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Summary. For any continuous map f : M → M on a compact manifold M , we define
SRB-like (or observable) probabilities as a generalization of Sinai–Ruelle–Bowen (i.e. phys-
ical) measures. We prove that f always has observable measures, even if SRB measures do
not exist. We prove that the definition of observability is optimal, provided that the pur-
pose of the researcher is to describe the asymptotic statistics for Lebesgue almost all initial
states. Precisely, the never empty set O of all observable measures is the minimal weak∗

compact set of Borel probabilities in M that contains the limits (in the weak∗ topology)
of all convergent subsequences of the empirical probabilities {(1/n)

Pn−1
j=0 δfj(x)}n≥1, for

Lebesgue almost all x ∈M . We prove that any isolated measure in O is SRB. Finally we
conclude that if O is finite or countably infinite, then there exist (countably many) SRB
measures such that the union of their basins covers M Lebesgue a.e.

1. Introduction. Let f : M → M be a continuous map of a compact,
finite-dimensional manifold M . Let m be a Lebesgue measure normalized so
that m(M) = 1, and not necessarily f -invariant. We denote by P the set of
all Borel probability measures on M , provided with the weak∗ topology, and
a metric structure inducing this topology.

For any point x ∈M we denote by pω(x) the set of all Borel probabilities
on M that are limits in the weak∗ topology of convergent subsequences of
the sequence

(1.1)
{

1
n

n−1∑
j=0

δfj(x)

}
n∈N

where δy is the Dirac delta probability measure supported at y ∈ M . We
call the probabilities of the sequence (1.1) empirical probabilities of the orbit
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of x. We call pω(x) the limit set in P corresponding to the forward orbit of
x ∈M .

The following definition of a physical measure is standard in ergodic
theory:

Definition 1.1. A probability measure µ is physical or SRB (Sinai–
Ruelle–Bowen) if {µ} = pω(x) for a set A(µ) of points x ∈ M that has
positive Lebesgue measure. We call A(µ) the basin of attraction of µ.

The adjective “physical” is used for instance in [Y02]). Nevertheless, in
calling such probabilities SRB measures, we follow [V98] and Chapter 11
of [BDV05]. This preference is based on three reasons, which are also our
motivations:

1. Our scenario includes all continuous systems. C0 generic maps f are
not differentiable. So, no Lyapunov exponents necessarily exist, to be able to
assume some kind of hyperbolicity. Thus, we cannot assume the existence of
an unstable foliation with differentiable leaves. Therefore, we aim to study
those systems for which the SRB measures as usually defined in the literature
(related to an unstable foliation F) do not exist. We recall a popularly re-
quired property for µ: the conditional measures µx of µ along the local leaves
Fx of a hyperbolic unstable foliation F are absolutely continuous with re-
spect to the internal Lebesgue measures of those leaves. But this assumption
needs the existence of such a regular foliation F . It is well known that the
ergodic theory based on this absolute continuity condition does not work for
generic C1 systems (that are not C1+α): see [RY80, BH98, AB07]. So, it does
not work for most C0 systems.

2. In the modern differentiable ergodic theory, for C1+α systems that
have some hyperbolic behavior, one of the ultimate purposes of searching
measures with absolute continuity properties with respect to Lebesgue mea-
sure is to find probabilities that satisfy Definition 1.1. Therefore, if the
system is not C1+α, or is not hyperbolic-like, but nevertheless there ex-
ists some probability µ describing the asymptotic behavior of the sequence
(1.1) for a Lebesgue positive set of initial states (i.e. µ satisfies Defini-
tion 1.1), then one of the initial purposes of research of Sinai, Ruelle and
Bowen in [B71, BR75, R76, S72] is also achieved. Therefore, it makes sense
(principally for C0 systems) to call µ an SRB measure if it satisfies Defini-
tion 1.1.

