problems of Lubelski, but un-
related otherwise. Theorem 1 enumerates for a = 1, 2 the finitely many positive integers D
such that every odd positive integer L that divides x2+Dy2 for (x, y) = 1 has the property
that either L or 2aL is properly represented by x2 +Dy2. Theorem 2 asserts the following
property of finite extensions k of Q: if a polynomial f ∈ k[x] for almost all prime ideals p

of k has modulo p at least v linear factors, counting multiplicities, then either f is divisible
by a product of v + 1 factors from k[x] \ k, or f is a product of v linear factors from k[x].

S. Lubelski [4], [5] considered the following problem: given a non-negative
integer a, what positive integers D have the following property:

Pa: every odd positive integer L that divides x2 + Dy2 for (x, y) = 1
has the property that either L or 2aL is properly represented by
x2 +Dy2.

For a = 0 or a ≥ 3 Lubelski gave a definite answer (Satz VI in [5]). For a = 1 or
2 he only gave criteria (Satz II and III in [5], see Lemma 3 below) which enable
one to check for any given D whether it has property Pa, but from which it is
not clear whether the number of suitable D’s is finite or not. We shall prove

Theorem 1. For a = 1 or 2 an integer D > 0 has property Pa if and
only if D ∈ Sa, where

S1 = {1, 2, 3, 4, 5, 6, 7, 10, 13, 22, 37, 58},
S2 = {1, 2, 3, 4, 7, 8, 11, 12, 16, 19, 28, 43, 67, 163}.
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In another paper Lubelski proved the following (Satz IV in [7]): if a
polynomial f ∈ Z[x] for almost all primes p has modulo p at least v linear
factors, then f is divisible by a product of v factors from Z[x] \ Z. We shall
improve and extend this theorem as follows.

Theorem 2. Let k be a finite extension of Q. If a polynomial f ∈ k[x]
for almost all prime ideals p of k has modulo p at least v linear factors,
counting multiplicities, then either f is divisible by a product of v+1 factors
from k[x] \ k, or f is a product of v linear factors from k[x].

For v = 1 we obtain a result of Hasse [3].
The proof of Theorem 1 is based on five lemmas.

Lemma 1 (Weber). In every ideal class of a quadratic field there exists
a prime ideal of degree one.

Proof. See [10, §165 and §166].

Lemma 2 (Lubelski). An integer D > 0 has property P0 if and only if
D ∈ {1, 2, 3, 4, 7} = S1 ∩ S2.

Proof. See [5, Satz I].

Lemma 3. For a = 1 or 2 an integer D > 0, D ≡ ε mod 2, ε = 0, 1,
has property Pa if the least odd divisor Q > 1 of any number x2 +Dy2 for
(x, y) = 1 satisfies

(1) Q =
D + ε2

2a
.

The condition is also necessary for a = 1, D 6= 1, 2, 3, 4, 7 and a = 2,
D 6= 1, 2, 3, 4, 7, 8, 16.

Proof. If (1) holds, then 2aQ is properly represented by x2 + Dy2 and
D has property Pa by Satz III of [5]. Conversely, if D has property Pa for
a = 1, 2 then either Q or 2aQ is properly represented by x2+Dy2. By Satz II
of [5] in the former caseQ ≤ 7, henceD ≤ 2a·7; in the latter caseQ =

⌊
1+D
2a

⌋
.

The last equality is equivalent to (1), unless a = 2, D ≡ 2 − ε2 mod 4.
However, then 2aQ = x2+Dy2 implies x ≡ y mod 2. The remaining assertion
for D ≤ 28 can be checked case by case.

Lemma 4 (Stark). If −d is a fundamental discriminant and the number
of ideal classes of Q(

√
−d) is at most two, then d ∈ S, where

S = {3, 4, 7, 8, 11, 15, 19, 20, 24, 35, 40, 43, 51, 52, 67, 88, 91, 115, 123, 148,
163, 187, 232, 267, 403, 427}.

Proof. See [9].
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Lemma 5 (Oesterlé). If −d is a fundamental discriminant and the num-
ber of ideal classes of Q(

√
−d) is three, then d ∈ T , where

T = {23, 31, 59, 83, 107, 139, 211, 293, 307, 331, 499, 547, 643, 883, 907}.

Proof. See [7] for a proof that d ≤ 907. The list is taken from [1, Tables 4
and 5].