3. The SRB-like property of some invariant measures describes (with
an error that is smaller than ε for an arbitrary ε > 0) the behavior of
the sequence (1.1) for every n large enough and for a Lebesgue positive set
of initial states. This property can be achieved by considering observable
measures that we introduce in Definition 1.2, instead of only those satisfying
Definition 1.1. This new setting will describe the statistics (defined by the
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sequence (1.1) of empirical probabilities) for Lebesgue almost all initial states
(see Theorem 1.5). The result is particularly interesting in the cases for which
SRB measures do not exist (see for instance [K04] and some examples in
Section 5 of this paper). So, in the following, we use the words physical and
SRB as synonymous, and we apply them only to the probability measures
that satisfy Definition 1.1. To generalize this notion, we call the measures
introduced in Definition 1.2 below observable or SRB-like or physical-like.
Under this agreement all SRB measures are SRB-like but not conversely (we
provide examples in Section 5).

One of the major problems of the ergodic theory of dynamical systems is
to find SRB measures. They are mostly studied for those systems that are
C1+α and show some kind of hyperbolicity ([PS82], [PS04], [V98], [BDV05]).
One of the reasons for searching those measures is that they describe the
asymptotic behavior of the sequence (1.1) for a Lebesgue positive set of ini-
tial states, that is, for a set that is not negligible from the viewpoint of the
observer. By means of SRB measures the statistics of orbits is described,
i.e. the time-mean of the future evolution of the system is predicted for a
Lebesgue positive set of initial states. Nevertheless, it is unknown if most
differentiable systems have SRB measures ([P99]). Some interesting continu-
ous systems do not (see Example 5.5). In [K98], Keller considers an SRB-like
property of a measure, even if the sequence (1.1) is not convergent. In fact, he
takes those measures µ that belong to the set pω(x) for a Lebesgue positive
set of initial states x ∈M , regardless of whether pω(x) coincides with {µ} or
not. Precisely, Keller considers those measures µ for which dist(µ, pω(x)) = 0
for a Lebesgue positive set of points x ∈ M . But, as he also remarks in his
definition, that kind of weak-SRB measures may not exist. We now introduce
the following notion, which generalizes the notion of observability of Keller,
and the notion of SRB measures in Definition 1.1:

Definition 1.2. A probability measure µ ∈ P is observable or SRB-like
or physical-like if for any ε > 0 the set Aε(µ) = {x ∈M : dist(pω(x), µ) < ε}
has positive Lebesgue measure. We call Aε(µ) the basin of ε-attraction of µ.
We denote by O the set of observable measures.

From Definitions 1.1 and 1.2 it is immediate that every SRB measure is
observable. But not every observable measure is SRB (we provide examples
in Section 5). It is standard to check that any observable measure is f -
invariant. (In fact, if Pf ⊂ P denotes the weak∗ compact set of f -invariant
probabilities, since pω(x) ⊂ Pf for all x, we conclude that µ ∈ Pf = Pf
for all µ ∈ O.) For the experimenter, observable measures as defined in 1.2
should have the same relevance as SRB measures defined in 1.1. In fact, the
basin of ε-attraction Aε(µ) has positive Lebesgue measure for all ε > 0. The
ε-approximation holds in the space P of probabilities, but it can be easily
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translated (through the functional operator induced by the probability µ
in the space C0(M,R)) to an ε-approximation (in time-mean) towards an
“attractor” in the ambient manifold M .

Precisely, if µ is observable and x ∈ Aε(µ) then, with a frequency that is
asymptotically bounded away from zero, the iterates fn(x) will ε-approach
the support of µ. Note that also for an SRB measure µ this ε-approximation
to the support of µ holds in the ambient manifold M for all ε > 0, but it
is not true in general if ε = 0. Namely, assuming that there exists an SRB
measure µ, the empirical probabilities (defined in (1.1) for Lebesgue almost
all orbits in the basin of µ) approximate µ. But in general they differ from
µ after any finite time n ≥ 1 of observation. If the experimenter aims to
observe the orbits during a finite time n, then Definition 1.2 of observability
ensures him a 2ε-approximation to the “attractor”, for any given ε > 0, while
Definition 1.1 of physical measures ensures him an ε-approximation. None
guarantees a null error, and both guarantee an error smaller than ε > 0
for arbitrarily small values of ε > 0. Thus, the practical meaning of both
definitions is similar.

Statement of the results

Theorem 1.3 (Existence of observable measures). For every continuous
map f , the space O of all observable measures for f is nonempty and weak∗
compact.

We prove this theorem in Section 3. It states that Definition 1.2 is weak
enough to ensure the existence of observable measures for any continuous f .
When we consider the set Pf of all invariant measures we also obtain existing
probabilities describing all the weak∗ limit sets pω(x) of Lebesgue almost all
initial states x ∈ M . Nevertheless, Pf is less economic. In fact, along Sec-
tion 5, we exhibit paradigmatic systems for which most invariant measures
are not observable. We also show that observable measures (just as SRB
measures defined in 1.1) are not necessarily ergodic. So, ergodic measures
are not necessarily suitable to describe the asymptotic behavior of orbits in
some Lebesgue positive sets. In fact, there exist examples (we will provide
one in Section 5) for which the set of points x ∈ M such that pω(x) is an
ergodic probability has zero Lebesgue measure.

In Definition 1.1, the set A(µ) = {x ∈ X : pω(x) = {µ}} is called the
basin of attraction of an SRB-measure µ. Inspired by that definition we
introduce the following:

Definition 1.4. The basin of attraction A(K) of a nonempty weak∗
compact subset K of probabilities is

A(K) := {x ∈M : pω(x) ⊂ K}.
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We are interested in those compact sets K ⊂ P having basin A(K) with
full Lebesgue measure. We are also interested in not adding unnecessary
probabilities to the set K. The following result states that the optimal choice
is the nonempty compact set of observable measures defined in 1.2.

Theorem 1.5 (Full optimal attraction of O). The set O of observable
measures for f is the minimal weak∗ compact subset of P whose basin of
attraction has total Lebesgue measure. In other words, O is minimally weak∗
compact containing, for Lebesgue almost all initial states, the limits of all
convergent subsequences of (1.1).

We prove this theorem in Section 3.
Let us state the relations between the cardinality of O and the existence

of SRB measures according to Definition 1.1.

Theorem 1.6 (Finite set of observable measures). O is finite if and
only if there exist finitely many SRB measures such that the union of their
basins of attraction covers M Lebesgue a.e. In this case O is the set of SRB
measures.

We prove this theorem in Section 4.

Theorem 1.7 (Countable set of observable measures). If O is countably
infinite, then there exist countably infinitely many SRB measures such that
their basins of attraction cover M Lebesgue a.e. In this case O is the weak∗
closure of the set of SRB measures.

We prove this theorem in Section 4.
For systems preserving the Lebesgue measure the main question is their

ergodicity, and most results of this work translate, for those systems, as
conditions equivalent to being ergodic. The proof of the following result is
standard in view of Theorem 1.5:

Remark 1.8 (Observability and ergodicity). If f : M → M preserves
the Lebesgue measure m, then the following assertions are equivalent:

1. f is ergodic with respect to m.
2. There exists a unique observable measure µ for f .
3. There exists a unique SRB measure ν for f and it attracts Lebesgue

a.e. point x ∈M .

Moreover, if the assertions above are satisfied, then m = µ = ν.

The ergodicity of many maps that preserve the Lebesgue measure is also
an open question ([PS04], [B-W03]). Due to Remark 1.8 this property is
equivalent to unique observability.
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2. The convex-like property of pω(x). For each x ∈ M we have
defined the nonempty compact set pω(x) ⊂ Pf composed of the limits of all
convergent subsequences of the empirical probabilities in (1.1). For further
uses we state the following property of pω-limit sets:

Theorem 2.1 (Convex-like property). For every point x ∈M :

1. If µ, ν ∈ pω(x) then for each real number 0 ≤ λ ≤ 1 there exists a
measure µλ ∈ pω(x) such that dist(µλ, µ) = λ dist(ν, µ).

2. pω(x) either has a single element or is uncountable.

Proof. Statement 2 is an immediate consequence of 1. To prove 1 it is
enough to exhibit, in the case µ 6= ν, a convergent subsequence of (1.1)
whose limit µλ satisfies 1. It is an easy exercise to observe that the existence
of such a convergent sequence follows (just take ε = 1/n) from Lemma 2.2
below.