Proof of Theorem 1. Sufficiency of the condition follows from Lemma 3.
It also follows from that lemma that no D ∈ S3−a \ Sa (a = 1 or 2) has
property Pa. It remains to show that if D /∈ S1 ∪ S2, then D has neither
property P1 nor P2. If D = 2α /∈ S1 ∪ S2, then D ≥ 32. On the other hand,
Q = 3 for α odd and Q = 5 for α even. Since 5 <

⌊
1+32

4

⌋
it follows from

Lemma 3 that D has neither property P1 nor P2.
If D ≡ 0 mod 4, D 6= 2α, then Q = D/4 and, by Lemma 3, D does not

have property P1. On the other hand, if D has property P2, then D/4 has
property P0 and, by Lemma 2, D ∈ S1 ∩ S2.

If D 6≡ 0 mod 4, then taking in the definition of Pa for L the least odd
prime factor of D we infer that

(2) D = L or 2L,

hence the discriminant of the field Q(
√
−D) equals D for D ≡ 3 mod 4 and

4D otherwise. Put ω = (1+
√
−D)/2 for D ≡ 3 mod 4, ω =

√
−D otherwise.

If D ≡ 3 mod 8, then (2) remains prime in Q(
√
−D). If D ≡ 1, 2 mod 4,

then by Dedekind’s theorem, (2) = p2, where p is a prime ideal of Q(
√
−D).

Finally, if D ≡ 7 mod 8, then (2) = pp′, where p′ is conjugate to p.
If D /∈ S1 ∪ S2 and D 6≡ 0 mod 4, then either d has an odd square

factor > 1 or D ∈ {15, 35, 51, 91, 115, 123, 187, 267, 403, 427} or D ∈ T or
disc Q(

√
−D) /∈ S ∪ T . The first two cases are excluded by (2), in the third

case we find either D ≤ 211, Q ≤ 5 < (1 + D)/4, or D ≥ 293, Q ≤ 13 <
(1+D)/4, so this case is excluded by Lemma 3. In the fourth case by Lemma 4
there are at least four ideal classes in Q(

√
−D) and, by Lemma 1, there exists

there a prime ideal q equivalent neither to (1) nor to pa nor to p′a. If q is the
norm of q, then q = (q, b+ cω), where b, c ∈ Z and (b, c) = 1. If ω =

√
−D,

then q | b2 + Dc2, while if ω = (1 +
√
−D)/2, then q | (2b + c)2 + Dc2 for c

odd and q | (b+ c/2)2 +D(c/2)2 for c even, thus by Pa for some integers x, y
we have either q = N(x+ y

√
−D) or 2aq = N(x+ y

√
−D). Since q is prime,

this gives either (x + y
√
−D) = q or q′ or paq or paq′ or p′aq or p′aq′ or

a = 2, (x+ y
√
D) = (2)q or (x+ y

√
D) = (2)q′. In each case q is equivalent

to either (1) or pa or p′a, contrary to the choice of q.
The problem considered by Lubelski in [6], where 2 is replaced by an odd

prime p, can be solved by similar methods.
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The proof of Theorem 2 is based on

Lemma 6. For a finite permutation group G with the orbits O1, . . . , Ol
let aiσ be the number of letters of the orbit Oi left invariant by a permutation
σ of G. Then for each i ≤ l, ∑

σ∈G
aiσ = |G|.

Proof. See [2, p. 190].

Proof of Theorem 2. Consider the polynomial

f(x) = c

l∏
i=1

fi(x)ei ,

where c ∈ k \ {0}, fi are coprime polynomials irreducible over k, and ei are
positive integers. Let G be the Galois group of the polynomial

∏l
i=1 fi(x)

over k. Then G has l orbits O1, . . . , Ol consisting of the zeros of f1, . . . , fl
respectively. By the Frobenius density theorem for every permutation σ ∈ G
there exist infinitely many prime ideals p of k such that fi has exactly
aiσ linear factors modulo p, where aiσ is as in Lemma 6. The assumption
gives

(3)
l∑

i=1

eiaiσ ≥ v for every σ ∈ G

and unless

(4) v ≥
l∑

i=1

ei

we have the assertion. For σ being the identity (id) we have aiσ = |Oi|
(1 ≤ i ≤ l), hence by Lemma 6,∑

σ∈G\{id}

aiσ = |G| − |Oi| (1 ≤ i ≤ l).

It follows that∑
σ∈G\{id}

l∑
i=1

eiaiσ =
l∑

i=1

ei
∑

σ∈G\{id}

aiσ =
l∑

i=1

ei (|G| − |Oi|) <
l∑

i=1

ei (|G| − 1) ,

unless

(5) |Oi| = 1 (1 ≤ i ≤ l).

Therefore, unless (5) holds, there exists σ ∈ G such that
∑l

i=1 eiaiσ <∑l
i=1 ei, contrary to (3) and (4).
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