Lemma 2.2. For all x ∈ M and n ≥ 1 define µn = n−1
∑n−1

j=0 δfj(x).
Assume that there exist two weak∗ convergent subsequences µmj→µ, µnj→ν.
Then for all 0 ≤ λ ≤ 1, ε > 0 and K > 0 there exists a natural number
h=h(ε,K)>K such that |dist(µh, µ)−λ dist(ν, µ)|≤ε.

Proof. First let us choose mj and then nj such that

mj > K;
1
mj

<
ε

4
; dist(µ, µmj ) <

ε

4
; nj > mj ; dist(ν, µnj ) <

ε

4
.

We will consider the following distance in P:

dist(ρ, δ) =
∞∑
i=1

1
2i

∣∣∣ � gi dρ− �
gi dδ

∣∣∣ for ρ, δ ∈ P,

where {gi}i∈N is a countable dense subset of C0(M, [0, 1]). Note from (1.1)
that |

	
g dµn −

	
g dµn+1| ≤ (1/n)‖g‖ for all g ∈ C(M, [0, 1]) and n ≥ 1.

Then in particular for n = mj + k, we obtain

(2.1) dist(µmj+k, µmj+k+1) ≤
1
mj

<
ε

4
for all k ≥ 0.

Now let us choose a natural number 0 ≤ k ≤ nj −mj such that

|dist(µmj , µmj+k)− λdist(µmj , µnj )| < ε/4 for the given λ ∈ [0, 1].

Such a k exists because inequality (2.1) is satisfied for all k ≥ 0 and moreover
if k = 0 then dist(µmj , µmj+k) = 0 and if k = nj−mj then dist(µmj , µmj+k)
= dist(µmj , µnj ). Now renaming h = mj+k, applying the triangular property
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and tying together the inequalities above, we deduce

|dist(µh, µ)− λ dist(ν, µ)| ≤ |dist(µh, µ)− dist(µh, µmj )|
+ |dist(µh, µmj )− λ dist(µmj , µnj )|+ λ|dist(µmj , µnj )− dist(µmj , ν)|
+ λ|dist(µmj , ν)− dist(µ, ν)| < ε.

3. Proofs of Theorems 1.3 and 1.5. From the beginning we have a
fixed metric in the space P of all Borel probability measures in M , inducing
its weak∗ topology. We denote by Bε(µ) the open ball in P, with that metric,
centered at µ ∈ P and with radius ε > 0.

Proof of Theorem 1.3. Let us prove that O is compact. The comple-
ment Oc of O in P is the set of all probability measures µ (not necessarily
f -invariant) such that for some ε = ε(µ) > 0 the set {x ∈ M : pω(x) ∩
Bε(µ) 6= ∅} has zero Lebesgue measure. Therefore Oc is open in P, and so
O is closed. As P is compact we deduce that O is compact as desired.

We now prove that O is not empty. For contradiction, assume Oc =P.
Then for every µ ∈ P there exists some ε = ε(µ) > 0 such that the set
A = {x ∈ M : pω(x) ⊂ (Bε(µ))c} has total Lebesgue probability. As
P is compact, let us consider a finite covering of P with such open balls
Bε(µ), say B1, . . . ,Bk, and the respective sets A1, . . . , Ak defined as above.
As m(Ai) = 1 for all i = 1, . . . , k, the intersection B =

⋂k
i=1Ai is not empty.

By construction, for all x ∈ B the pω-limit set of x is contained in the com-
plement of Bi for all i = 1, . . . , k, and so it would not be contained in P;
that is the contradiction ending the proof.

Proof of Theorem 1.5. Recall Definition 1.4 of the basin of attraction
A(K) of any weak∗ compact and nonempty set K of probabilities. We must
prove the following two assertions:

1. m(A(O)) = 1, where m is the Lebesgue measure.
2. O is minimal among all compact sets K ⊂ P with this property.

Define the following family ℵ of sets of probabilities:

ℵ = {K ⊂ P : K is compact and m(A(K)) = 1}.
Thus ℵ is composed of all weak∗ compact sets K of probabilities such that
pω(x) ⊂ K for Lebesgue almost every point x ∈ M . The family ℵ is not
empty since it contains the set Pf of all invariant probabilities. So, to prove
Theorem 1.5, we must prove that O ∈ ℵ and O =

⋂
K∈ℵK.

Let us first prove that O ⊂ K for all K ∈ ℵ. This is equivalent to proving
that if K ∈ ℵ and µ 6∈ K, then µ 6∈ O.

If µ 6∈ K set ε = dist(µ,K) > 0. For all x ∈ A(K) the set pω(x) ⊂ K
is disjoint from the ball Bε(µ). But Lebesgue almost all points are in A(K),
because K ∈ ℵ. Therefore pω(x)∩Bε(µ) = ∅ Lebesgue a.e. This last assertion,
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combined with Definition 1.2 and the compactness of pω(x), implies that
µ 6∈ O, as desired.

Now let us prove that m(A(O)) = 1. By Theorem 1.3 the set O is com-
pact and nonempty. So, dist(µ,O) > 0 for any µ 6∈ O. Observe that the
complement Oc of O in P can be written as the increasing union of compact
sets Kn (not in ℵ), as follows:

(3.1) Oc =
∞⋃
n=1

Kn, Kn = {µ ∈ P : dist(µ,O) ≥ 1/n} ⊂ Kn+1.

Let us consider the sequence A′n = A′(Kn) of sets in M , where

(3.2) A′(K) := {x ∈M : pω(x) ∩ K 6= ∅}.
Define A′∞ = A′(Oc). We deduce from (3.1) and (3.2) that

A′∞ =
∞⋃
n=1

A′n, m(A′n)→ m(A′∞) = m(A′(Oc)).

To end the proof we must show that m(A′n) = 0 for all n ∈ N. In fact,
A′n = A′(Kn) and Kn is compact and contained in Oc. By Definition 1.2
there exists a finite covering of Kn by open balls B1, . . . ,Bk such that

(3.3) m(A′(Bi)) = 0 for all i = 1, . . . , k.

By (3.2) the finite collection of sets A′(Bi) with i = 1, . . . , k covers A′n.
Therefore (3.3) implies m(A′n) = 0, ending the proof.

4. Proofs of Theorems 1.6 and 1.7

Lemma 4.1. If an observable or SRB-like measure µ is isolated in the
set O of observable measures, then it is an SRB measure.

Proof. Recall that we denote by Bε(µ) the open ball in P centered at
µ ∈ P and with radius ε > 0. Since µ is isolated in O, there exists ε0 > 0
such that the set Bε0(µ)\{µ} is disjoint from O. By Definition 1.2,m(A) > 0,
where A := Aε0(µ) = {x ∈M : dist(pω(x), µ) < ε0}.

By Definition 1.1, to prove that µ is SRB it is enough to prove that for
m-almost all x ∈ A, the limit set pω(x) of the sequence (1.1) of empirical
probabilities is {µ}. In fact, fix an arbitrary 0 < ε < ε0. The compact set
Bε0(µ) \ Bε(µ) is disjoint from O, so it can be covered by a finite number
of open balls B1, . . . ,Bk such that m(Ai) = 0 for all i = 1, . . . , k, where
Ai := {x ∈M : pω(x) ∩ Bi 6= ∅}. Thus, for m-a.e. x ∈ A the limit set pω(x)
intersects Bε(µ) but it does not intersect Bε0(µ) \ Bε(µ). From Theorem 2.1
we obtain pω(x) ⊂ Bε(µ) for Lebesgue almost all x ∈ A. Taking the values
εn = 1/n, for all n ≥ 1, we deduce that pω(x) = {µ} m-a.e. x ∈ A, as
desired.
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Proof of Theorem 1.6. Denote by SRB the (a priori maybe empty) set of
all SRB measures, according to Definition 1.1. By Definition 1.2, SRB ⊂ O.
If O is finite, then all its measures are isolated, and by Lemma 4.1, they
are all SRB measures. Therefore SRB = O is finite. Applying Theorem 1.5
which states the full attraction property of O, we obtain m(A(SRB)) = 1
where A(SRB) =

⋃
µ∈SRBA(µ), A(µ) being the basin of attraction of the

SRB measure µ. Therefore, we deduce that if O is finite there exist finitely
many SRB measures such that the union of their basins covers Lebesgue
almost all points x ∈M , as desired.

Now, let us prove the converse. Assume that SRB is finite and the union
of the basins of attraction of all measures in SRB covers Lebesgue a.e. x ∈M .
By the minimality property of O stated in Theorem 1.5, O ⊂ SRB. On the
other hand, we have SRB ⊂ O. We conclude O = SRB, and thus O is finite,
as desired.

To prove Theorem 1.7 we need the following lemma (which in fact holds
in any compact metric space P).

Lemma 4.2. If the compact subset O ⊂ P is countably infinite, then the
subset S of its isolated points is nonempty, countably infinite and S = O.
Therefore, dist(ν,O) = dist(ν,S) for all ν ∈ P.

Proof. The setO ⊂ P is nonempty and compact by Theorem 1.3. Assume
for contradiction that S is empty. Then O is perfect, i.e. every measure of
O is an accumulation point. The set P of all Borel probabilities in M is a
Polish space, since it is metric and compact. As nonempty perfect sets in a
Polish space always have the cardinality of the continuum [K95], we deduce
that O cannot be countably infinite, contradicting the hypothesis.

Even more, the argument above also shows that if O is countably infinite,
then it does not contain nonempty perfect subsets.

Let us prove now that the subset S of isolated measures of O is countably
infinite. Assume for contradiction that S is finite. Then O \ S is nonempty
and compact, and by construction it has no isolated points. Therefore it is
a nonempty perfect set, contradicting the above.

It is left to prove that dist(ν,O) = dist(ν,S) for all ν ∈ P. This asser-
tion, if proved, implies in particular that dist(µ,S) = 0 for all µ ∈ O, and
therefore, recalling that O is compact, S = O.

To prove that dist(ν,O) = dist(ν,S) for all ν ∈ P, first fix ν and take
µ ∈ O such that dist(ν,O) = dist(ν, µ). Such a probability µ exists because
O is compact. If µ ∈ S, then the asserted equality is trivial. If µ ∈ O \ S,
fix any ε > 0 and take µ′ ∈ S ∩ Bε(µ). Such a µ′ exists because, if not, the
nonempty set Bε(µ)∩O would be perfect, contradicting the above. Therefore,
dist(ν,S) ≤ dist(ν, µ′) ≤ dist(ν, µ) + dist(µ, µ′) = dist(ν,O) + dist(µ, µ′).



160 E. Catsigeras and H. Enrich

So, dist(ν,S) < dist(ν,O) + ε. As this holds for all ε > 0, we conclude that
dist(ν,S) ≤ dist(ν,O). The opposite inequality is immediate, since S ⊂ O.

Proof of Theorem 1.7. Denote by S the set of isolated measures in O. By
Lemma 4.2, S is countably infinite. Thus, applying Lemma 4.1, µ is SRB for
all µ ∈ S. Then there exist countably infinitely many SRB measures (those
in S and possibly some others in O \ S). Denote by SRB the set of all SRB
measures. By Lemma 4.2, O = S ⊂ SRB ⊂ O. So SRB = O. It is only left
to prove that the union of the basins of attractions A(µi) for all µi ∈ SRB
covers Lebesgue almost all points ofM . Denote by m the Lebesgue measure.
Theorem 1.5 yields pω(x) ⊂ O m-a.e. x ∈ M. Together with Theorem 2.1
and the hypothesis of countability of O, this implies that for m-a.e. x ∈ M
the set pω(x) has a unique element {µx} ⊂ O. Thus,
(4.1) pω(x) = {µx} ⊂ O m-a.e. x ∈M.

We write O = {µi : i = 1, . . . , n}, where µi 6= µj if i 6= j. Define A =⋃
i∈NA(µi), where A(µi) := {x ∈ M : µx = µi}. Assertion (4.1) can be

written as m(A) = 1. In addition, A(µi) ∩ A(µj) = ∅ if µi 6= µj . So 1 =∑∞
i=1m(A(µi)). By Definition 1.1, SRB = {µi ∈ O : m(A(µi)) > 0}. We

conclude that
∑

µi∈SRBm(A(µi)) =
∑∞

i=1m(A(µi)) = 1, as desired.

5. Examples

Example 5.1. For every transitive C1+α Anosov diffeomorphism the
unique SRB measure µ is the unique observable measure. But there are also
infinitely many other ergodic and nonergodic invariant probabilities that are
not observable (for instance those supported on periodic orbits).

Example 5.2. In [HY95] Hu and Young study a class of diffeomorphisms
f of the two-torus obtained from an Anosov diffeomorphism by weakening
the unstable eigenvalue of df at a fixed point x0 to become equal to 1. The
stable eigenvalue remains strictly smaller than 1, and the uniform hyper-
bolicity outside a neighborhood of x0 is preserved. The authors prove that
f has a single SRB measure, which is the Dirac delta δx0 supported at x0,
and that its basin has total Lebesgue measure. Therefore, δx0 is the single
observable measure for f , it is ergodic and there are infinitely many other
ergodic and nonergodic invariant measures that are not observable.

Example 5.3. The diffeomorphism f : [0, 1]2 → [0, 1]2, f(x, y)=(x/2, y),
has as O the set of Dirac delta measures δ(0,y) for all y ∈ [0, 1]. In this case O
coincides with the set of all ergodic invariant measures for f . Note that, for
instance, the one-dimensional Lebesgue measure on the interval [0]× [0, 1] is
invariant and not observable, and that there are no SRB measures as defined
in 1.1. This example also shows that the set O of observable measures is not
necessarily closed under convex combinations.
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Example 5.4. Maps with infinitely many simultaneous hyperbolic sinks
{xi}i∈N (constructed from Newhouse’s theorem [N74]) have a space O of
observable measures which contains δxi for all i ∈ N. Moreover, all of them
are physical measures and isolated in O. Also maps with infinitely many
Hénon-like attractors (constructed by Colli in [C98]) have a space of observ-
able measures that contains countably infinitely many isolated probabilities
that are SRB measures supported on Hénon-like attractors.

Example 5.5. The following example (attributed to Bowen [T94, GK07]
and earlier cited in [T82]) shows that even if the system is C2 regular, the
space of observable measures may be formed by the limit set of the non-
convergent sequence (1.1) for Lebesgue almost all initial states. Consider a
diffeomorphism f of a ball in R2 with two hyperbolic saddle points A and B
such that a half-branch of the unstable global manifold W u

half(A) \ {A} is an
embedded arc that coincides with a half-branch of the stable global manifold
W s

half(B) \ {B}, and conversely W u
half(B) \ {B} = W s

half(A) \ {A}. Take f
such that there exists a source C ∈ U where U is the topological open ball
with boundaryW u

half(A)∪W u
half(B). One can design f such that for all x ∈ U

the α-limit set is {C} and the ω-limit set contains {A,B}. If the eigenval-
ues of the derivative of f at A and B are adequately chosen (as specified
in [T94, GK07]), then the empirical sequence (1.1) for any x ∈ U \ {C} is
not convergent. It has at least two different subsequences that converge to
different convex combinations of the Dirac deltas δA and δB. Applying The-
orem 1.7 there exist uncountably many observable measures. In addition, as
observable measures are invariant under f , due to the Poincaré Recurrence
Theorem they are all supported on {A} ∪ {B}. So, by Theorem 2.1 all the
observable measures are convex combinations of δA and δB and form a seg-
ment in the space M of probabilities. This example shows that observable
measures are not necessarily ergodic.

Finally, the eigenvalues of df at the saddles A and B can be suitably
modified to obtain, instead of the result above, the convergence of the se-
quence (1.1) as stated in Lemma (i) on page 457 of [T82]. In fact, taking
conservative saddles (and C0 perturbing f outside small neighborhoods of
the saddles A and B so the topological ω-limit set of the orbits in U \ {C}
still contains A and B), one can make the sequences (1.1) converge to a
single measure µ = λδA + (1 − λ)δB (with a fixed constant 0 < λ < 1) for
all x ∈ U \ {C}. So µ is physical according to Definition 1.1, and moreover
it is the unique observable measure. This proves that physical measures are
not necessarily ergodic.

Example 5.6. Consider a partially hyperbolic C2 diffeomorphism f as
defined in Section 11.2 of [BDV05]. In this family of examples, we will assume
that for all x ∈ M there exists a df -invariant dominated splitting TM =
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Eu ⊕ Ecs, where the subbundle Eu is uniformly expanding, has positive
constant dimension, and the expanding exponential rate of df |Eu dominates
that of df |Ecs . Through every x ∈ M there exists a unique C2 injectively
immersed unstable manifold F u(x) tangent to Eu.

We provide below a concrete example for which SRB measures according
to Definition 1.1 do not exist. Nevertheless, in Subsection 11.2.3 of [BDV05]
the authors prove that f does have probability measures µ that are Gibbs
u-states. Namely, such a µ has conditional measures µx with respect to the
unstable foliation Fu that are absolutely continuous with respect to the
internal Lebesgue measuresmu

x along the leaves Fux . Precisely, Theorem 11.16
of [BDV05] states that for all x in a set E ⊂ M of initial states such that
mu
y(Fuy \ E) = 0 for all y ∈ M , convergent subsequences of the empirical

probabilities (1.1) converge to Gibbs u-states (depending, a priori, on the
point x ∈ E).

We provide below an example for which the set E has full Lebesgue mea-
sure in the ambient manifold M . Therefore, in this example Theorem 11.16
of [BDV05] implies that for Lebesgue almost all x ∈M , the limit set pω(x)
of the sequence (1.1) is contained in the set of Gibbs u-states. Combining
this result with Theorem 1.5 of this paper, we deduce that all the observable
or SRB-like measures are Gibbs u-states in this example. Nevertheless, not
all Gibbs u-states are necessarily observable, since the Gibbs u-states form a
convex set but O is not necessarily convex. Moreover, by Theorems 1.6 and
1.7, and since in the example below there does not exist any SRB measure,
the set O (and thus also the set of Gibbs u-states) is uncountable. Moreover,
in the example below this fact holds simultaneously with the property that
the sequence (1.1) of empirical probabilities converges for Lebesgue almost all
initial states. This property, and the statement that the observable measures
are Gibbs u-states, are two remarkable differences between Example 5.6 and
Example 5.5. For both, no SRB measure exists and the set O is uncountable.

Let us consider the following (trivial but illustrative) example of par-
tially hyperbolic system: Denote by f : T3 → T3 the C2 map on the three-
dimensional torus T3 = (S1)3, defined by f(x, y, z) = (x, g(x, y)), where
g : T2 → T2 is a transitive C2 Anosov diffeomorphism. By the Sinai Theo-
rem there exists a g-ergodic SRB measure µ1 on the two-torus, which is a
Gibbs u-state for g. Thus, for Lebesgue almost all initial states (x, y, z) ∈ T3,
the sequence (1.1) of the empirical probabilities converges to a measure
µx = δx×µ1, which is supported on a 1-dimensional unstable manifold injec-
tively immersed in the two-torus {x}×T2. For different values of x ∈ S1 the
measures µx are mutually singular, since they are supported on disjoint com-
pact two-tori embedded on T3. For each measure µx in T3, the basin of attrac-
tion A(µx) (as defined in 1.1) has zero Lebesgue measure in the ambient man-
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ifold T3. So, none of the probabilities µx is SRB for f . Nevertheless, by Theo-
rem 1.5, the set of all those measures µx (which is easily checked to be weak∗
compact) coincides with the set O of observable SRB-like measures for f .
By the construction of this concrete example, any µ ∈ O is a Gibbs u-state.
Moreover, any µ ∈ O is ergodic. Since there exist many observable proba-
bilities and since every convex combination of Gibbs u-states is also a Gibbs
u-state, we conclude that there exist Gibbs u-states that are not observable.
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